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Abstract. Suppose that whenever event x occurs, a second event y must subsequently occur.
We say that x “causes” y, or y is causally dependent on x. Deterministic causality abounds in
software where execution of one routine can necessarily force execution of a subsequent sub-
routine. Discovery of such causal dependencies can be an important step to understanding the
structure of undocumented, legacy code.

In this paper we describe a methodology based on formal concept analysis that uncovers
possible causal dependencies in execution trace streams. We first walk through the process
using a small synthetic, but easily comprehensible, example. Then we illustrate its potential
using 57 threads involving 18,969 executed operations that were monitored in an open source
middleware system.

1 Introduction

Since its first application as “concept analysis” [22], Galois closure [13] has proven to be a valuable
tool for the analysis of various phenomena. Many examples can be found in Formal Concept Analysis

[5] and the reader is assumed to be familiar with this fundamental work.
To our knowledge the first effort to apply closure concepts to software engineering was by Gregor

Snelting who used formal concept analysis to analyze legacy code [12, 18]. Siff and Reps [17] published
shortly after. Snelting’s goal was to reconstruct the overall system structure by determining which
variables (columns) were accessed by which modules (rows). It was hoped that the concept structure
would become visually apparent as it does in all of Ganter and Wille’s examples [5]. Unfortunately,
the resulting concept lattice shown on page 356 of [12] is little more than a black blob. Visual
interpretation of closure concepts does not seem to scale well. In [1], Ball specifically proposes using
concept analysis to establish the relationship between individual test runs and procedure executions
in a red-black tree system as shown in Figure 1. He, then goes on to visually identify which procedures
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Fig. 1. Execution of sub-procedures in a red-black tree program under various test configurations.
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dominate others — that is, force their execution. Given the small size of R and L, dominance is
visually derivable. But, in a larger system this might be unwieldy. Unfortunately, Ball does not seem
to have done any further work on this concept based approach to dynamic software analysis. In this
paper we will push this kind of analysis a bit further.

Let a, b, c, d, e, p, q, s, t, u denote specific software events, and let the 8 sequences of Figure 2 depict
relevant portions of trace data from 8 executions of a single software system. Our goal will be to
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Fig. 2. 8 event sequences extracted from simulated trace data.

analyze necessary dependencies between these events, if any. This will constitute a running example
through Section 3. It provides a clearer introduction. In Section 4, we will turn to the analysis of real
trace data consisting of 57 separate threads comprised of 18,969 invocations of 77 different operators.

2 Discrete Deterministic Data Mining

The first step in our analysis of software execution employs the discrete deterministic data mining
(DDDM) system we have developed at the Univ. of Virginia. As described in [15, 16] this system
extracts all the logical dependencies between attributes, or properties, of observed objects as recorded
in a binary relation R(O, A). We let LR denote the concept lattice generated by R(O, A). Each closed
concept, together with its generator(s) determine a logical dependency. More specifically, if a subset
at is a generator of the closed set acqst of attributes then, as shown in [15], at logically implies acqst.
The dependency, or implication, can be expressed in first-order notation as

(∀o ∈ O)[(a(o) ∧ t(o)) ∨ (q(o) ∧ t(o)) → a(o) ∧ c(o) ∧ q(o) ∧ s(o) ∧ t(o)] (1)

which by letting concatenation denote conjunction and suppressing the universal quantifier, we
abbreviate as simply

at ∨ qt → acqst (2)

These expressions implicitly indicate that the closed set acqst has two generators. The data mining
performed by the DDDM system is deterministic because these implications must occur. We some-
times call this closed set data mining to distinguish it from more customary apriori, or frequent set,
data mining which yields statistical associations between the attributes, properties, or items.

The value of identifying closed sets in order to minimize redundant associations in traditional
apriori type data mining has been rather thoroughly explored in [10, 26, 27]. To get a feel for the
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power of focusing on closed sets, we observe that our DDDM system yielded 2,641 closed concepts,
and thus logical implications, when applied to a relation, R(O, A), consisting of 8,124 objects, or
rows, and 39 attributes, or columns, that enumerated the horticultural properties of mushrooms.
Admittedly, most of these 2,641 implications were either trivial or useless. Nevertheless, 2,641 closed
set concepts is an order of magnitude less than the 25,210 frequent set associations generated by
an open source apriori algorithm on the same 8, 124 × 39 data set, using reasonable support and
confidence parameters. Emphasizing Galois closed sets in data mining can have a huge performance
payoff. And, a rather simple filter was able to reduce this mass of implications to only 37 relatively
simple rules for determining whether a mushroom is edible or poisonous. We might consider these
to be the most important attributes of any mushroom. Obtaining deterministic identification rules
is very desirable here!

