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Abstract

If two classical provers share an entangled state, the resulting interactive proof system is
significantly weakened [6]. We show that for the case where the verifier computes the XOR of
two binary answers, the resulting proof system is in fact no more powerful than a system based
on a single quantum prover: ⊕MIP∗[2] ⊆ QIP(2). This also implies that ⊕MIP∗[2] ⊆ EXP
which was previously shown using a different method [7]. This contrasts with an interactive
proof system where the two provers do not share entanglement. In that case, ⊕MIP[2] = NEXP
for certain soundness and completeness parameters [6].

1 Introduction

Interactive proof systems have received considerable attention [2, 3, 4, 8, 13, 10] since their in-
troduction by Babai [1] and Goldwasser, Micali and Rackoff [11] in 1985. An interactive proof
system takes the form of a protocol of one or more rounds between two parties, a verifier and a
prover. Whereas the prover is computationally unbounded, the verifier is limited to probabilistic
polynomial time. Both the prover and the verifier have access to a common input string x. The
goal of the prover is to convince the verifier that x belongs to a pre-specified language L. The
verifier’s aim, on the other hand, is to determine whether the prover’s claim is indeed valid. In each
round, the verifier sends a polynomial (in x) size query to the prover, who returns a polynomial
size answer. At the end of the protocol, the verifier decides to accept, and conclude x ∈ L, or reject
based on the messages exchanged and his own private randomness. A language has an interactive
proof if there exists a verifier V and a prover P such that: If x ∈ L, the prover can always convince
V to accept. If x /∈ L, no strategy of the prover can convince V to accept with non-negligible
probability. IP denotes the class of languages having an interactive proof system. Watrous [29]
first considered the notion of quantum interactive proof systems. Here, the prover has unbounded
quantum computational power whereas the verifier is restricted to quantum polynomial time. In
addition, the two parties can now exchange quantum messages. QIP is the class of languages having
a quantum interactive proof system. Classically, it is known that IP = PSPACE [21, 22]. For the
quantum case, it has been shown that PSPACE ⊆ QIP ⊆ EXP [29, 12]. If, in addition, the verifier
is given polynomial size quantum advice, the resulting class QIP/qpoly contains all languages [20].
Let QIP(k) denote the class where the prover and verifier are restricted to exchanging k messages.
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It is known that QIP = QIP(3) [12] and QIP(1) ⊆ PP [28, 14]. We refer to [14] for an overview of
the extensive work done on QIP(1), also known as QMA. Very little is known about QIP(2) and
its relation to either PP or PSPACE.

In multiple-prover interactive proof systems the verifier can interact with multiple, computa-
tionally unbounded provers. Before the protocol starts, the provers are allowed to agree on a
joint strategy, however they can no longer communicate during the execution of the protocol. Let
MIP denote the class of languages having a multiple-prover interactive proof system. In this pa-
per, we are especially interested in two-prover interactive proof systems as introduced by Ben-Or,
Goldwasser, Kilian and Widgerson [3]. Feige and Lovász [10] have shown that a language is in
NEXP if and only if it has a two-prover one-round proof system, i.e. MIP[2] = MIP = NEXP. Let
⊕MIP[2] denote the restricted class where the verifier’s output is a function of the XOR of two
binary answers. Even for such a system ⊕MIP[2] = NEXP, for certain soundness and completeness
parameters [6]. Classical multiple-prover interactive proof systems are thus more powerful than
classical proof systems based on a single prover, assuming PSPACE 6= NEXP.

Cleve, Høyer, Toner and Watrous [6] have raised the question whether a classical two-prover
system is weakened when the provers are allowed to share arbitrary entangled states as part of their
strategy, but all communication remains classical. We write MIP∗ if the provers share entanglement.
The authors provide a number of examples which demonstrate that the resulting proof system
can indeed become much weaker when entanglement is used. In their paper, it is proved that
⊕MIP∗[2] ⊆ NEXP. Later, the same authors also showed that ⊕MIP∗[2] ⊆ EXP using semidefinite
programming [7]. Entanglement thus clearly weakens an interactive proof system, assuming EXP 6=
NEXP.

Intuitively, entanglement allows the provers to coordinate their answers, even though they
cannot use it to communicate. By measuring the shared entangled state the provers can gen-
erate correlations which they can use to deceive the verifier. Tsirelson [25, 23] has shown that
even quantum mechanics limits the strength of such correlations. Consequently, Popescu and
Roehrlich [16, 17, 18] have raised the question why nature imposes such limits. To this end, they
constructed a toy-theory based on non-local boxes [16, 26], which are hypothetical “machines” gen-
erating correlations stronger than possible in nature. In their full generalization, non-local boxes
can give rise to any type of correlation as long as they cannot be used to signal. van Dam has
shown that sharing certain non-local boxes allows two remote parties to perform any distributed
computation using only a single bit of communication [26, 27]. Preda [19] showed that sharing
non-local boxes can then allow two provers to coordinate their answers perfectly and obtained
⊕MIPNL = PSPACE, where we write ⊕MIPNL to indicate that the two provers share non-local
boxes.

Kitaev and Watrous [12] asked whether a single-prover quantum interactive proof system can
simulate multiple classical provers. However, since QIP ⊆ EXP and MIP = NEXP this would
imply that EXP = NEXP which is considered unlikely.

1.1 Our Contribution

Surprisingly, it turns out that when the provers are allowed to share entanglement it can be possible
to simulate two such classical provers by one quantum prover. This indicates that entanglement
among provers truly leads to a weaker proof system. In particular, we show that a two-prover one-
round interactive proof system where the verifier computes the XOR of two binary answers and
the provers are allowed to share an arbitrary entangled state can be simulated by a single quantum
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interactive proof system with two messages: ⊕MIP∗[2] ⊆ QIP(2). Since very little is known about
QIP(2) so far [12], we hope that our result may help to shed some light about its relation to PP or
PSPACE in the future. Our result also leads to a proof that ⊕MIP∗[2] ⊆ EXP.

2 Preliminaries

2.1 Quantum Computing

We assume general familiarity with the quantum model [15]. In the following, we will use V,P
and M to denote the Hilbert spaces of the verifier, the quantum prover and the message space
respectively. ℜ(z) denotes the real part of a complex number z.

2.2 Non-local Games

For our proof it is necessary to introduce the notion of (non-local) games: Let S, T , A and B be
finite sets, and π a probability distribution on S×T . Let V be a predicate on S×T ×A×B. Then
G = G(V, π) is the following two-person cooperative game: A pair of questions (s, t) ∈ S × T is
chosen at random according to the probability distribution π. Then s is sent to player 1, henceforth
called Alice, and t to player 2, which we will call Bob. Upon receiving s, Alice has to reply with
an answer a ∈ A. Likewise, Bob has to reply to question t with an answer b ∈ B. They win if
V (s, t, a, b) = 1 and lose otherwise. Alice and Bob may agree on any kind of strategy beforehand,
but they are no longer allowed to communicate once they have received questions s and t. The
value ω(G) of a game G is the maximum probability that Alice and Bob win the game. We will
follow the approach of Cleve et al. [6] and write V (a, b|s, t) instead of V (s, t, a, b) to emphasize the
fact that a and b are answers given questions s and t.

Here, we will be particularly interested in non-local games. Alice and Bob are allowed to share
an arbitrary entangled state |Ψ〉 to help them win the game. Let Ap ⊗ A and Bp ⊗ B denote
the Hilbert spaces of Alice and Bob respectively. The state |Ψ〉 ∈ A ⊗ B is part of the quantum
strategy that Alice and Bob can agree on beforehand. This means that for each game, Alice and
Bob can choose a specific |Ψ〉 to maximize their chance of success. In addition, Alice and Bob can
agree on a quantum measurement for each s ∈ S, Alice has a projective measurement described by
{Xa

s : a ∈ A} on A. For each t ∈ T , Bob has a projective measurement described by {Y b
t : b ∈ B}

on B. For questions (s, t) ∈ S × T , Alice performs the measurement corresponding to s on her
part of |Ψ〉 which gives her outcome a. Likewise, Bob performs the measurement corresponding to
t on his part of |Ψ〉 with outcome b. Both send their outcome, a and b, back to the verifier. The
probability that Alice and Bob answer (a, b) ∈ A×B is then given by

〈Ψ|Xa
s ⊗ Y b

t |Ψ〉.

The probability that Alice and Bob win the game is given by

Pr[Alice and Bob win] =
∑

s,t

π(s, t)
∑

a,b

V (a, b|s, t)〈Ψ|Xa
s ⊗ Y b

t |Ψ〉.

