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Efficient Qualitative Analysis of Classes of
Recursive Markov Decision Processes and

Simple Stochastic Games

Kousha Etessami1 and Mihalis Yannakakis2

1 LFCS, School of Informatics, University of Edinburgh
2 Department of Computer Science, Columbia University

Abstract. Recursive Markov Decision Processes (RMDPs) and Recur-
sive Simple Stochastic Games (RSSGs) are natural models for recur-
sive systems involving both probabilistic and non-probabilistic actions.
As shown recently [10], fundamental problems about such models, e.g.,
termination, are undecidable in general, but decidable for the impor-
tant class of 1-exit RMDPs and RSSGs. These capture controlled and
game versions of multi-type Branching Processes, an important and well-
studied class of stochastic processes. In this paper we provide efficient
algorithms for the qualitative termination problem for these models: does
the process terminate almost surely when the players use their optimal
strategies? Polynomial time algorithms are given for both maximizing
and minimizing 1-exit RMDPs (the two cases are not symmetric). For 1-
exit RSSGs the problem is in NP∩coNP, and furthermore, it is at least as
hard as other well-known NP∩coNP problems on games, e.g., Condon’s
quantitative termination problem for finite SSGs ([3]). For the class of
linearly-recursive 1-exit RSSGs, we show that the problem can be solved
in polynomial time.

1 Introduction

In recent work [10], we introduced and studied Recursive Markov Decision Pro-
cesses (RMDPs) and Recursive Simple Stochastic Games (RSSGs), which pro-
vide natural models for recursive systems (e.g., programs with procedures) in-
volving both probabilistic and non-probabilistic actions. They define infinite-
state MDPs and SSGs that extend Recursive Markov Chains (RMCs) ([8, 9])
with non-probabilistic actions that are controlled by a controller and/or the en-
vironment (the “players”). Informally, a recursive model (RMC, RMDP, RSSG)
consists of a (finite) collection of finite state component models (resp. MC, MDP,
SSG) that can call each other in a potentially recursive manner.

In this paper we focus on the important class of 1-exit RMDPs and 1-exit
RSSGs, which we will denote by 1-RMDP and 1-RSSG. These are RMDPs and
RSSGs where every component contains exactly 1 exit node. Without players, 1-
RMCs correspond tightly to both Stochastic Context-Free Grammars (SCFGs)
and Multi-Type Branching Processes (MT-BPs). Branching processes are an im-
portant class of stochastic processes, dating back to the early work of Galton and
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Watson in the 19th century, and continuing in the 20th century in the work of
Kolmogorov, Sevastianov, Harris and others for MT-BPs and beyond (see, e.g.,
[14]). MT-BPs model the growth of a population of objects of distinct types.
In each generation each object of a given type gives rise, according to a prob-
ability distribution, to a multi-set of objects of distinct types. These stochastic
processes have been used in a variety of applications, including in population
genetics ([16]), nuclear chain reactions, ([7]), and RNA modeling in computa-
tional biology (based on SCFGs) ([22]). SCFGs are also fundamental models in
statistical natural language processing (see, e.g., [19]). 1-RMDPs correspond to a
controlled version of MT-BPs (and SCFGs): the reproduction of some types can
be controlled, while the dynamics of other types is probabilistic as in ordinary
MT-BPs; or the controller may be able to influence the reproduction of some
types by choosing among a set of probability distributions (e.g., the branching
Markov decision chains of [21]). The goal of the controller is either to maximize
the probability of extinction or to minimize it (maximize survival probability).
This model would also be suitable for analysis of population dynamics under
worst-case (or best-case) assumptions for some types and probabilistic assump-
tions for others. Such controlled MT-BPs can be readily translated to 1-RMDPs,
where the types of the MT-BP correspond to the components of the RMDP, ex-
tinction in the MT-BP corresponds to termination in the RMDP, and our results
can be used for the design of strategies to achieve or prevent extinction.

Among our results in [10], we showed that for maximizing (minimizing) 1-
RMDPs, the Qualitative Termination Problem (Qual-TP), is in NP (coNP, re-
spectively), and that the same problem for 1-RSSGs is in ΣP

2 ∩ΠP
2 . Qual-TP is

the problem of deciding whether player 1 (the maximizer) has a strategy to force
termination with probability 1, regardless of the strategy employed by player 2
(the minimizer). (In a maximizing 1-RMDP, the only player present is the max-
imizer, and in a minimizing 1-RMDP the only player present is the minimizer.)