We say that the DDDM approach is discrete because the universal quantification can only be
over the finite domain O comprising the relation R(O, A).

The DDDM system constructs the concept lattice LR incrementally in a manner that was first
described by Godin and Missaoui in [7–9] and refined a bit more in [20, 21]. Incremental construction
of the concept lattice facilitates incorporation of new data into an existing set of formal concepts
without rereading the earlier data. The actual implementation of our system is more fully described
in [16].

Given the sequence data of Figure 2 we first create the boolean relation R(O, A) shown as Figure
3(a). Here (n, x) is true if event trace sequence n contains an occurrence of event x. Observe that x
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Fig. 3. The resulting concept lattice.

may, and often does, appear repeatedly in a single trace. Setting (n, x) to true only indicates that x

has appeared at least once in trace n. Our DDDM system then incrementally generates the lattice of
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26 concepts shown as Figure 3(b). To determine, and possibly modify, generators incrementally we
use the technique proven in [11] which determines generating sets by examining covering relationships
between closed concepts in LR. Let Z be a closed concept that covers the concepts Yi in LR. If X ⊆ Z

is a minimal subset such that X ∩ (Z−Yi) 6= Ø for all i, then X is a generator of Z.
Figure 4 more accurately illustrates the output generated by the DDDM process. The program

does not actually draw the concept lattice LR; it is too hard to do well. Instead we list the attributes
comprising the closed concepts, the generator(s) of these concepts, and the support of each concept
(objects involved in the Galois closure), together with a concept identifier and list of covering lattice
edges (which we have not shown). To conserve space, we have only listed those 20 concepts of Figure
3(b) which are supported by at least two observations. Observe that it is concept #10, acqst with
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Fig. 4. Selected concepts generated by the relation R(O, A) of Figure 3(a).

generators {at, qt} that is the source of the logical implications presented earlier as (1) and (2). The
reader should also verify that these logical implications are, in fact, true for the discrete domain
O. For example, any object, or row, in which both a and t appear will also contain c, q and s, as
indicated by concept #10.

3 Causal Dependency

Logical implication is not equivalent to causal dependency. The accepted concept of “causality”
involves time, whereas logic does not. If at is the precedent, as in concept #10, or expression (2),
then we expect that the conjunction of these two events must precede the occurrence of the events c,



5

q and s of the consequent if we are to say that at “causes” qst as a consequence. Causal dependence
is assumed to be strictly anti-symmetric with respect to time. Since concept #10 is supported by
traces 4 and 5, we examine each more closely. Event t is the last event in trace 5. In no way could it
be considered to have any causal effect on the preceding events c, q or s. So similarly, the conjunction
of events ct cannot possibly be a causal agent.

Now consider concept #1 which can be logically expressed as
acu ∨ asu ∨ cqu ∨ qsu → acqsu.

Its support is traces 1 and 4. Examination shows that, in both traces, the conjunction of events
acu always precedes both q and s. So, acu ⇒ qs is a reasonable causal hypothesis, while none of
the other logical disjuncts can be. We use → to denote logical implication and ⇒ to denote causal
dependence.

We deliberately use the word “hypothesis” in the preceding sentence. We cannot establish that
the conjunction of events a, c and u actually cause events q or s to occur. We can only establish
that they satisfy the necessary conditions for “causality”. We will discuss this further in Section 6.

Because we record the support for each closed concept along with its generators, it is not hard to
re-examine the appropriate trace data sequences to verify, or exclude, specific generators as possible
causal precedents. Applying this procedure to the 20 concepts of Figure 4 we get the following list
of 6 possible causal dependencies shown in Figure 5.

#1 acu

b#7
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#15 d

#19 c

#24 a
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r

qs
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q

Fig. 5. 6 possible causal dependencies.

The 6 dependencies of Figure 5 represent a rather significant reduction in the sheer number of
concepts that are typically created.