The quantum value ωq(G) of a game G is the maximum probability over all possible quantum
strategies that Alice and Bob win. An XOR game is a game where the value of V only depends
on c = a ⊕ b and not on a and b independently. For XOR games we write V (c|s, t) instead of
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V (a, b|s, t). We will use τ(G) to denote the value of the trivial strategy where Alice and Bob ignore
their inputs and return random answers a ∈R {0, 1}, b ∈R {0, 1} instead. For an XOR game,

τ(G) =
1

2

∑

s,t

π(s, t)
∑

c∈{0,1}

V (c|s, t). (1)

In this paper, we will only be interested in the case that a ∈ {0, 1} and b ∈ {0, 1}. Alice and
Bob’s measurements are then described by {X0

s ,X
1
s } for s ∈ S and {Y 0

t , Y
1
t } for t ∈ T respectively.

Note that X0
s + X1

s = I and Y 0
t + Y 0

t = I and thus these measurements can be expressed in
the form of observables Xs and Yt with eigenvalues ±1: Xs = X0

s − X1
s and Yt = Y 0

t − Y 1
t .

Tsirelson [25, 23] has shown that for any |Ψ〉 ∈ A ⊗ B there exists real vectors xs, yt ∈ R
N with

N = min(|S|, |T |) such that 〈Ψ|Xs ⊗ Yt|Ψ〉 = 〈xs|yt〉. Conversely, if dim(A) = dim(B) = 2⌈N/2⌉

and |Ψ〉 ∈ A ⊗ B is a maximally entangled state, there exist observables Xs on A, Yt on B such
that 〈xs|yt〉 = 〈Ψ|Xs ⊗ Yt|Ψ〉. See [24, Theorem 3.5] for a detailed construction.

2.3 Interactive Proof Systems

2.3.1 Multiple Provers

It is well known [6, 10], that two-prover one-round interactive proof systems with classical com-
munication can be modeled as (non-local) games. Here, Alice and Bob take the role of the two
provers. The verifier now poses questions s and t, and evaluates the resulting answers. A proof
system associates with each string x a game Gx, where ωq(Gx) determines the probability that the
verifier accepts (and thus concludes x ∈ L). The string x, and thus the nature of the game Gx is
known to both the verifier and the provers. Ideally, for all x ∈ L the value of ωq(Gx) is close to
one, and for x /∈ L the value of ωq(Gx) is close to zero. It is possible to extend the game model
for MIP[2] to use a randomized predicate for the acceptance predicate V . This corresponds to V
taking an extra input string chosen at random by the verifier. However, known applications of
MIP[2] proof systems do not require this extension [9]. Our argument in Section 3 can easily be
extended to deal with randomized predicates. Since V is not a randomized predicate in [6], we here
follow this approach.

In this paper, we concentrate on proof systems involving two provers, one round of communica-
tion, and single bit answers. The provers are computationally unbounded, but limited by the laws
of quantum physics. However, the verifier is probabilistic polynomial time bounded. As defined by
Cleve et al. [6],

Definition 1 For 0 ≤ s < c ≤ 1, let ⊕MIPc,s[2] denote the class of all languages L recognized by
a classical two-prover interactive proof system of the following form:

• They operate in one round, each prover sends a single bit in response to the verifier’s question,
and the verifier’s decision is a function of the parity of those two bits.

• If x /∈ L then, whatever strategy the two provers follow, the probability that the verifier accepts
is at most s (the soundness probability).

• If x ∈ L then there exists a strategy for the provers for which the probability that the verifier
accepts is at least c (the completeness probability).

4



Definition 2 For 0 ≤ s < c ≤ 1, let ⊕MIP∗
c,s[2] denote the class corresponding to a modified

version of the previous definition: all communication remains classical, but the provers may share
prior quantum entanglement, which may depend on x, and perform quantum measurements.

2.3.2 A Single Quantum Prover

Instead of two classical provers, we now consider a system consisting of a single quantum prover
Pq and a quantum polynomial time verifier Vq as defined by Watrous [29]. Again, the quantum
prover Pq is computationally unbounded, however, he is limited by the laws of quantum physics.
The verifier and the prover can communicate over a quantum channel. In this paper, we are only
interested in one round quantum interactive proof systems: the verifier sends a single quantum
message to the prover, who responds with a quantum answer. We here express the definition of
QIP(2) [29] in a form similar to the definition of ⊕MIP∗:

Definition 3 Let QIP(2, c, s) denote the class of all languages L recognized by a quantum one-
prover one-round interactive proof system of the following form:

• If x /∈ L then, whatever strategy the quantum prover follows, the probability that the quantum
verifier accepts is at most s.

