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Abstract. We present a polynomial-time approximation scheme (PTAS)
for the minimum dominating set problem in unit disk graphs. In contrast
to previously known approximation schemes for the minimum dominating
set problem on unit disk graphs, our approach does not assume a geomet-
ric representation of the vertices (specifying the positions of the disks in
the plane) to be given as part of the input. The runtime of the PTAS is
nO(1/ε log 1/ε). The algorithm accepts any undirected graph as input, and
returns a (1 + ε)-approximate minimum dominating set, or a certificate
showing that the input graph is no unit disk graph, making the algorithm
robust. The PTAS can easily be adapted to other classes of geometric in-
tersection graphs.

1 Introduction

In this paper, we consider the minimum dominating set (MDS) problem of find-
ing a dominating set of minimum cardinality in a unit disk graph for the case
that no geometric representation of the graph is available. A graph is a unit
disk graph (UDG) if its vertices can be drawn as circular disks of equal radius
in the plane in such a way that there is an edge between two vertices if and
only if the two disks have a non-empty intersection. Such a drawing, i.e. a list
of center points of the vertices/disks, is referred to as geometric representation
of the graph. A subset of vertices in an undirected graph is called dominating
set if every vertex in the graph either is contained in the subset, or adjacent to
a vertex in the set.

We present a polynomial-time approximation scheme (PTAS) for the MDS
problem on UDGs, that is, given any ε > 0, the algorithm gives in polynomial-
time an approximation with a performance guarantee of (1 + ε).

Unit disk graphs are widely used to model the communication in wireless
ad-hoc networks. In such a network, structures like dominating sets play an
important role, e.g. in global flooding to alleviate the so-called broadcast storm
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problem. A message broadcast only in the dominating set is an efficient way to
ensure that it is received by all transmitters in the network, both in terms of
energy and interference.

The MDS problem is NP -hard, even on unit disk graphs where a geometric
representation is given [4]. Most of the work concerning approximation schemes
in UDGs assume a given representation, which allows for separation of the graph
along a grid ([1],[5]). Approximation schemes for the MDS, and other related
problems in UDGs are given in [6]. In [3], a PTAS for the minimum connected
dominating set is presented, also using grid-based separation.

However, the case when no geometric representation is present is significantly
different: Computing a possible geometric representation for a given unit disk
graph is NP -hard. Indeed, any polynomial-time algorithm computing a geomet-
ric representation for UDGs can be used in a straightforward way to determine
whether a given graph is a UDG, a problem known to be NP -hard [2].

The lack of coordinates, and the intractability to compute these, call for
another approach. For the case that a representation is not given, several ap-
proximation algorithms are presented in [8], including a 5-approximation for the
MDS problem. In [10], local neighborhoods of limited graph-theoretic diameter
are used to obtain a PTAS for the maximum independent set problem in the
same setting. This method uses the fact that in such neighborhoods, a maximum
independent set is of bounded cardinality. In this paper, the same fact is used to
bound the size of a minimum dominating set. While in [10], the separation and
overall algorithm follows by simple arguments, for the minimum dominating set
problem some attention has to be paid to the manner the local neighborhoods
are created and put together. The main reasons for this are the differences in the
objective function and the fact that, in contrast to independent sets, a subset of
a dominating set no longer needs to be a dominating set. The resulting PTAS
for the MDS problem on UDGs without geometric representation has a running
time of nO(1/ε log 1/ε).

Independence of geometric coordinates makes it easier to extend the approach
to other graphs used to model wireless ad-hoc networks closer to reality, e.g.
Quasi Unit Disk Graphs [7], or Coverage Area Graphs [9]. These models also
include a certain amount of uncertainty with respect to wireless transmissions.

Besides the independence from a geometric representation, an additional ad-
vantage of the presented PTAS lies in the fact that we can extend the algorithm
towards a robust approximation [11]. The algorithm may then be applied to an
arbitrary undirected graph, and the output is either a (1 + ε)-approximation
for the MDS problem in this graph, or a certificate which allows us to prove
in polynomial-time that the input graph is no unit disk graph. In other words,
we have a polynomial-time algorithm which either approximates the MDS prob-
lem, or solves the recognition problem. In case the input graph is a UDG, the
algorithm always returns a dominating set of desired quality.