It is easy to show in a first-order logic, if a → x and b → y then ab → xy. Such rules of
inference are common place. But, they need not be valid in causal dependence. For example, we
have #19 c ⇒ s and the trivial dependency #3 u ⇒ u. Yet, cu 6⇒ csu because in trace 6, s < u.
Consequently, given the dependencies #24 a ⇒ q and #19 c ⇒ s we cannot logically infer that
ac ⇒ qs, even though in this case #11 is, in fact, true.

Similarly, in first-order logic it is customary to declare x and y to be equivalent, x ≡ y if x → y

and y → x. However, a concept of causal equivalence in which x causes y and y causes x does not
appear to make semantic sense. Nevertheless, such apparent patterns are common in our trace data
where we have repeated sections of code, or loops, as in

· · · a · · · b · · · a · · · b · · ·a · · · b · · · .
Such repeating patterns can be exposed by techniques developed in [24, 23], but even here, some
form a priori knowledge of what kind of pattern is being sought must be applied.
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4 A Real Example

To test these ideas, the author used trace data down loaded from JBoss, an open source, professional
middleware company which is accessible through www.jboss.com. All of the method entrance events
of the transaction management module in JBoss 1.4.2 were instrumented by my colleagues, Jinlin
Yang and David Evans. They then ran the entire JBoss regression test suite to collect the traces
[25]. A small sample of this trace data from a single thread is shown below in Figure 6

3 TxManager.getTransaction()Ljavax/transaction/Transaction;

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

4 TxUtils.isActive(Ljavax/transaction/Transaction;)Z

1 TxManager.getStatus()I

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

1 TxManager.getStatus()I

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

3 TxManager.getTransaction()Ljavax/transaction/Transaction;

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

4 TxUtils.isActive(Ljavax/transaction/Transaction;)Z

5 TxManager.suspend()Ljavax/transaction/Transaction;

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

1 TxManager.getStatus()I

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

1 TxManager.getStatus()I

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

3 TxManager.getTransaction()Ljavax/transaction/Transaction;

Fig. 6. A representative fragment of an operator sequence

Preprocessing consisted of taking 57 such threads; scanning each operation; and, if new, assigning
it an identifying integer. The integers to the left in Figure 6 are examples. This preprocessing had
several benefits. First, it insures that the closed sets are extracted without using any embedded
semantic information. Second, it permits us to display a set of operations as a set of integers, which
we will see has definite display benefits. Third, because identifying integers are assigned in sequence
as operators are scanned we have an interesting artifact in which related operators often appear as
a number sequence. Our programs make no use of this artifact, but human inspection can reveal
interesting structures that are not uncovered by the Galois closure itself.

The trace fragment of Figure 6 would be perceived by our DDDM software as
... 3 2 4 1 2 1 2 3 2 4 5 2 1 2 1 2 3 ...

From now on we consider only discrete integer representations. We observe that many operations
are repeated in definite patterns, but our analysis is set based. All we can assert is that operations
{ 1,2,3,4,5 } all occur somewhere in this trace.

We analyzed 57 distinct traces consisting of 77 distinct operations. The shortest trace consisted
of no more than 6 operations; the longest trace involved 1,393 operations.

The set of operations comprising each trace were input incrementally to our DDDM system. Its
output is illustrated in Figures 7 and 8.
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We were more than a little surprised. Only twenty seven non-trivial closed sets of operations
emerged.

As we indicated in Section 2, the lattice shown in Figure 7 is hand drawn. For each concept in
the lattice our software really outputs a sequence of concepts consisting of the items in the closed set
of the concept, the set of generating sets, the set of supporting rows and the set of concepts covered
by the concept. The latter facilitates drawing the lattice and maneuvering through the lattice. This
table of closed concepts, in Figure 8, and their generators requires a bit of interpretation; particularly
since we use the hyphen (-) in two different ways.

The first column denotes the concept number. They correspond to the concept numbers in Figure
7. The reader can verify that the closed sets of concepts in the lattice below any specific concept,
say concept #2, are contained in the closed set of #2. The closed set of concept #2 consists of
operations 1 through 5 and operations 12 through 64. Here, rather than enumerating every operation
id, separated by commas, we use the hyphen as an “extended and”.

Concept #2 has many generators. Operations 33 and 34 are each singleton generators. If either
operation occurs in a trace then every operation of the closed set must also occur. The combination
{ 4, 12-32 } is also listed as a generator. This means that { 4, 12 }, { 4, 13 } ... { 4, 32 } are
each generating sets. Here we are using the hyphen as an “extended or”, that is, operation 4 in
combination with operation 12 or operation 13 or ... is a generator.

Concepts #17 and #18 are of interest because all of their generators are singleton; but there are
many of them. For example, from concept #17, if any of the operations 46 through 49 appear in the
trace then all of the operations in the closed set will occur in the trace.
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Concept Size of
number Closed set Generators support

1 {1-11} {6-11} 1
2 {1-5, 12-64} {33-34},{4,12-32},{4,35-64},{1,25-32},{1,45} 6
3 {1-5} {4} 7
4 {1-5,12-65} {4,65},{33-34,65},{1,25-32,65},{1,35-38,65},

{1,45,65} 4
5 {1-3,5,13-14} {1,13-14} 27
6 {1-3,5} {1} 28
7 {1-3,5,12-24,39-44,46-65} {1,65} 10
8 {1-3,5,12-24,39-44,46-64} {1,12},{1,15-24},{1,39-44},{1,45-64} 12
9 {2-3,5,12-24,39-44,46-72} {46-49,66-72},{51-52,66-72},{60,66-72},

{62,66-72} 7
10 {2-3,5} {5} 56
11 {2-3,5,12-24,39-44,46-65} {46-49,65},{51-52,65},{60,65},{62,65} 23
12 {2-3,5,12-24,39-44,46-64} {5,46-49},{12,46-49},{5,51-52},{12,51-52},

{5,60},{12,60},{5,62},{12,62} 25
13 {2-3,5,13-14} {5,13-14} 55
14 {2-3,5,12-24,39-44,50, {66}

53-59,61,63-72} 10
15 {2-3,5,12-24,39-44,50, {65}

53-59,61,63-65} 27
16 {2-3,5,12-24,39-44,50, {12},{5,16-24},{5,39-44},{5,50},{5,53-59}

53-59,61,63-64} {5,61},{5,63-64} 29
17 {2-3,13-24,39-44,46-64} {46-49},{51-52},{60},{62} 26
18 {2-3,13-24,39-44,50, {15-24},{39-44},{50},{53-59},{61},{63-64}

53-59,61,63-64} 30
19 {2-3,13-14} {13-14} 56
20 {2-3} {} 57
21 {2-3,5,12-24,39-44,46-65, {73-75}

73-75} 2
22 {2-3,5,12-24,39-44,46-72} {67-72} 11
23 {2-3,5,12-24,39-44,46-75} {66-72,73-75} 1
24 {2-3,5,12-32,35-65} {25-32,65},{35-38,65} 5
25 {2-3,5,12-32,35-64} {25-32},{35-38} 7
26 {2-3,5,12-32,39-65} {45,65} 6
27 {2-3,5,12-32,39-64} {45} 8
28 {1-5,12-65,76-77} {76-77} 1

Fig. 8. Output from DDDM system.

The final column displays the number of traces in which this concept can be found, that is its
size of “support”. We felt that enumerating this support, as in Figure 4 would be overkill.

It is interesting to note that the infimum set { 3, 2 } of operations (concept #20) is generated
by the empty set. These two operations occur in every trace.
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5 Establishing Dominance

Execution of a procedure, or operator, often depends on a conjunction of conditions. Figure 8 lists
many such conjunctive generators. However, analysis of such generators is beyond the capabilities of
our current software. Consequently, we will restrict ourselves to analyzing only those concepts with
singleton generators. Our DDDM software makes identification of these concepts quite easy.

If a singleton set, such as { 1 }, generates the Galois closed set { 1, 2, 3, 5 } as in concept #6 of
Figure 8 then we can logically assert that

1 → 1235 (3)

or equivalently, “if 1 appears in a trace then 2, 3, and 5 must also appear”. But, this does not
necessarily imply that the execution of operation 1 “causes” the execution of the other operators.
There need be no causal dependency. Such logical implication is only one necessary condition

A second necessary condition for causal dependency is that the generator must precede the
consequent(s) in all traces. In the 28 traces supporting concept #6 this is not always true, so (3)
cannot be rewritten as a causal dependency.

For each singleton generator, {gen op}, of a concept, we re-examine each of the trace sequences
supporting the concept. If an operator op in the closed set of the concept precedes the first occurrence
of gen op in any trace, then gen op 6⇒ op. If op always follows at least one occurrence of gen op then
we say that gen op dominates op and gen op ⇒ op becomes plausible.

This reasoning is particularly applicable when there are several singleton generators. They cannot
all be causally equivalent. In the following analysis procedure we first resolve domination among
multiple singleton generators, if any, and then analyze domination among the other operators of the
closed concept set.

operator domination (LATTICE L, TABLE Dominates)

// Analyze the concepts in ‘L’ to create the

// table of operator domination

{

ELEMENT dg, fg, // generators -- dominating, first

o;

SET SG, OP;

CONCEPT c;

OP SEQUENCE seq;

for all c in L.concepts do

{

SG <- singletons (c.generators);

if empty(SG)

continue;

// concept ‘c’ has singleton generators

dg <- null; // as yet no dominating generator

for all seq in c.support do

{ // examine every sequence supporting this concept

// get the first singleton generator in this sequence

fg <- first element (SG, seq);
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if dg = null

dg <- fg; // now, check that ‘fg’ is always first

else

dg <- null;

break;

}

if dg = null // no generator in SG is dominating

continue;

else

add [dg -> SG] to ‘Dominates’;

// now, check if ‘dg’ dominates other operators in ‘c’

OP <- c.closed set not c.SG;

for all o in OP do

{ // verify that this ‘o’ follows ‘dg’ in all

// supporting sequences

for all seq in c.support do

{

if o precedes dg in seq

{

OP <- OP not {o};

break;

}

}

if not empty(OP)

add [dg -> OP] to ‘Dominates’;

}

}

Application of this operator domination procedure to the output of our DDDM software, as
illustrated in Figure 8, is shown in Figure 9. We observe that concepts #3, #6, #10, #27 make no
contribution to this list of possible causal dependencies, even though all have singleton generators.
They fail the operator dominance test.

There are numerous instances of multiple generator sequences such as
46 ⇒ 47 ⇒ 48 ⇒ 49

in concept #17. We surmise that these traces come from software employing a stack architecture and
that these represent iterated invocations down through the stack. Concept #18 gives rise to many
apparent dependencies. Readily we could simplify the enumeration considerably. Applying causal
transitivity we could simply write, for instance,

16 ⇒ 17 ⇒ {24, 56}
18 ⇒ 19 ⇒ {24, 39}

Events 24, 39 and 56 in turn generate more of the closed set comprising concept #18. Such conden-
sation makes certain differences more evident, but our preliminary, proof of concept software is not,
as yet, capable of doing it.
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#1 6 7 8 9 10 11

#2 33 34 { 4, 35 ... 38 }

#14 66 { 24, 50, 53 ... 59, 61, 63, 64, 67 ... 72 }

#15 65 { 24, 50, 53 ... 59, 61, 63, 64 }

#16 12 { 13 ... 15 }

#17 46 47 48 49 { 51, 52, 64 }

#18 16 17 { 24, 50, 53 ... 59, 61, 63, 64 }

18 ,.. 23 { 24, 39 ... 44, 50, 53 ... 59, 61, 63, 64 }

24 { 50, 53 ... 55, 58, 59, 61, 63, 64 }

39 ,.. 44 { 50, 53 ... 59, 61, 63, 64 }

50 {53 ... 55, 58, 59, 61, 63, 64 }

53 54 55 {61, 63, 64 }

56 57 {61, 63, 64 }

61 { 63, 64 }

#19 13 14

#21 73 74 75 { 24, 46 ... 73 }

#25 25 ,.. 32 { 35 ... 64 }

#28 76 77

Fig. 9. Possible causal dependencies.

6 Considerations

The technique described in the preceding sections has four distinct steps. It: (1) identifies software
events of interest; (2) extracts them from trace data to form a relation R(T, E)1; (3) creates a
concept lattice LR embodying a number of logical implications of the form < generator >→<

closed concept >; and (4) retains only those implications for which the < generator > precedes
the remainder of the consequent < concept > in all supporting trace sequences in T . This approach
works. But, there are still a number of issues to be considered.

First, the prior identification of software events of interest can be awkward. If the events denote
entrance, and exit, from modules, procedures or other bodies of code as in Ball [1] and this paper,
then this step is fairly straight forward. But, there are other kinds of “events” that are of interest in
software analysis. Prime examples are “conditions” such as “x + y > 100 ∗ z”. Typically such condi-
tions form the basis of triggers, or guards. Uncovering the various relationships between conditions
and the events they may trigger is a key to finding the “likely invariants” that describe a body of
software [1, 3, 14].