• If x ∈ L then there exists a strategy for the quantum prover for which the probability that the
verifier accepts is at least c.

3 Main Result

We now show that an interactive proof system where the verifier is restricted to computing the
XOR of two binary answers is in fact no more powerful than a system based on a single quantum
prover. The main idea behind our proof is to combine two classical queries into one quantum query,
and thereby simulate the classical proof system with a single quantum prover. Recall that the two
provers can use an arbitrary entangled state as part of their strategy. For our proof we will make
use of the following proposition shown in [6, Proposition 5.7]:

Proposition 1 (CHTW) Let G(V, π) be an XOR game and let N = min(|S|, |T |). Then

wq(G)− τ(G) =
1

2
max
xs,yt

∑

s,t

π(s, t) (V (0|s, t)− V (1|s, t)) 〈xs|yt〉,

where the maximization is taken over unit vectors

{xs ∈ R
N : s ∈ S} ∪ {yt ∈ R

N : t ∈ T}.

Theorem 1 For all s and c such that 0 ≤ s < c ≤ 1, ⊕MIP∗
c,s[2] ⊆ QIP(2, c, s)

Proof. Let L ∈ ⊕MIP∗
c,s[2] and let Ve be a verifier witnessing this fact. Let P 1

e and P 2
e denote the

two provers sharing entanglement. Fix an input string x. As mentioned above, interactive proof
systems can be modeled as games indexed by the string x. It is therefore sufficient to show that
there exists a verifier Vq and a quantum prover Pq, such that wsim(Gx) = wq(Gx), where wsim(Gx)
is the value of the simulated game.
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Let s,t be the questions that Ve sends to the two provers P 1
e and P 2

e in the original game. The
new verifier Vq now constructs the following state in V ⊗M

|Φinit〉 =
1√
2
( |0〉
︸︷︷︸

V

|s〉
︸︷︷︸

M

+ |1〉
︸︷︷︸

V

|t〉
︸︷︷︸

M

),

and sends register M to the single quantum prover Pq. In order to convince the verifier, the prover
now applies a transformation on M⊗P and sends register M back to the verifier. We show that
for any such transformation the value of the resulting game is at most wq(Gx): Note that the state
of the total system in V ⊗M⊗P can now be described as

|Φ〉 = 1√
2
(|0〉|φs〉+ |1〉|φt〉)

where |φs〉 =
∑

u∈S |u〉|αs
u〉 and |φt〉 =

∑

v∈T |v〉|αt
v〉. Any transformation employed by the prover

can be described this way. The verifier Vq now performs a measurement on V ⊗ M described by
the following projectors

P0 = |Ψ+
st〉〈Ψ+

st| ⊗ I

P1 = |Ψ−
st〉〈Ψ−

st| ⊗ I

Preject = I − P0 − P1,

where |Ψ±
st〉 = (|0〉|s〉 ± |1〉|t〉)/

√
2. If he obtains outcome “reject”, he immediately aborts and

concludes that the quantum prover is cheating. If he obtains outcome m ∈ {0, 1}, the verifier
concludes that c = a⊕ b = m. We have that

Pr[m = 0|s, t] = 〈Φ|P0|Φ〉 =
1

4
(〈αs

s|αs
s〉+ 〈αt

t|αt
t〉) +

1

2
ℜ(〈αs

s|αt
t〉) (2)

Pr[m = 1|s, t] = 〈Φ|P1|Φ〉 =
1

4
(〈αs

s|αs
s〉+ 〈αt

t|αt
t〉)−

1

2
ℜ(〈αs

s|αt
t〉) (3)

The probability that the prover wins is given by

Pr[Prover wins] =
∑

s,t

π(s, t)
∑

c∈{0,1}

V (c|s, t) Pr[m = c|s, t].

