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Abstract. Different strategies to learn user semantic queries from dis-
similarity representations of video audio-visual content are presented.
When dealing with large corpora of videos documents, using a feature
representation requires the online computation of distances between all
documents and a query. Hence, a dissimilarity representation may be
preferred because its offline computation speeds up the retrieval process.
We show how distances related to visual and audio video features can
directly be used to learn complex concepts from a set of positive and
negative examples provided by the user. Based on the idea of dissimilar-
ity spaces, we derive three algorithms to fuse modalities and therefore to
enhance the precision of retrieval results. The evaluation of our technique
is performed on artificial data and on the complete annotated TRECVID
corpus.

1 Introduction

Determining semantic concepts by allowing users to iteratively refine their queries
is a key issue in multimedia content-based retrieval. The relevance feedback loop
allows to build complex queries made out of positive and negative documents as
examples. From this training set, a learning process should then extract relevant
documents from feature spaces. Many relevance feedback techniques have been
developed that operate directly in the feature space [3,11, 13, 15].

Describing content of videos requires to deal in parallel with many high-
dimensional feature spaces expressing the multimodal characteristics of the au-
diovisual stream. This mass of data makes retrieval operations computationally
expensive when dealing directly with features. The simplest task of computing
the distance between a query and all other elements becomes infeasible when
involving tens of thousands of documents and thousands of feature space com-
ponents. This problem is even more sensible when the similarity measures are
complex functions or procedures, such as prediction functions for temporal dis-
tances [2] or graph exploration for semantic similarities [10].

Another aspect to prefer similarities rather than features is the multimodal
fusion problem. Dealing directly with multimodal and heterogeneous features
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imposes to build complex learning setup that need to take into account every
feature metric. On the opposite, the similarity approach provides us an homo-
geneous framework where the learning process consists in combining various
distance measurements, whatever the features involved into the problem are.

A solution to allow on-line interaction would be to compute off-line monomodal
dissimilarity relationships between elements and to use the dissimilarity matri-
ces or distance-based indexing structures [4] as an index for retrieval operations.
The problem is then to find distance-based solutions that go beyond the classi-
cal k-NN approaches [1, 8] in order to perform discriminative classification that
provides effective retrieval of semantic concepts. Pekalska et al [9] have proposed
dissimilarity spaces where objects are represented not by their features but by
their relative dissimilarities to a set of selected objects. These representations
seem to form a convenient approach to tackle the similarity-based indexing and
retrieval problem.

In this paper, we show how dissimilarities can be used to build low-dimensional
multimodal representation spaces where learning machines, (eg SVM), could op-
erate and investigate several strategies to fuse the modalities. Our thorough
evaluation on both artificial data and the complete TRECVID news broadcast
corpus shows that multimodal dissimilarity spaces allow to perform effective
retrieval of video documents using real time interaction.

2 Query-dependent dissimilarity space

In the proposed framework, users formulate complex queries by iteratively pro-
viding positive and negative examples in a relevance feedback loop. From this
training data, the aim is to perform a real-time dissimilarity-based classifica-
tion that will return relevant documents to user. We present in the following
the dissimilarity space introduced by Pekalska et al in [9] and show how it can
be adapted to provide us with a low-dimensional approximation of the original
feature space where an efficient classification could be performed.

Let d(x;,x;) be the distance between elements ¢ and j according to their
descriptors x € F. F expresses the (unavailable) original feature space. The
dissimilarity space is defined as the mapping d(z, 2) : F — R given by:

d(z, 2) = [d(z,x1),d(z,%2),... d(z,xN)].

The representation set 2 = {x1,...,xx} is a subset of N objects defining the
new space. The new “features” of an input element are now its dissimilarity val-
ues with the representation objects. As a consequence, learning or classification
tools for feature representations are also available to deal with the dissimilarities.

The dimensionality of the dissimilarity space is directly linked to the size of
2, which controls the approximation made on the original feature space (such
an approximation could be computed using projection algorithms like classical
scaling [5]). Increasing the number of elements in {2 increases the representation
accuracy. On the other hand, a well-chosen space of low dimension would be more



effective for further learning processes as it avoids the curse of dimensionality
problem and reduces computation load.

The selection of a good representation set may be driven by considerations
on the particular learning problem we are dealing with. Let us denote the query
as the set T of positive and negative training examples (respectively denoted P
and N with T = P UN). As mentioned by Zhou et al [15], we are generally
dealing with a 1 4+ x class setup with 1 class associated to positives and x to
negatives. Dedicated algorithms, such as Bias-Map [15, 14], have been developed
to tackle this classification problem. In our case, the choice of the set (2 offers us
the possibility to turn the problem into a more classical formulation: Selecting
the representation set as the set of positive examples P turns the problem into
a binary classification. Indeed, assuming that the positive examples are close to
each other while being far from negative examples, the vectors d(z;cp, P) (within
scatter) have norms lower than vectors d(z;enr, P) (between scatter), leading to
a binarization of the classification, as illustrated in figure 1 with artificial data In
this particular case, the learning task does not consist anymore in estimating the
circular distribution of the negative class but a simpler function that separate
the positive class, close to the origin, to the rest of the space.

The second advantage of selecting P as the representation set is that it readily
induces to work in a low dimensional space of p = |P| components, where online
learning processes are dramatically speed-up.
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Fig. 1. The 1+ class problem in feature space (left) and 2D dissimilarity space (right)
where the representation objects are two points from the central class (cross)

3 Multimodal dissimilarity space

A multimodal description of multimedia data provides a number of feature spaces
(one or more per modality). Each of them leads to a dissimilarity matrix con-
taining pairwise distances between all documents, which are now referred by
several dissimilarity measures that could be partially dependent. The success
for interpreting a user query relies on the effective use of all of these informa-
tion sources as well as their interdependencies. In the following, we discuss the



different strategies to design a multimodal representation of data based on the
dissimilarity spaces previously introduced.

We note dfi the distance measure applied to the feature space F; and assume
that dissimilarity matrices are known for M feature spaces. Then, given a set of
positive examples P, M monomodal spaces dfi are built.

A first way to fuse modalities is to consider that a possible multimodal dis-
similarity would be the sum of all (normalized) monomodal distances. With this
definition, the multimodal space d is simply

d=d" +d” +... +d eR”. (1)

The dissimilarity space dimension is independent from the number of original
feature spaces as it is always equal to p. This is a great advantage when M is
large, but, on the other hand, one can object that the linear sum does not make
sense to fuse features, especially when it deals with many sources of information.
Moreover, the sum is sensitive to noisy and uninformative modalities, which will
corrupt any classification operation.

To overcome these difficulties, we can consider that the fusion is carried out a
posteriori by the classifier, which operates directly on multimodal components.
The multimodal space is then the concatenation of all monomodal spaces, each
element of which being represented by a multimodal dissimilarity vector

T
d= |:dflT7df2T,...’df1MT:| c RP-M, (2)

This solution has the benefit to leave the fusion decision to the training process.
However, it imposes to work in a higher-dimensional space where the estimation
of the class distributions from a small training set may be less reliable.

Finally, we can adopt a more general fusion scheme where the input of the
multimodal space is made of outputs of base classifiers. This solution is known
as the general combining classifier [6,12].

d = [gi(d"), g2(d"), ..., gar(@)]" € RM, 3)

where g;(.) denote the output of base classifiers for the ith modality. The fusion
algorithm is then splitted into two steps. First, individual classifiers are trained
on their respective dissimilarity spaces. The classifier outputs are then used as
input of a super classifier who takes the final fusion decision. This solution has
the benefit to work in low-dimensional spaces but imposes M + 1 classifications,
leading to a computational over-head.

The choice between one of these three strategies will be discussed in the
light of the results exposed in section 5. The problem now is to define which
classification algorithm with which parameters we will be used to learn queries.

4 Classification

Many algorithms can be used to train a classifier that will learn semantic con-
cepts. We have chosen to use an SVM because of its effectiveness and its flex-
ibility in parameterization. The kernel selection and setting is a critical issue



to successfully learn queries. It actually decides upon the classical trade-off be-
tween over-fitting and generalization properties of the classifier and hence is very
dependent of the considered representation space. Depending of the multimodal
space used, we differentiate three setups for the classifier:

— sum of dissimilarity spaces (def. (1): An RBF kernel k(x,y) = e~ (=) AG=Y)
with A = 67 'Id is used. The estimation of ¢ is based on a heuristic adapting
the model to the query

o = C - median; (min ||d}” — d;||2) (4)
J

The scale value is tuned to the median of all the minimum distances between
the negative and the positive examples. In that way, the kernel becomes
tighter as the two classes become closer to each other. The parameter C' has
been empirically set to 2.0.