The remainder of the paper is organized as follows. In the following section, we
present some basic definitions. Section 3 introduces the concept of a 2-separated
collection of subsets, a structure that is used to efficiently separate a graph
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into smaller subgraphs for which the problem of computing a dominating set is
easier to tackle. The PTAS itself is then presented in Section 4. In Section 5, we
discuss the robustness of the algorithm, and present some extensions to other
intersection graphs of geometric objects.

2 Definitions and Preliminaries

A graph G = (V, E) is a unit disk graph (UDG) if it results from the intersection
graph of disks of unit radius in the Euclidean plane. In other words, G is a UDG
if there exists a map f : V → R

2 satisfying

(u, v) ∈ E ⇐⇒ ‖f(u)− f(v)‖ ≤ 2,

where ‖.‖ denotes the Euclidean norm. In this context, f is called a geometric
representation of G and is not unique for a given graph. For the remainder of
this paper, we assume f not to be given or known.

A subset D ⊂ V is a dominating set (for V ) if for every vertex v ∈ V , either
v ∈ D holds or there exists an edge (u, v) ∈ E such that u ∈ D. The mini-
mum dominating set problem (MDS) seeks to find a dominating set of minimum
cardinality for a given graph.

In this paper, the goal is to give a polynomial-time approximation scheme
(PTAS) for the minimum dominating set problem on unit disk graphs. That
is, we seek for an algorithm which, given a UDG G = (V, E) and a parameter
ε > 0, computes a dominating set of cardinality no more than (1 + ε) the size of
a minimum dominating set in G. The running time of the algorithm is allowed
to depend on the parameter ε, but should be polynomial with respect to the
input instance, i.e. polynomial in n = |V | for fixed ε > 0.

We now present some further definitions needed for the description and dis-
cussion of the algorithm and the underlying concepts. Without loss of generality,
we may assume the graph G to be connected. If this is not the case, we may
consider each connected component separately.

Let W ⊂ V denote a set of vertices in G = (V, E). In the following, we
simultaneously use W to also denote the resulting induced subgraph G[W ] :=
(W, E∩(W ×W )). Obviously, the graph G[W ] is a unit disk graph if the original
graph is one.

Furthermore, we denote by N(v) the closed neighborhood of a vertex v ∈ V ,
i.e. N(v) := {u ∈ V | (u, v) ∈ E} ∪ {v}. Analogously, for W ⊂ V , let N(W ) :=⋃

w∈W N(w) define the neighborhood of W . In this context, we set N(∅) := ∅.
For r ∈ N, we denote by N r(v) := N(N r−1(v)) the recursively defined r-th
neighborhood of v ∈ V , where N1(v) := N(v).

For two vertices u, v ∈ V , let d(u, v) denote the distance between u and v,
that is the number of edges on a shortest path between these two vertices. Thus,
alternatively, the r-th neighborhood of v ∈ V is characterized by N r(v) = {u ∈
V | d(u, v) ≤ r}.

Denote by P(V ) the set of all subsets of V . We then define D : P(V ) → P(V )
to be an operation returning a dominating set of minimum cardinality for the
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Fig. 1. Example of a UDG with and without geometric representation

subset of vertices given as argument to it. For a subset W ⊂ V , the set D(W )
dominates W , i.e. for every w ∈ W , either w ∈ D(W ) holds, or there is an edge
(u, w) ∈ E such that u ∈ D(W ). It is easy to see that W ⊂ N(D(W )) and
that D(W ) ⊂ N(W ) hold. In the following, we are interested in an efficient, i.e.
polynomial-time, approximation of D(V ) within a factor of (1+ ε) for any given
ε > 0.

Figure 1 illustrates some of the given notations. In the left part, a graph
and its geometric representation are given, whereas in the right part only the
graph and some neighborhoods of a node v are presented. Furthermore, the
circled vertices in the right part give a minimum dominating set for N3(v), i.e.
D(N3(v)). As can be seen from the example, D(W ) ⊂ W need not hold for
a subset W � V : Using the circled vertex in N4(v), we obtain a dominating
set consisting of three vertices, whereas restricting the dominating set only to
vertices from N3(v) yields dominating sets of cardinality 4 or higher.