The prover will try to maximize his chance of success by maximizing Pr[m = 0|s, t] or Pr[m = 1|s, t].
We can therefore restrict ourselves to considering real unit vectors for which 〈αs

s|αs
s〉 = 1 and

〈αt
t|αt

t〉 = 1. This also means that |αs′
s 〉 = 0 iff s 6= s′ and |αt′

t 〉 = 0 iff t 6= t′. Any other strategy can
lead to rejection and thus to a lower probability of success. By substituting into Equations 2 and 3,
it follows that the probability that the quantum prover wins the game when he avoids rejection is
then

1

2

∑

s,t,c

π(s, t)V (c|s, t)(1 + (−1)c〈αs
s|αt

t〉). (4)

In order to convince the verifier, the prover’s goal is to choose real vectors |αs
s〉 and |αt

t〉 which
maximize Equation 4. Since in |φs〉 and |φt〉 we sum over |S| and |T | elements respectively, the
dimension of P need not exceed max{|S|, |T |}. Thus, it is sufficient to restrict the maximization to
vectors in R

|S| and R
|T |. In fact, since we are interested in maximizing the inner product of these
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two vectors, it is sufficient to limit the maximization of vectors to R
N with N = min(|S|, |T |) [6]:

Consider the projection of the vectors {αs
s : s ∈ S} onto the span of the vectors {αt

t : t ∈ T} (or
vice versa). Given Equation 4, we thus have

wsim(Gx) = max
αs
s
,αt

t

1

2

∑

s,t,c

π(s, t)V (c|s, t)(1 + (−1)c〈αt
s|αt

t〉),

where the maximization is taken over vectors {αs
s ∈ R

N : s ∈ S}, and {αt
t ∈ R

N : t ∈ T}. However,
Proposition 1 and Equation 1 imply that

wq(Gx) = max
xs,yt

1

2

∑

s,t,c

π(s, t)V (c|s, t)(1 + (−1)c〈xs|yt〉)

where the maximization is taken over unit vectors {xs ∈ R
N : s ∈ S} and {yt ∈ R

N : t ∈ T}. We
thus have

wsim(Gx) = wq(Gx)

which completes our proof. ✷

Note that our proof implies that if x ∈ L, any honest strategy of the provers can of course be
equally simulated by a quantum prover. He only has to choose the two vectors in accordance with
the strategy of the two classical provers sharing entanglement. From our result it directly follows
that

Corollary 1 For all s and c such that 0 ≤ s < c ≤ 1, ⊕MIP∗
c,s[2] ⊆ EXP

Proof. This follows directly from Theorem 1 and the result that QIP(2) ⊆ EXP [12]. ✷

4 Discussion

It would be interesting to show that this result also holds for a proof system where the verifier is
not restricted to computing the XOR of both answers, but some other boolean function. However,
it remains unclear what the exact value of a binary game would be. The approach based on vectors
from Tsirelson’s results does not work for binary games. Whereas it is easy to construct a single
quantum query which allows the verifier to compute an arbitrary function of the two binary answers
with some advantage, it thus remains unclear how the value of the resulting game is related to the
value of a binary game. Furthermore, mere classical tricks trying to obtain the value of a binary
function from XOR itself seem to confer extra cheating power to the provers.

Examples of non-local games with longer answers [6], such as the Kochen-Specker or the Magic
Square game, seem to make it even easier for the provers to cheat by taking advantage of their
entangled state. Furthermore, existing proofs that MIP = NEXP break down if the provers share
entanglement. It is therefore an open question whether MIP∗ = NEXP or, what may be a more
likely outcome, MIP∗ ⊆ EXP.

Non-locality experiments between two spacelike separated observers, Alice and Bob, can be cast
in the form of non-local games. For example, the experiment based on the well known CHSH in-
equality [5], is a non-local game with binary answers of which the verifier computes the XOR [6]. Our
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result implies that this non-local game can be simulated in superposition by a single prover/observer:
Any strategy that Alice and Bob might employ in the non-local game can be mirrored by the single
prover in the constructed “superposition game”, and also vice versa, due to Tsirelson’s construc-
tions [25, 23] mentioned earlier. This means that the “superposition game” corresponding to the
non-local CHSH game is in fact limited by Tsirelson’s inequality [25], even though it itself has
no non-local character. Whereas this may be purely coincidental, it would be interesting to know
its physical interpretation, if any. Perhaps it may be interesting to ask whether Tsirelson type
inequalities have any consequences on local computations in general, beyond the scope of these
very limited games.
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