Michael Ernst, in particular, has been a leader in identifying likely invariants from dynamic trace
data [3, 14]. Causal dependencies are a form of software invariant. So, this paper can be considered
to be an extension of his work. But, neither Ernst nor we know how to discover what conditional
relationships might participate in a likely software invariant without first identifying them a priori.
It is a significant outstanding problem that we are currently investigating.

Second, given a set of causal dependencies such as Figure 5 we would like to be able to reason
about them. Some rules, such as the transitive law, if x ⇒ y and y ⇒ z then x ⇒ z remain true in
a causal logic. But, as we saw in Section 3, others do not.

1 It seems appropriate in this application to relabel the relation R(O, A) as R(T,E), where T denotes the
set of traces and E denotes the set of events.
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There is a considerable body of literature concerning “temporal logic” which has been studied
since the early 70’s as an analytic tool associated with finite state controllers, reactive devices and
parallel systems [2, 4, 6, 19]. Most varieties of linear time logic (LTL) introduce 4 additional temporal
operators, X, U, F, G where, given boolean expressions α, β, we have

Xα denotes “next α”
Fα denotes “eventually α”
Gα denotes “generally (or always) α”.

αUβ denotes “α until β”
Causal dependencies can be expressed in terms of the X and F operators. Unfortunately valid
derivations within a temporal logic are rare. Temporal logics encounter the same kinds of issues we
have illustrated with our causal dependencies.

The third issue we must consider is the last step, operator domination, in which we winnow
out those logical implications which cannot represent causal dependencies. As was pointed out in
Section 3, we can use the support for each concept to limit the number of trace sequence that must
be examined to verify the temporal precedence properties. But, this would seem to negate much of
the advantage obtained by incrementally creating the concept lattice in the manner of Godin and
Missaoui. We will have to keep the entire set of trace data on hand and possibly re-examine hundreds
of trace sequences as each new concept is entered into the lattice.

Fortunately, this is only an apparent problem caused by our rough and ready, proof of concept
software. One can incrementally create a “precedes” relation, <, as shown in Figure 10. Here, x < y if

a b c d e p q r s t u

a

b

c

d

q

r

s

t

u

e

p

<

Fig. 10. The precedes relation from Figure 2.

x precedes y in any trace t. Readily, < is only a pre-order, since it is transitive but not antisymmetric.
If x < y then y cannot causally determine x. By creating a precedence relation in parallel with the
concept lattice, one can incrementally uncover likely causal dependencies on the fly with no need
to re-examine earlier trace data, or even to retain it. Of course, if we do not keep the original trace
data we will then lose the opportunity to look more carefully at any particular trace to see why this
is, or is not, a case of causal dependency.

But possibly a precedence relation such as Figure 10 can do more. Why not use this relation
to directly indicate causal dependencies? For example, we see in Figure 10 that b < a while a 6< b.
Thus we know that b precedes a in at least one trace, and that a never precedes b. This strict anti-
symmetry is one property that we have postulated for causal dependence. It is a necessary condition.
But, it is not sufficient. Our understanding of causal dependence b ⇒ a is that whenever b occurs
then a must also always follow. This is not true in the sequences 2 and 7 of Figure 2. This second
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necessary condition whose logical expression is

(∀t ∈ T )[b(t) → [b(t) < a(t)]] (4)

seems to be a fundamental property of causal dependence that cannot be derived from simple
precedence relations.

This author believes that the key to discovering causal dependencies from observed software
behavior must involve the use of Galois closure, which is the basis of formal concept analysis. Only
by adopting a formal concept methodology can we derive an expression such as (4). It seems to have
been a key piece that has been missing in the search for “likely software invariants”.

Finally, we observe that our procedure still only reveals “likely” causal dependencies. Because
we find that a ⇒ q in the set T of trace data, we cannot literally say that the event a “causes” the
event q as a consequence. One can only base such a claim on examination of the code itself. But,
without having likely dependencies to specifically look for, such examination is extremely difficult;
and in the case of legacy systems without source code it is essentially impossible.

The principles of formal concept analysis have an important application in software analysis and
software engineering.
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