3 Local Dominating Sets

In this section, we introduce the concept of a 2-separated collection of subsets.
The subgraphs induced by the subsets of such a collection divide the original
graph into smaller parts for which it becomes easier to tackle the MDS problem.
For a collection of local dominating sets resulting from a separation of the graph
into smaller subgraphs, we show several properties that allow for bounds on
the cardinalities with respect to an optimal, global solution. Throughout this
section, we do not assume the graph to be a UDG, the following concepts are
valid for all undirected graphs.

For a graph G = (V, E), let S := {S1, . . . , Sk} be a collection of subsets of
vertices Si ⊂ V , i = 1, . . . , k, with the following property:

(P) for any two vertices s ∈ Si and s̄ ∈ Sj with i 
= j, it is d(s, s̄) > 2.
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Fig. 2. Example for a 2-separated collection S = {S1, . . . , S6}

We refer to S as a 2-separated collection of subsets. An example of such a 2-
separated collection is presented in Figure 2. The grey areas mark the different
subsets that make up the collection, vertices which are not part of the collection,
and thus separate the subsets are white.

The following lemma shows that the sum of the cardinalities of minimum
dominating sets D(Si) for the subsets Si ∈ S of a 2-separated collection forms
a lower bound on the cardinality |D(V )| of a minimum dominating set in G.

Lemma 1. For a 2-separated collection S = {S1, . . . , Sk} in a graph G = (V, E),
we have

|D(V )| ≥
k∑

i=1

|D(Si)|.

Proof. For each subset Si ∈ S, consider the neighborhood N(Si). As a direct
result of property (P), these neighborhoods are pairwise disjoint. Furthermore,
any vertex outside N(Si) has distance more than one to all vertices in Si. Thus,
D(V )∩N(Si) has to dominate all vertices in Si, since D(V ) dominates the entire
vertex set V .

On the other hand, also D(Si) ⊂ N(Si) dominates Si using a minimum
number of vertices in G. Therefore, we get

|D(V ) ∩ N(Si)| ≥ |D(Si)|.
Combining this for all subsets of the 2-separated collection, we get

|D(V )| ≥
k∑

i=1

|D(V ) ∩ N(Si)| ≥
k∑

i=1

|D(Si)|,

as claimed. �
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Lemma 1 states that a 2-separated collection S leads to a lower bound on the
cardinality of a MDS. Additionally, such a collection may help in getting an
approximation of this cardinality. If we are able to enlarge the subsets Si to
subsets Ti in such a way that the dominating sets of the expansions are locally
bounded and the unions of theses forms a dominating set for V , we get a global
approximation for the MDS in G.

Corollary 1. Let S = {S1, . . . , Sk} be a 2-separated collection in G = (V, E),
and let T1, . . . , Tk be subsets of V with Si ⊂ Ti for all i = 1, . . . , k.
If there exists a bound ρ ≥ 1 such that

|D(Ti)| ≤ ρ · |D(Si)|
holds for all i = 1, . . . , k, and if

⋃k
i=1 D(Ti) forms a dominating set in G, the

set
⋃k

i=1 D(Ti) is a ρ-approximation of an MDS in G.

Proof. |⋃k
i=1 D(Ti)| ≤

∑k
i=1 |D(Ti)| ≤ ρ · ∑k

i=1 |D(Si)| ≤ ρ · |D(V )|. �

In the following section, we focus on the efficient construction of suitable subsets
Ti ⊂ V , which contain a 2-separated collection Si ⊂ Ti, in a way that a local
(1+ε)-approximation can be guaranteed. Furthermore, we create these subsets in
such a way that the union of the respective local dominating sets also dominates
the entire set of vertices, resulting in a global (1+ε)-approximation for the MDS.

4 Efficient Construction of Suitable Subsets

From the previous discussion, recall that if we have a 2-separated collection S :=
{S1, . . . , Sk}, corresponding sets Ti ⊃ Si together with a bound of (1 + ε) for the
local dominating sets D(Si) and D(Ti), then the union of the D(Ti) satisfies the
approximation bound required for a PTAS for the MDS problem. In this section,
we show how to construct suitable subsets, for which the union of the local dom-
inating sets also forms a dominating set for V . Furthermore, we prove that this
can be achieved in polynomial running-time with respect to the size of the input
instance for fixed ε > 0 if the input graph is a UDG. For ease of notation, let
ρ := (1 + ε) denote the desired approximation guarantee of the algorithm.

The basic idea of the construction is simple: we compute a local dominating
set for a neighborhood of a vertex, and expand this neighborhood until we have
formed sets S and T ⊃ S which satisfy a desired bound. Then, we eliminate the
current neighborhood and continue the same steps for the remaining graph.

In more detail, the algorithm works as follows. We start with an arbitrary
vertex v ∈ V and consider for r = 0, 1, 2, . . . , the r-th neighborhoods N r(v).
Starting with N0(v) = v, we compute dominating sets of minimum cardinality
for these neighborhoods as long as

|D(N r+2(v))| > ρ · |D(N r(v))| (1)

holds.
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Denote by r̂1 the smallest r for which (1) is violated. We go on iteratively
with this procedure for the graph induced by Vi+1 := Vi \ N r̂i+2(vi)), where
V1 := V . The vertex vi ∈ Vi is chosen as an arbitrary central vertex of the
neighborhoods. In further iterations, we thus consider for r = 0, 1, 2, . . . the
neighborhoods N r(vi) with respect to Vi, i.e. we have N r(vi) ⊂ Vi. Note that
the dominating sets D(.) are always computed with respect to the entire input
graph G.

This process is then repeated until Vi+1 contains no more vertices. Let k ∈ N

be the total number of iterations. Obviously we have k < n. In the following, let
Ni, i = 1, . . . , k, denote the respective neighborhoods when the stopping criterion
(1) is violated, i.e. Ni := N r̂i+2(vi).

Looking at the dominating sets for these neighborhoods, D(Ni), we have the
following lemma which shows that a dominating set for the entire graph is given
by the union of the sets D(Ni).

Lemma 2. For the collection of neighborhoods {N1, . . . , Nk} created by the
above algorithm, the union D :=

⋃k
i=1 D(Ni) forms a dominating set for the

input graph G.

Proof. It is Vi+1 = Vi \ Ni and Ni ⊂ Vi, thus we have Vi = Vi+1 ∪ Ni. We stop
the algorithm at Vk+1 = ∅, which implies Vk = Nk. Therefore

⋃k
i=1 Ni = V by

induction, and the claim follows. �

Next, we show that the solution set D :=
⋃k

i=1 D(Ni) returned by the algorithm
satisfies the (1 + ε)-bound on the approximation. In particular, we show that
N := {N r̂1(v1), . . . , N r̂k(vk)} is a 2-separated collection in G, and then apply
Corollary 1 to the respective local dominating sets D(Ni).

Lemma 3. The subsets N r̂i(vi), i = 1, . . . , k, created by the algorithm form a
2-separated collection N := {N r̂1(v1), . . . , N r̂k(vk)} in G.

Proof. For ease of notation, let N i denote the neighborhood N r̂i(vi) for iteration
i ∈ {1, . . . , k} of the algorithm. Recall that a 2-separated collection is character-
ized by property (P), i.e. vertices of two different subsets of the collection have
distance more than 2 from one another.

Clearly, {N1, V2} is a 2-separated collection in G, since V2 = V \ N(N(N1)).
For induction, suppose that {N1, . . . , N i−1, Vi} is a 2-separated collection in G.
Any vertex in Vi has distance more than 2 from any other vertex in N1, . . . , N i−1.
Considering Vi+1 = Vi \ N(N(N i)), we see that both Vi+1 and N i satisfy (P).
Therefore, {N1, . . . , N i, Vi+1} is a 2-separated collection. �

Additionally, the criterion (1) for stopping to expand the neighborhood guaran-
tees that each pair of local dominating sets satisfies

|D(Ni)| ≤ ρ · |D(N r̂i(vi))| (i = 1, . . . , k). (2)

Using Corollary 1 and Lemma 2, we now obtain the following result for the
approximation.
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Corollary 2. The above algorithm returns a dominating set
⋃k

i=1 D(Ni) of car-
dinality no more than (1 + ε) the size of a minimum dominating set in G =
(V, E). �

At this point, it is noteworthy to remind that this Corollary 2 is valid for any
undirected graph G, even if it is not a unit disk graph.

It remains to show that the (1 + ε)-approximation algorithm has polynomial
running-time. In contrast to Corollary 2, the polynomial running-time relies on
the fact that the input graph G is a unit disk graph. So, for the further discussion
in this section, we assume G to be a unit disk graph.

The number k of iterations is bounded by n = |V |. We may thus limit the
further discussion to one iteration only. Since any Vi during the execution of
the algorithm again induces a unit disk graph, we focus w.l.o.g. on the graph
G = (V, E) in the first iteration. We show two things:

(1) we can compute the minimum dominating set D(N r(v)) in polynomial time
if the value of r is a constant or polynomially bounded; and

(2) there exists a constant bound for r̂1, i.e. the diameter of the largest neigh-
borhood we need to consider until the stopping criterion (1) is violated.

Before showing that D(N r(v)) can be computed efficiently, we need to introduce
the notion of an independent set, and briefly state a key result for independent
sets in UDGs.

Let W ⊂ V . A set I ⊂ W is called an independent set if for every two
vertices u, v ∈ I, there does not exist an edge (u, v) ∈ E. An independent set is
called maximal in W if we cannot add any other vertex from W to I without
violating the independence property (of no two vertices being adjacent). Clearly,
any maximal independent set in W also dominates W .

For a UDG, the following result of [10] bounds the size of an independent set
in the neighborhood N r(v). We give the short proof, since we rely on it in the
next section.

Lemma 4. Let G = (V, E) be a UDG. Any independent set Ir ⊂ N r(v), v ∈ V,
satisfies

|Ir| ≤ (2r + 1)2 = O(r2).

Proof. Let f : V → R
2 be a geometric representation of G. From the definition

of a UDG, we conclude that any w ∈ N r(v) satisfies ‖f(v) − f(w)‖ ≤ 2r.
Thus, Ir consists of pairwise disjoint disks of unit radius inside a disk of radius

2r + 1 around f(v), and therefore |Ir| ≤ π(2r + 1)2/π. �

As a consequence of Lemma 4, any independent set in N r(v) is polynomially
bounded in r, including maximal independent sets. The cardinality of a minimum
dominating set in N r(v) is bounded from above by the cardinality of a maximal
independent set in N r(v), and, therefore, we get
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Corollary 3. |D(N r(v))| ≤ (2r + 1)2 = O(r2). �

Assuming r to be fixed or polynomially bounded, a minimum dominating set
D(N r(v)) can then be computed in polynomial time, e.g. by complete enumer-
ation in time O(nϑ), with ϑ = O(r2).

Next, we show that, for a UDG, there exists such a bound on r̂1, the first
value of r which violates (1). This bound only depends on the approximation
ratio ρ, and not on the size of the unit disk graph G = (V, E) given as input.

Lemma 5. There exists a constant c = c(ρ) such that r̂1 ≤ c, that is, the largest
neighborhood to be considered during the iteration of the algorithm is bounded by
a constant.

Proof. It is |D(N0(v))| = |D(N1(v))| = 1, as the central vertex v dominates
itself and all its neighbors.
Consider an arbitrary value of r < r̂1. First, if r is an even number, due to the
stopping criterion (1) we have

(2r + 1)2 ≥ |D(N r(v))| > ρ|D(N r−2(v)| > · · · > ρ
r
2 |D(N0(v)| = (

√
ρ)r.

Second, if r is an odd number, we get

(2r + 1)2 ≥ |D(N r(v))| > ρ|D(N r−2(v)| > · · · > ρ
r−1
2 |D(N1(v)| = (

√
ρ)r−1.

Since ρ > 1, and thus
√

ρ > 1, in both cases the above inequalities have to be
violated eventually. The bound on r̂1 when these inequalities are violated the
first time only depends on ρ and not on the size of the overall graph G. The
claim follows directly. �

Using log(1 + ε) > 1/2 · ε for small values of ε, simple calculations show that
c = O(1

ε log 1
ε ).