— concatenation of spaces (def. (2): The same RBF kernel is used but
A = diag[oy,, -~ ,07%,,] so as to allow independent scaling for each modal-
ity. The scale vector oy, € RP is constant with all values equal to the scale
parameter oy, computed for each monomodal space d’ using the formula

(4).

— hierarchical classification (def. (3): Independent classification of monomodal
spaces are done with an RBF kernel and a scale o computed with (4). As
super classifier, a sigmoid kernel is used with a scaling parameter C' set to
0.1.

The three above definitions become clearly equivalent when only one modality
is considered. In the following, for the clarity of the results, we denote them
respectively as (1) SUM, (2) CONC and (3) HIER.

5 Experimentations

The following experimentations have been conducted to compare the three pro-
posed multimodal fusion algorithms and to measure the efficiency of the ap-
proach in a real video retrieval application. For both artificial and real annotated
data, the experimentation consists in making queries corresponding to concepts
and measuring the average precision, AP as the sum of the precision at each
relevant hit in the retrieved list divided by the minimum between the number of
relevant documents in the collection and the length of the list. The retrieved list
has 100 entries and the measures are averaged over 50 queries. The annotated
positive examples are removed from the hit-list so that they are not taken into
account when measuring performances.



5.1 The video database

We use the complete annotated video corpus TRECVid-2003 composed of 133
hours of CNN and ABC news. Videos are segmented into shots and every shot
has been annotated by several concepts. The speech transcripts extracted by
Automatic Speech Recognition (ASR) at LIMSI laboratory [7] are also available.

We extracted the three following features from the 37’500 shots composing
the corpus: Color histogram, Motion vector histogram and Word occurrence
histogram (after stemming and stopping). The distance measures used are Eu-
clidean for Color and Motion histogram and intersection for Word occurrence
histogram.

5.2 Results

The two following experiments consist in characterizing and comparing the fu-
sion strategies on artificial data. The features are generated from statistical
distributions and Euclidean distance is used to compute pairwise dissimilarities.

We first evaluate the discriminative power of the three strategies. The fea-
tures are drawn from two multivariate centered Gaussian distributions so as to
generate three dissimilarity spaces simulating three modalities. The positive class
has a variance fixed to 1 whereas the variance of the negative class varies from
1 to 3.5. That way, the negative class is gradually surrounding the positive one.
We then measure how fast the fusion algorithms are able to isolate the positive
elements from the rest of the data. The figure 2 plots the Average Precision for
our three fusion strategies SUM, CONC and HIER.
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Fig. 2. Average precision vs. the variance of the Gaussian distribution corresponding
to negative examples (the positive Gaussian distribution’s variance is set to 1). The
query is composed of 10 positive and 10 negative examples randomly chosen.



We observe that the CONC and HIER strategies show similar results and
outperform the SUM scheme to discriminate between the two classes. It validates
our prior idea that the SUM fusion scheme is clearly not optimal to combine
dissimilarities.

We now evaluate the strategies in term of robustness to uninformative modal-
ities. The problem is simulated by 10 modalities where one is purely informative
(the dissimilarities are set to 0 for elements belonging to the sought concept
and 1 for the rest) and the nine others are just uniform noise. Figure 3 shows
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Fig. 3. Average precision on artificial data where one modality is purely informative
while the 9 others are purely non-informative. The query is composed of 10 positive
and 10 negative examples randomly chosen.

AP results when the amplitude of the noise rises from 0 to 10. Again we can
observe that the SUM algorithm performs worse than the two others. But only
the hierarchical classification is actually robust to noisy modalities.

The following results have been obtained on the video database. It is worth
noting that the features we have extracted from videos are too weak to obtain a
full video retrieval system with high performances. Our goal here is to demon-
strate the potential capabilities of the approach for content-based indexing and
retrieval on large multimedia databases.