In this paper we improve significantly on the above results. We show that
Qual-TP, both for maximizing 1-RMDPs and for minimizing 1-RMDPs, can in
fact be decided in polynomial time. It follows easily from this and strong determi-
nacy results from [10], that for 1-RSSGs Qual-TP is in NP∩coNP. We show that
one can not easily improve on this upper bound, by providing a polynomial time
reduction from the Quantitative Termination Problem (Quan-TP) for finite SSGs
([3]) to the Qual-TP problem for 1-RSSGs. Condon [3] showed that for finite
SSGs the Quan-TP problem, specifically the problem of deciding whether player
1 has a strategy to force termination with probability ≥ 1/2, is in NP∩coNP.
Whether the problem can be solved in P is a well-known open problem, that in-
cludes as special cases several other longstanding problems (e.g., “parity games”
and “mean-payoff” games). We note (as is already known) that for finite SSGs,
Qual-TP itself is in polynomial time. We in fact show a more general result,
namely, that Qual-TP is in polynomial time for the class of 1-RSSGs that are
linearly-recursive.

Thus, we provide a new class of infinite-state SSGs whose qualitative decision
problem is at least as hard as the quantitative decision problem for finite SSGs,



and quite possibly harder, but which we can still decide in NP∩coNP. We already
showed in [10, 8] that the even harder Quan-TP problem for 1-RSSGs can be
decided in PSPACE, and that improving that upper bound even to NP, even
for 1-RMCs, would resolve a long standing open problem in the complexity of
numerical computation, namely the square-root sum problem ([12]).
Most proofs are omitted due to space.

Related work. Both MDPs and Stochastic Games have a vast literature
(see [20, 11]). As mentioned, we introduced RMDPs and RSSGs and studied
both quantitative and qualitative termination problems in [10]. We showed that
for multi-exit models these problems are undecidable, and that (qualitative)
model checking is undecidable even in the 1-exit case. Our earlier work [8, 9]
developed the theory and algorithms for RMCs and [6, 2] studied the related
model of probabilistic Pushdown Systems (pPDSs).

Our algorithms here were partly inspired by recent unpublished work by
Denardo and Rothblum [4, 5] on Multi-Matrix Multiplicative Systems. They study
families of square nonnegative matrices, which arise from choosing each matrix
row independently from a choice of rows, and they give LP characterizations of
when the spectral radius of all matrices in the family will be ≥ 1 or > 1. None
of our results follow from theirs, but we use techniques similar to theirs, along
with other techniques, to obtain our upper bounds.

2 Definitions and Background

A Recursive Simple Stochastic Game (RSSG), A, is a tuple A = (A1, . . . , Ak),
where each component Ai = (Ni, Bi, Yi, Eni, Exi, pli, δi) consists of:

– A set Ni of nodes, with a distinguished subset Eni of entry nodes and a
(disjoint) subset Exi of exit nodes.

– A set Bi of boxes, and a mapping Yi : Bi 7→ {1, . . . , k} that assigns to every
box (the index of) a component. To each box b ∈ Bi, we associate a set of call
ports, Callb = {(b, en) | en ∈ EnY (b)}, and a set of return ports, Returnb =
{(b, ex) | ex ∈ ExY (b)}. Let Calli = ∪b∈Bi

Callb, Returni = ∪b∈Bi
Returnb,

and let Qi = Ni ∪ Calli ∪ Returni be the set of all nodes, call ports and
return ports; we refer to these as the vertices of component Ai.

– A mapping pli : Qi 7→ {0, 1, 2} that assigns to every vertex a player (Player
0 represents “chance” or “nature”). We assume pli(ex) = 0 for all ex ∈ Exi.