Summarizing, if the input graph is a UDG, each iteration has polynomial run-
ning time, and therefore the presented algorithm is a polynomial-time approxi-
mation scheme for the MDS problem. Note that the computation of D(N r(v))
for the largest neighborhood, dominates the running-time of the algorithm.
Therefore, the overall time complexity of the approximation is O(nc) with c =
O(1

ε log 1
ε ).

5 Discussion

Unit disk graphs are a special subclass of undirected graphs. As we have shown
in the previous part, the presented algorithm accepts an arbitrary undirected
graph as input, and returns a dominating set of desired quality for this graph.
However, the polynomial running-time relies on the UDG characterization.
This raises the question of robustness for algorithms designed for a restricted
domain [11]:

An algorithm A, defined on a set G of instances, is robust on a restricted class
U ⊂ G if it solves the problem for all instances in U , and for instances not in U ,
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the algorithm either solves the problem, or provides a certificate that the input
does not belong to U . Of course, the notion of a robust algorithm is especially
interesting when A has polynomial running-time with respect to the size of the
input instance, and the decision whether an instance belongs to the subclass
U ⊂ G is not as easy to decide. In our situation, G is the set of undirected
graphs, A computes a (1 + ε)-approximation of the cardinality of an MDS, and
U is the subclass of UDGs.

In case the input graph is a unit disk graph, the algorithm always returns a
(1 + ε)-approximate dominating set in polynomial running-time. Also, when the
input is any undirected graph, such an approximation is returned. However, the
polynomial running-time in this case cannot be guaranteed. In the following, we
consider the case that the input is no UDG.

The time complexity of the algorithm is a direct result of the possibility
to bound the cardinality of a minimum dominating set in a neighborhood of
bounded diameter. This bound results from the fact that a maximal independent
set Ir in such a neighborhood is bounded, i.e. for the r-th neighborhood of a
vertex v ∈ V , we have |D(N r(v))| ≤ |Ir| ≤ (2r + 1)2.

If we now find a neighborhood N r(v) for which a minimum dominating set of
size less than or equal to (2r +1)2 cannot be found, we terminate the algorithm,
and output the neighborhood N r(v) as a certificate to show that the input is
no UDG. For this neighborhood, we can then construct a maximal independent
set which has to violate Lemma 4. This immediately shows that the input graph
cannot be a unit disk graph.

Note that for robustness, we do not need to explicitely consider the bound
r ≤ c (Lemma 5) on the diameter of the neighborhoods N r(v), as this bound
follows from the polynomial bound on the cardinality of the dominating sets in
the neighborhoods.

The PTAS presented in this paper can be extended in a straightforward way
to intersection graphs of other, related geometric objects, e.g. the unit disk graph
may be defined using other geometric norms. From the discussion on the com-
plexity in the previous section, it can be seen that a sufficient condition for the
existence of a PTAS for the MDS problem in a geometric intersection graph is
given when there is a polynomial bound on the ratio of maximum geometric di-
ameter divided by minimum volume of the objects that make up the intersection
graph (see Lemma 4). Thus, the objects in consideration do not necessarily need
to be of equal size or shape, e.g., the unit disks may be replaced by disks with
fixed lower and upper bounds on the radius. This condition includes Quasi Unit
Disk Graphs which are used to give a more realistic model of a wireless, ad-hoc
network [7,9]. An extension to a (fixed) dimension d > 2 is also immediately
possible.

6 Conclusion

In this paper, we present a new polynomial-time approximation scheme for the
minimum dominating set problem in unit disk graphs. The algorithm does not
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need a geometric representation of the graph to compute a (1 + ε)-approximate
dominating set. In fact, it accepts any undirected graph as input and returns
either a dominating set which satisfies the desired bound, or a certificate to
show that the input graph is no UDG. Of course, if the input graph satisfies the
characterization of a UDG, a dominating set is always returned.

The approximation algorithm that results in the PTAS works by exploiting
the fact that the graph can be divided into local neighborhoods, which have
to be created keeping the global structure in mind. Inside these neighborhoods
of guaranteed bounded diameter, locally optimal solutions are available. The
overall time complexity of the (robust) approximation algorithm is nO( 1

ε log 1
ε ).
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