We evaluate how the combination of modalities can improve the retrieval
efficiency. The task is to retrieve shots that are annotated “Weather news”. This
concept is consistent with the low-level features we use (coherence of colors,
motion and speech) and enables us to evaluate the classification task into the
dissimilarity spaces rather than the suitability of the features to characterize
semantics. The graph 4 compares the AP when monomodal sources and mul-
timodal information are considered. Whatever the strategy used, the retrieval
precision is better when multimodal information is taken into account. We can
observe that the speech has a great importance to characterize the concept, but
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Fig. 4. Average precision for monomodal and multimodal retrieval and for the three
multimodal fusion strategies. The queries are composed of 10 positive and 10 negative
examples.

the addition of less relevant features such as motion and color still improves the
performances.
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Fig. 5. Hierarchical classification results when positive examples and negative examples
increase (N, = Np).

The following experiment tests how the retrieval precision evolves when the
number of positive and negative documents grows (results have been obtained
with the HIER strategy). As figure 5 shows, the AP increases with the size of the
training set until a maximum value is reached from where the addition of new
examples does not improve anymore the classification accuracy. This saturation
behavior illustrates how the users, by providing more and more examples (in the



relevance feedback loop), can refine their queries until reaching the optimum of
the classifier.

Next, we conducted experiments for several other annotated concepts (Table
1). These results are also compared to a random guess (e.g seeking hits at ran-
dom within the database) to illustrates the capability of the algorithm to use
low-level multimodal information to create models of semantic concepts defined
by the user. This improves dramatically the performance of the search. However,
with the reading of this table, it is rather difficult to form an opinion about the
best fusion algorithm. While the HIER and CONC approach perform alterna-
tively the best, the three algorithm performances are within the same range
of precision. Surprisingly, the mean Average Precision (mAP) obtained for the
SUM algorithm is higher than that calculated for the two other strategies. It
is indeed disappointing that the less discriminative and robust approach gives
globally the best results on real data. It is however worth noting that it also
provides the simplest solution by minimizing both the dimensionality of the rep-
resentation space and the number of classifications to operate. This simplicity is
probably the reason of the good behavior of the SUM approach.

Table 1. AP for concept retrieval

[Concept |[SUM|CONCIHIER [Random|
Studio Setting [0.56] 0.57 [0.60| 0.01
Basketball 0.21] 0.22 | 0.12 | 0.0024
Weather news 0.51| 0.37 |0.55| 0.0014
Hockey 0.05| 0.06 | 0.02 |1.85¢*
mean AP (mAP)|0.33| 0.30 | 0.32 | 0.0035

Table 2. Computation load (in second)

Training set Algorithms
Positive ex.|Negative ex.|SUM|CONC|HIER
3 modalities 10 10 0.3 0.4 1.2
20 10 0.5 | 0.8 1.9
40 10 1.4 1.7 5.9
10 40 1.2 1.3 4.2
10 modalities 10 10 0.3 | 0.6 34

Finally, we give the computation load of each algorithm (Table 2) for various
training sets and for 3 and 10 modalities. We see that the SUM strategy is
effectively the fastest while the computation load of the hierarchical classification
increases linearly with the number of modalities used.



6 Discussion

Our three dissimilarity-based multimodal fusion strategies are able to take ben-
efit from low-level audio-visual descriptions of video documents and, as a con-
sequence, to learn semantic queries from a limited number of input examples.
Moreover, the fusion of the information sources performs better than considering
modalities independently.

The design of the dissimilarity space as been achieved so as to simplify the
classification problem while building a low-dimensional representation of the
data. As a result, queries on large databases are processed in near real-time
which authorizes the use of feedback loop as a search paradigm.

In the light of the results, it is however difficult to decide which approach
is optimal for the retrieval task. Tests on artificial data have demonstrated the
superiority of the hierarchical classification in terms of class discrimination and
robustness to corrupted modalities. The computation over-head is however not
negligible, especially when a large number of features is used. On the other hand,
the experiments carried out on real data do not exhibit clearly any superiority
between the three fusion strategies. Actually, the weakness the low-level features
do not allow us to definitely conclude this study.

Our future work will therefore consist in extracting new features that better
characterize audiovisual content. It will enable us to properly evaluate the fusion
algorithms and to determine the limits of the fusion schemes when a large number
of features are used.
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