– A transition relation δi ⊆ (Qi × (R ∪ {⊥}) × Qi), where for each tuple
(u, x, v) ∈ δi, the source u ∈ (Ni \ Exi) ∪ Returni, the destination v ∈
(Ni \ Eni) ∪ Calli, and x is either (i) a real number pu,v ∈ (0, 1] (the tran-
sition probability) if pli(u) = 0, or (ii) x = ⊥ if pli(u) = 1 or 2. For
computational purposes we assume that the given probabilities pu,v are ra-
tional. Furthermore they must satisfy the consistency property: for every
u ∈ pl−1

i (0),
∑

{v′|(u,pu,v′ ,v′)∈δi} pu,v′ = 1, unless u is a call port or exit
node, neither of which have outgoing transitions, in which case by default∑

v′ pu,v′ = 0.



We use the symbols (N,B,Q, δ, etc.) without a subscript, to denote the
union over all components. Thus, e.g., N = ∪k

i=1Ni is the set of all nodes of A,
δ = ∪k

i=1δi the set of all transitions, etc.
An RSSG A defines a global denumerable Simple Stochastic Game (SSG)

MA = (V = V0 ∪ V1 ∪ V2,∆, pl) as follows. The global states V ⊆ B∗ × Q of
MA are pairs of the form 〈β, u〉, where β ∈ B∗ is a (possibly empty) sequence
of boxes and u ∈ Q is a vertex of A. More precisely, the states V ⊆ B∗ ×Q and
transitions ∆ are defined inductively as follows:

1. 〈ε, u〉 ∈ V , for u ∈ Q. (ε denotes the empty string.)
2. if 〈β, u〉 ∈ V & (u, x, v) ∈ δ, then 〈β, v〉 ∈ V and (〈β, u〉, x, 〈β, v〉) ∈ ∆.
3. if 〈β, (b, en)〉 ∈ V & (b, en) ∈ Callb, then 〈βb, en〉 ∈ V & (〈β, (b, en)〉, 1, 〈βb, en〉) ∈ ∆.

4. if 〈βb, ex〉 ∈ V & (b, ex) ∈ Returnb, then 〈β, (b, ex)〉 ∈ V & (〈βb, ex〉, 1, 〈β, (b, ex)〉) ∈ ∆.

The mapping pl : V 7→ {0, 1, 2} is given as follows: pl(〈β, u〉) = pl(u) if u is
in Q \ (Call ∪ Ex), and pl(〈β, u〉) = 0 if u ∈ Call ∪ Ex. The set of vertices V
is partitioned into V0, V1, and V2, where Vi = pl−1(i). We consider MA with
various initial states of the form 〈ε, u〉, denoting this by Mu

A. Some states of MA

are terminating states and have no outgoing transitions. These are states 〈ε, ex〉,
where ex is an exit node.

An RSSG where V2 = ∅ (V1 = ∅) is called a maximizing (minimizing, respec-
tively) Recursive Markov Decision Process (RMDP); an RSSG where V1∪V2 = ∅
is called a Recursive Markov Chain (RMC) ([8, 9]); an RSSG where V0 ∪ V2 = ∅
is called a Recursive Graph or Recursive State Machine(RSM) ([1]). Define 1-
RSSGs to be those RSSGs where every component has 1 exit, and likewise define
1-RMDPs and 1-RMCs. W.l.o.g., we can assume every component has 1 entry,
because multi-entry RSSGs can be transformed to equivalent 1-entry RSSGs
with polynomial blowup (similar to RSM transformations [1]). This is not so for
exits, e.g., qualitative termination is undecidable for multi-exit RMDPs, whereas
it is decidable for 1-RSSGs (see [10]). This entire paper is focused on 1-RSSGs
and 1-RMDPs. Accordingly, some of our notation is simpler than that used for
general RSSGs in [10]. We shall call a 1-RSSG (1-RMDP, etc.) linear if there in
no path of transitions in any component from any return port to a call port.

Our basic goal is to answer qualitative termination questions for 1-RSSGs:
“Does player 1 have a strategy to force the game to terminate at exit ex (i.e.,
reach 〈ε, ex〉), starting at 〈ε, u〉, with probability 1, regardless of how player 2
plays?”. A strategy σ for player i, i ∈ {1, 2}, is a function σ : V ∗Vi 7→ V ,
where, given the history ws ∈ V ∗Vi of play so far, with s ∈ Vi (i.e., it is player
i’s turn to play a move), σ(ws) = s′ determines the next move of player i,
where (s,⊥, s′) ∈ ∆. (We could also allow randomized strategies.) Let Ψi denote
the set of all strategies for player i. A pair of strategies σ ∈ Ψ1 and τ ∈ Ψ2

induce in a straightforward way a Markov chain Mσ,τ
A = (V ∗,∆′), whose set

of states is the set V ∗ of histories. Given an initial vertex u, suppose ex is the
unique exit node of u’s component. Let q∗,σ,τ

u be the probability that, in Mσ,τ
A ,

starting at initial state 〈ε, u〉 we will eventually terminate, by reaching some
w〈ε, ex〉, for w ∈ V ∗. From general determinacy results (e.g., [18]) it follows
that supσ∈Ψ1

infτ∈Ψ2 q∗,σ,τ
u = infτ∈Ψ2 supσ∈Ψ1

q∗,σ,τ
u . This is the value of the game



starting at u, which we denote by q∗u. We are interested in the following problem:
Qual-TP: Given A, a 1-RSSG (or 1-RMDP), and given a vertex u in A, is q∗u = 1?

For a strategy σ ∈ Ψ1, let q∗,σu = infτ∈Ψ2 q∗,σ,τ
u , and for τ ∈ Ψ2, let q∗,·,τu =

supσ∈Ψ1
q∗,σ,τ
u . We showed in [10] that 1-RSSGs satisfy a strong form of memo-

ryless determinacy, namely, call a strategy Stackless & Memoryless (S&M) if it
depends neither on the history of the game nor on the current call stack, i.e.,
only depends on the current vertex. We call a game S&M-determined if both
players have S&M optimal strategies.

Theorem 1. ([10]) Every 1-RSSG termination game is S&M-determined.
(Moreover, there is an S&M strategy σ∗ ∈ Ψ1 that maximizes the value of q∗,σu

for all u, and likewise a τ∗ ∈ Ψ2 that minimizes the value of q∗,·,τu for all u.)

For multi-exit RMDPs and RSSGs things are very different. We showed that even
memoryless determinacy fails badly (there may not exist any optimal strategy
at all, only ε-optimal ones)), and furthermore Qual-TP is undecidable (see [10]).

Note that there are finitely many S&M strategies for player i: each picks one
edge out of each vertex belonging to player i. For 1-RMCs, where there are only
probabilistic vertices, we showed in [8] that Qual-TP can be decided in polyno-
mial time, using a spectral radius characterization for certain moment matrices
associated with 1-RMCs. It followed, by guessing strategies, that Qual-TP for
both maximizing and minimizing 1-RMDPs is in NP, and that Qual-TP for 1-
RSSGs is in ΣP

2 ∩ΠP
2 . We obtain far stronger upper bounds in this paper. We

will also use the following fact from [10].

Proposition 1. ([10]) We can decide in P-time if the value of a 1-RSSG termi-
nation game (and optimal termination probability in a maximizing or minimizing
1-RMDP) is exactly 0.

In ([10]) we defined a monotone system SA of nonlinear min-max equations
for 1-RSSGs A, and showed that its Least Fixed Point solution yields the desired
probabilities q∗u . These systems generalize both the linear Bellman’s equations
for MDPs, as well as the nonlinear system of polynomial equation for RMCs
studied in [8]. Here we recall these systems of equations (with a slightly simpler
notation). Let us use a variable xu for each unknown q∗u, and let x be the vector
of all xu, u ∈ Q. The system SA has one equation of the form xu = P (x) for
each vertex u. Suppose that u is in component Ai with (unique) exit ex. There
are 5 cases based on the “Type” of u.
1. u ∈ Type1: u = ex. In this case: xu = 1.
2. u ∈ Typerand: pl(u) = 0 & u ∈ (Ni\{ex})∪Returni: xu =

∑
{v|(u,pu,v,v)∈δ} pu,vxv.

(If u has no outgoing transitions, this equation is by definition xu = 0.)
3. u ∈ Typecall: u = (b, en) is a call port: x(b,en) = xen · x(b,ex′), where ex′ ∈

ExY (b) is the unique exit of AY (b).
4. u ∈ Typemax: pl(u) = 1 & u ∈ (Ni\{ex})∪Returni: xu = max{v|(u,⊥,v)∈δ} xv.

(If u has no outgoing transitions, we define max(∅) = 0.)
5. u ∈ Typemin: pl(u) = 2 and u ∈ (Ni\{ex})∪Returni: xu = min{v|(u,⊥,v)∈δ} xv.

(If u has no outgoing transitions, we define min(∅) = 0.)



In vector notation, we denote the system SA by x = P (x).
Given 1-RSSG A, we can easily construct SA in linear time. For vectors

x,y ∈ Rn, define x ≤ y to mean xj ≤ yj for every coordinate j. Let q∗ ∈ Rn

denote the n-vector of q∗u’s.

Theorem 2. ([10]) Let x = P (x) be the system SA associated with 1-RSSG A.
Then q∗ = P (q∗), and for all q′ ∈ Rn

≥0, if q′ = P (q′), then q∗ ≤ q′ (in other
words, q∗ is the Least Fixed Point, of P : Rn

≥0 7→ Rn
≥0).

3 Qualitative termination for 1-RMDPs in P-time

We show that, for both maximizing 1-RMDPs and minimizing 1-RMDPs, qual-
itative termination can be decided in polynomial time. Please note: the two
cases are not symmetric. We provide distinct algorithms for each of them. An
important result for us is this:

Theorem 3. ([8]) Qual-TP for 1-RMCs is decidable in polynomial time.

We briefly indicate the key elements of that upper bound (please see [8] for more
details). Our algorithm employed a spectral radius characterization of moment
matrices associated with 1-RMCs. Given the system of polynomial equations
x = P (x) for a 1-RMC (no min and max types), its moment matrix B is the
square Jacobian matrix of P (x), whose (i, j)’th entry is the partial derivative
∂Pi(x)/∂xj , evaluated at the all 1 vector (i.e., xu ← 1 for u ∈ Q). We showed in
[8] that if the system x = P (x) is decomposed into strongly connected compo-
nents (SCCs) in a natural way, and we associate a moment matrix BC to each
SCC, C, then q∗u = 1 for every u where xu is in C, iff either u is of Type1, or [C
has successor SCCs and q∗v = 1 for all nodes v in any successor SCC of C, and
ρ(BC) ≤ 1, where ρ(M) is the spectral radius of a square matrix M ].

Theorem 4. Given a maximizing 1-RMDP, A, and a vertex u of A, we can
decide in polynomial time whether q∗u = 1. In other words, for maximizing 1-
RMDPs, Qual-TP is in P.

Proof. Given a maximizing 1-RMDP, A, we shall determine for all vertices u,
whether q∗u = 1, q∗u = 0, or 0 < q∗u < 1. The system of equations x = P (x)
for A defines a labeled dependency graph, GA = (Q,→), as follows: the nodes
Q of GA are the vertices of A, and there is an edge u → v iff xv appears on
the right hand side of the equation xu = Pu(x). Each node u is labeled by its
Type. If u ∈ Typerand, i.e., u is a probabilistic vertex, and xv appears in the
weighted sum Pu(x) as a term pu,vxv, then the edge from u to v is labeled by
the probability pu,v. Otherwise, the edge is unlabeled.

We wish to partition the nodes of the dependency graph into three classes:
Z0 = {u | q∗u = 0}, Z1 = {u | q∗u = 1}, and Z$ = {u | 0 < q∗u < 1}. In our
algorithm we will use a fourth partition, Z?, to denote those nodes for which
we have not yet determined to which partition they belong. We first compute
Z0. By proposition 1, this can be done easily in P-time even for 1-RSSGs. Once



we have computed Z0, the remaining nodes belong either to Z1 or Z$. Clearly,
Type1 nodes belong to Z1.
Initialize: Z1 ← Type1; Z$ ← ∅; and Z? ← Q\ (Z1 ∪ Z0);
Next, we do one “preprocessing” step to categorize some remaining “easy” nodes
into Z1 and Z$, as follows:

repeat
if u ∈ Z? ∩ (Typerand ∪ Typecall) has all of its successors in Z1

then Z? ← Z? \ {u}; Z1 ← Z1 ∪ {u};
if u ∈ Z? ∩ Typemax has some successor in Z1

then Z? ← Z? \ {u}; Z1 ← Z1 ∪ {u};
if u ∈ Z? ∩ (Typerand ∪ Typecall) has some successor in Z0 ∪ Z$

then Z? ← Z? \ {u};Z$ ← Z$ ∪ {u};
if u ∈ Z? ∩ Typemax has all successors in (Z0 ∪ Z$)

then Z? ← Z? \ {u};Z$ ← Z$ ∪ {u};
until (there is no change to Z?)

The preprocessing step will not, in general, empty Z?, and we need to cate-
gorize the remaining nodes in Z?. We will construct a set of linear inequalities
(an LP without an objective function) which has a solution iff there are any
remaining node in Z? which belongs in Z1, and if so, the solution we obtain to
the LP will let us find and remove from Z? some more nodes that belong in Z1.

Note that, if we can do this, then we can solve our problem, because all we
need to do is iterate: we repeatedly do a preprocessing step, followed by the LP
step to remove nodes from Z?, until no more nodes can be removed, at which
point we are done: the remaining nodes in Z? all belong to Z$.

For the LP step, restrict attention to the vertices remaining in Z?. These
vertices induce a subgraph of GA, call it G′

A. Call a remaining probabilistic
node u in Z? leaky if it does not have full probability on its outgoing transitions
inside G′

A. Note that this happens if and only if some of u’s outedges in GA lead
to nodes in Z1 (otherwise, if u had an outedge to a node in Z0 or Z$, it would
already have been removed from Z? during preprocessing). Let L denote the set
of remaining leaky nodes in Z?. We add an extra terminal node t to G′

A, and for
every u ∈ L we add a probabilistic edge u

pu,t→ t, where pu,t = 1−
∑

v∈Z?
pu,v.

W.l.o.g., assume that both entries of components and return nodes are prob-
abilistic nodes (this can easily be assured by minor adjustments to the input
1-RSSG). The LP has a variable yi for every node i ∈ Z? that is not Typemax,
and has a variables yi,j for every Typemax node i ∈ Z? and successor j ∈ Z? of
i. In addition there are flow variables fi,j,k for each node i ∈ Z?, and every edge
j → k in G′

A. The constraints are as follows.
1. For every j ∈ Typerand∪Typecall that is not a component entry or a return:

yj ≥
∑

i→j ∧ i∈Typerand

pi,jyi +
∑

i→j ∧ i∈Typemax

yi,j

2. For every j ∈ Typemax:∑
k

yj,k ≥
∑

i→j ∧ i∈Typerand

pi,jyi +
∑

i→j ∧ i∈Typemax

yi,j



3. For every node i that is the entry of a component, say Ar:

yi ≥
∑

j=(b,en)∈Typecall ∧ Y (b)=r

yj

4. For every node i that is a return node, say of box b: yi ≥ yj , where j is the
call node of b.

5.
∑

i yi +
∑

i,j yi,j = 1.
6. y ≥ 0.

Regard the dependency graph as a network flow graph with capacity on each
edge i→ j coming out of a max node equal to yi,j and capacity of edges i→ j
coming out of the other vertices equal to yi. We set up one flow problem for each
i ∈ Z?, with source i, sink t and flow variables fijk.

7. For every vertex i, we have flow conservation constraints on the variables
fi,j,k, i.e.,

∑
k fi,j,k =

∑
k fi,k,j , for all nodes j ∈ Z?, j 6= i, t.

8. Nonnegativity constraints: fi,j,k ≥ 0 for all i, j, k.
9. Capacity constraints: fi,j,k ≤ yj,k for every j ∈ Typemax with successor k,

and for every node i; and fi,j,k ≤ yj for every j ∈ Typerand ∪ Typecall and
successor k in G′

A and every node i.
10. Source constraints:

∑
k fi,i,k = yi/22m, for every i ∈ Typerand ∪ Typecall,

and
∑

k fi,i,k =
∑

j yi,j/22m, for i ∈ Typemax, where m is defined as follows.
Suppose our LP in constraints (1.-6.) has r variables and constraints, and
that its rational entries have numerator and denominator with at most l
bits. If there is a solution to (1.-6.), then (see, e.g., [13]), there is a rational
solution whose numerators and denominators require at most m = poly(r, l)
bits to encode, where poly(r, l) is a polynomial in r and l. Note r ∈ O(|G′

A|),
l is bounded by the number of bits required for the transition probabilities
pu,v in A, hence m is polynomial in the input size.

The purpose of constraints (7-10) is to ensure that every vertex with a
nonzero y variable can reach a leaky vertex in the subgraph of G′

A induced
by the support of the y solution vector.

Lemma 1. There exists a vertex u ∈ Z? such that q∗u = 1 if and only if the LP
constraints in (1.–10.) are feasible. Moreover, from a solution to the LP we can
find a (partial) strategy for the maximizing player that forces termination from
some such u with probability = 1.

So to summarize, we set up and solve the LP. If there is no solution, then
for all remaining vertices u ∈ Z?, q∗u < 1, and thus u ∈ Z$. If there is a solution,
use the above partial (randomized) strategy for some of the max nodes, leaving
the strategy for other nodes unspecified. This allows us to set to 1 some vertices
(vertices in the bottom SCC’s of the resulting 1-RMC), and thus to move them
to Z1. We can then iterate the preprocessing step and then the LP step until we
reach a fixed point, at which point we have categorized all vertices u into one of
Z0, Z1 or Z$. ut



Theorem 5. Given a minimizing 1-RMDP, A, and a vertex u of A, we can
decide in polynomial time whether q∗u = 1. In other words, for minimizing 1-
RMDPs, Qual-TP is in P.

Proof. As in the previous theorem, we want to classify the vertices into Z0, Z$, Z1,
this time under optimal play of the minimizing player. We again consider the
dependency graph GA of A. We will again use Z? to denote those vertices that
have not yet been classified.

Initialize: Z1 ← Type1; Z$ ← ∅; and Z? ← Q\ (Z1 ∪ Z0);
Next, we again do a “preprocessing” step, which is “dual” to that of the

preprocessing we did for maximizing 1-RMDPs, and categorizes some remaining
“easy” nodes into Z1 and Z$:

repeat
if u ∈ Z? ∩ (Typerand ∪ Typecall) has all of its successors in Z1

then Z? ← Z? \ {u}; Z1 ← Z1 ∪ {u};
if u ∈ Z? ∩ Typemin has some successor in Z$

then Z? ← Z? \ {u}; Z$ ← Z$ ∪ {u};
if u ∈ Z? ∩ (Typerand ∪ Typecall) has some successor in Z0 ∪ Z$

then Z? ← Z? \ {u};Z$ ← Z$ ∪ {u};
if u ∈ Z? ∩ Typemin has all successors in (Z1)

then Z? ← Z? \ {u};Z1 ← Z1 ∪ {u};
until (there is no change to Z?)

Note that, after the preprocessing step, for every edge u → v in GA from
u ∈ Z? to v 6∈ Z?, it must be the case that v ∈ Z1 (otherwise, u would have
already been moved to Z$ or Z0). After preprocessing, we formulate a (different)
LP, which has a solution iff there are more nodes currently in Z? which belong
in Z$. Restrict attention to nodes in Z?, and consider the subgraph G′

A of GA

induced by the nodes in Z?. The LP has a variable yi for every remaining vertex
i ∈ Z? such that i 6∈ Typemin, and has a variable yij for every (remaining) node
i ∈ Typemin, and successor j of i in G′

A. We shall need the following lemma:

Lemma 2. Consider a square nonnegative matrices B with at most n rows and
having rational entries with at most l bits each. If ρ(B) > 1 then ρ(B) ≥ 1+1/2m

where m = poly(n, l) and poly(n, l) is some polynomial in n and l.

Let d = (1 + 1/2m). The constraints of our LP are as follows. For the LP we
restrict attention to only those nodes j, i in Z?.

1. For every j ∈ Typerand that is not a component entry or a return, as well
as for every j ∈ Typecall:

dyj ≤
∑

i∈Typerand ∧ i→j

pi,jyi +
∑

i∈Typemin ∧ i→j

yi,j

2. For every j ∈ Typemin:

d
∑

k

yj,k ≤
∑

i∈Typerand ∧ i→j

pi,jyi +
∑

i∈Typemin ∧ i→j

yi,j



3. For every node i that is the entry of a component, say Ar:

dyi ≤
∑

j=(b,en)∈Typecall ∧ Y (b)=r

yj

4. For every node i that is a return node, say of box b: dyi ≤ yj , where j is the
entry node of b.

5.
∑

i yi +
∑

i,j yi,j = 1.
6. y ≥ 0.

Lemma 3. There exists a vertex u ∈ Z? such that q∗u < 1 if and only if the
LP in (1. – 6.) is feasible. Moreover, from a solution to the LP we can find a
(partial) strategy that forces termination from some such u with probability < 1.

To summarize, we find Z0, then do preprocessing to determines the “easy” Z1

and Z$ nodes. Then, we set up and solve the LP, finding some more Z$ vertices,
removing them, and iterating again with a preprocessing and LP step, until we
exhaust Z? or there is no solution to the LP; in the latter case the remaining
vertices all belong to Z1. As for a strategy that achieves these assignments, in
each iteration when we solve the LP we fix the strategy for certain of the min
nodes in a way that ensures that some new vertices will be added to Z$ and
leave the other min nodes undetermined. Moreover, in preprocessing, if Typemin

nodes get assigned Z$ based on an outedge, we fix the strategy at that node
accordingly. ut

4 Qualitative termination for 1-RSSGs in NP∩coNP

The following is a simple corollary of Theorems 1, 4, and 5.

Corollary 1. Given a 1-RSSG, A, and given a vertex u of A, we can decide in
both NP and coNP whether q∗u = 1. In other words, the qualitative termination
problem for 1-RSSGs is in NP∩coNP.

As the following theorem shows, it will not be easy to improve this upper
bound. Note that finite SSGs, defined by Condon [3], are a special case of 1-
RSSGs (we can simply identify the terminal node “1” of the SSG with the unique
exit of a single component with no boxes). Define the quantitative termination
problem for finite SSGs to be the problem of deciding, given a finite SSG G, and
a vertex u of G, whether q∗u ≥ 1/2. Condon [3] showed that this problem is in
NP ∩ coNP, and it has been a major open problem whether this upper bound
can be improved to P-time.

Theorem 6. There is a P-time reduction from the quantitative termination
problem for finite SSGs to the qualitative termination problem for 1-RSSGs.

It is not at all clear whether there is a reduction from qualitative termination
for 1-RSSGs to quantitative termination for finite SSGs. Thus, Qual-TP for 1-
RSSGs appears to constitute a new harder game problem in NP∩coNP.



Prune(Q)
W ← Q;
repeat

W ←W\PruneMin(W );
W ← PruneMax(W );

until (there is no change in W );
return W ;

PruneMin(W)
S ←W \ Type1;
repeat

if there is a node u in S ∩ (Typerand ∪ Typemax) that has a
successor in W \ S, then S ← S \ {u};

if there is a node u in S ∩ (Typemin ∪ Typecall) that has no
successor in S, then S ← S \ {u};

until (there is no change in S);
return S;

PruneMax(W)
S ←W ;
repeat

if there is a node u in S ∩ (Typerand ∪ Typemin ∪ Typecall) that has a
successor in Q \ S, then S ← S \ {u};

if there is a node u in S ∩ Typemax that has no
successor in S, then S ← S \ {u};

until (there is no change in S);
return S;

Fig. 1. P-time qualitative termination algorithm for linear 1-RSSGs

5 Qualitative termination for linear 1-RSSGs in P-time

We now show that for linear 1-RSSGs, there is a P-time algorithm for deciding
Qual-TP. This generalizes of course the case of flat games.

Theorem 7. Given a linear 1-RSSG, and a vertex u, there is a polynomial time
algorithm to decide whether q∗u = 1.

Proof. Given a linear 1-RSSG, A, consider its dependency graph GA. The nodes
of partitioned partitioned into 5 types: Typemax, Typemin, Typerand, Typecall,
and Type1. Let Q be the set of all vertices of GA. Our algorithm is depicted in
Figure 1. We claim that a call to Prune(Q) returns precisely those vertices in
Z1 = {u | q∗u = 1}. The proof is omitted due to space. ut

The algorithm applies more generally to piecewise linear 1-RSSGs, where
every vertex v ∈ Typecall has at most one successor in the dependency graph
GA that is in the same SCC as v.
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