Skip to main content

On the Minimum Load Coloring Problem

  • Conference paper
Approximation and Online Algorithms (WAOA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3879))

Included in the following conference series:

Abstract

Given a graph G=(V,E) with n vertices, m edges and maximum vertex degree Δ, the load distribution of a coloring . \(\varphi: V \longrightarrow\) red, blue is a pair d ϕ  = (r ϕ , b ϕ ), where r ϕ is the number of edges with at least one end-vertex colored red and b ϕ is the number of edges with at least one end-vertex colored blue. Our aim is to find a coloring ϕ such that the (maximum) load, l ϕ := max{r ϕ , b ϕ }, is minimized. The problem has applications in broadcast WDM communication networks (Ageev et al., 2004). After proving that the general problem is NP-hard we give a polynomial time algorithm for optimal colorings of trees and show that the optimal load is at most m/2+\({\it \Delta}\)log2 n. For graphs with genus g>0, we show that a coloring with load OPT(1 + o(1)) can be computed in O(n+g)-time, if the maximum degree satisfies \({\it \Delta} = o(\frac{m^{2}}{ng})\) and an embedding is given. In the general situation we show that a coloring with load at most \({\frac{3} {4}}m+O({\sqrt{{\it \Delta}m}})\) can be found in deterministic polynomial time using a derandomized version of Azuma’s martingale inequality. This bound describes the “typical” situation: in the random multi-graph model we prove that for almost all graphs, the optimal load is at least \(\frac{3}{4}m - {\sqrt{3mn}}\) . Finally, we generalize our results to k–colorings for k > 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ageev, A.A., Fishkin, A.V., Kononov, A.V., Sevastianov, S.V.: Open Block Scheduling in Optical Communication Networks. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 13–26. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Azuma, K.: Weighted sums of certain dependent variables. Tohoku Math. Journal 3, 357–367 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berman, P., Karpinski, M.: Approximation Hardness of Bounded Degree MIN-CSP and MIN-BISECTION. Electronic Colloquium on Computational Complexity, Report No. 26 (2001)

    Google Scholar 

  4. Diks, K., Djidjev, H.N., Sýkora, O., Vrt̆o, I.: Edge Separators of Planar and Outerplanar Graphs with Applications. Journal of Algorithms 14, 258–279 (1993)

    Google Scholar 

  5. Djidjev, H.N.: A separator theorem. Comptes Rendus de l’Academie Bulgare des Sciences 34, 643–645 (1981)

    MathSciNet  MATH  Google Scholar 

  6. Even, G., Naor, J., Rao, S., Schieber, B.: Fast Approximate Graph Partitioning Algorithms. SIAM J. Comput. 28(6), 2187–2214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1(33), 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. McDiarmid, C.: Concentration. In: Probabilistic Methods for Algorithmic Discrete Mathematics. Algorithms Combin., vol. 16, pp. 195–248. Springer, Berlin (1998)

    Chapter  Google Scholar 

  10. Srivastav, A.: Derandomizing Martingale Inequalities (preprint 2005); Srivastav, A., Stangier, P.: On quadratic lattice approximations. In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762, pp. 176–184. Springer, Heidelberg (1993)

    Google Scholar 

  11. Sýkora, O., Vrt̆o, I.: Edge Separators for Graphs of Bounded Genus with Applications. In: Proc. of the 17th International Workshop on Graph Theoretic Concepts in Computer Science, pp. 159–168 (1992)

    Google Scholar 

  12. Thomassen, C.: The graph genus problem is NP-complete. Journal of Algorithms 10(4), 568–576 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. West, D.B.: Introduction to Graph Theory. Prentice Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahuja, N., Baltz, A., Doerr, B., Přívětivý, A., Srivastav, A. (2006). On the Minimum Load Coloring Problem. In: Erlebach, T., Persinao, G. (eds) Approximation and Online Algorithms. WAOA 2005. Lecture Notes in Computer Science, vol 3879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11671411_2

Download citation

  • DOI: https://doi.org/10.1007/11671411_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32207-8

  • Online ISBN: 978-3-540-32208-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics