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Minimum-Redundancy Prefix Codes
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Abstract. A new method for constructing minimum-redundancy prefix
codes is described. This method does not build a Huffman tree; instead
it uses a property of optimal codes to find the codeword length of each
weight. The running time of the algorithm is shown to be O(nk), where
n is the number of weights and k is the number of different codeword
lengths. When the given sequence of weights is already sorted, it is shown
that the codes can be constructed using O(log2k−1

n) comparisons, which
is sub-linear if the value of k is small.
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1 Introduction

Minimum-redundancy coding plays an important role in data compression appli-
cations [11]. Minimum-redundancy prefix codes give the best possible compres-
sion of a finite text when we use one static code for each symbol of the alphabet.
This encoding is extensively used in various fields of computer science, such as
picture compression, data transmission, etc. Therefore, the methods used for
calculating sets of minimum-redundancy prefix codes that correspond to sets of
input symbol weights are of great interest [1,6,8].

The minimum-redundancy prefix code problem is to determine, for a given
list W = [w1, . . . , wn] of n positive symbol weights, a list L = [l1, . . . , ln] of n cor-
responding integer codeword lengths such that

∑n

i=1 2
−li = 1 (Kraft equality),

and
∑n

i=1 wili is minimized. Once we have the codeword lengths corresponding
to a given list of weights, constructing a corresponding prefix code can be easily
done in linear time using standard techniques.

The problem of finding a minimum-redundancy code for W = [w1, . . . , wn]
is equivalent to finding a binary tree with minimum-weight external path length∑n

i=1 w(xi)l(xi) among all binary trees with leaves x1, . . . , xn, where w(xi) = wi

and l(xi) = li is the level of xi in the corresponding tree. This equivalence is due
to the fact that every prefix code can be represented as a binary tree. Hence,
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if we define a leaf as a weighted node, the minimum-redundancy prefix code
problem can be defined as the problem of constructing an optimal binary tree
for a given list of leaves.

Based on a greedy approach, Huffman algorithm [4] constructs specific op-
timal trees, which are referred to as Huffman trees. Huffman algorithm starts
with a list H containing n leaves. In the general step, the algorithm selects the
two nodes with the smallest weights in the current list of nodes H and removes
them from the list. Next, the removed nodes become children of a new internal
node, which is inserted in H. To this internal node is assigned a weight that is
equal to the sum of the weights of its children. The general step repeats until
there is only one node in H, the root of the Huffman tree. The internal nodes
of a Huffman tree are thereby assigned values throughout the algorithm. The
value of an internal node is the sum of the weights of the leaves of its subtree.
Huffman algorithm requires O(n log n) time and linear space. Van Leeuwen [10]
showed that the time complexity of Huffman algorithm can be reduced to O(n)
if the input list is already sorted.

An output-sensitive algorithm is an algorithm for which the running time re-
lies on the size of its output in addition to its input size. Several output-sensitive
algorithms have been introduced in the literature. For example, Kirkpatrick and
Seidel [5] have shown that the complexity of constructing the convex hull of a set
of n points is Θ(n log h), where h is the number of hull vertices. Alternatively,
a distribution-sensitive algorithm is an algorithm whose running time relies on
how the distribution of the input affects the output. For example, Munro and
Spira [7] have shown that the complexity of sorting a multiset of n elements is
Θ(n log n −

∑
i ni logni + n), where ni is the number of elements with the ith

largest value. See [3,9] for other distribution-sensitive algorithms.
Throughout the paper, we exchange the use of the terms leaves and weights.

When mentioning a node of a tree, we mean that it is either a leaf or an internal
node. The levels of the tree that are further from the root are considered higher;
the root has level 0. We use the symbol k as the number of different codeword
lengths, i.e. k is the number of levels that have leaves in the corresponding tree.

The paper is organized as follows. In the next section, we give a property
of optimal trees corresponding to prefix codes, on which our construction al-
gorithm relies. In Section 3, we give the basic algorithm and prove its correct-
ness. We show in Section 4 how to implement the basic algorithm to ensure the
distribution-sensitive behavior; the bound on the running time we achieve in this
section is exponential with respect to k. In Section 5, we improve our algorithm,
using a technique that is similar in flavor to dynamic programming, to achieve
the O(nk) bound. We conclude the paper in Section 6.

2 The Exclusion property

Consider a binary tree T ∗ that corresponds to a list of n weights [w1, . . . , wn]
and has the following properties:

1. The n leaves of T ∗ correspond to the given n weights.



2. The value of a node equals the sum of the weights of the leaves of its subtree.
3. For every level of T ∗, let τ1, τ2, . . . be the nodes of that level in non-decreasing

order with respect to their values, then τ2p−1 and τ2p are siblings for all p ≥ 1.

We define the exclusion property for T ∗ as follows: T ∗ has the exclusion
property if and only if the values of the nodes at level j are not smaller than the
values of the nodes at level j + 1.

Lemma 1. Given a prefix code whose corresponding tree T ∗ has the aforemen-

tioned properties, the given prefix code is optimal and T ∗ is a Huffman tree if

and only if T ∗ has the exclusion property.

Proof. First, assume that T ∗ does not have the exclusion property. It follows
that there exists two nodes x and y at levels j1 and j2 such that j1 < j2 and
value(x) < value(y). Swapping the subtree of x with the subtree of y results
in another tree with a smaller external path length and a different list of levels,
implying that the given prefix code is not optimal.

Next, assume that T ∗ has the exclusion property. Let [x1, . . . , xn] be the list
of leaves of T ∗, with w(xi) ≤ w(xi+1). We prove by induction on the number of
leaves n that T ∗ is an optimal binary tree that corresponds to an optimal prefix
code. The base case follows trivially when n = 2. As a result of the exclusion
property, the two leaves x1, x2 must be at the highest level of T ∗. Also, Property 3
of T ∗ implies that these two leaves are siblings. Alternatively, there is an optimal
binary tree with leaves [x1, . . . , xn], where the two leaves x1, x2 are siblings; a
fact that is used to prove the correctness of Huffman’s algorithm [4]. Remove
x1, x2 from T ∗, replace their parent with a leaf whose weight equals x1+x2, and
let T ′ be the resulting tree. Since T ′ has the exclusion property, it follows using
induction that T ′ is an optimal tree with respect to its leaves [x1+x2, x3, . . . , xn].
Hence, T ∗ is an optimal tree and corresponds to an optimal prefix code. ⊓⊔

In general, building T ∗ requires Ω(n logn). It is crucial to mention that we
do not have to explicitly construct T ∗. Instead, we only need to find the values
of some of, and not all, the internal nodes at every level.

3 The main construction method

Given a list of weights, we build the tree T ∗ bottom up. Starting with the highest
level, a weight is assigned to a level as long as its value is less than the sum of the
two nodes with the smallest values at that level. The Kraft equality is enforced
by making sure that the number of nodes at every level is even, and that the
number of nodes at the lowest level containing leaves is a power of two.

3.1 Example

For the sake of illustration, consider a list with thirty weights: ten weights have
the value 2, ten have the value 3, five the value 5, and five the value 9. To



construct the optimal codes, we start by finding the smallest two weights in the
list; these will have the values 2, 2. We now identify all the weights in the list
with value less than 4, the sum of these two smallest weights. All these weights
will be momentarily placed at the same level. This means that the highest level
l will contain ten weights of value 2 and ten of value 3. The number of nodes at
this level is even, so we move to the next level l − 1. We identify the smallest
two nodes at level l− 1, amongst the two smallest internal nodes resulting from
combining nodes of level l, and the two smallest weights among those remaining
in the list; these will be the two internal nodes 4, 4 whose sum is 8. All the
remaining weights with value less than 8 are placed at level l− 1. This level now
contains an odd number of nodes: ten internal nodes and five weights of value
5. To make this number even, we move the node with the largest weight to the,
still empty, next lower level l − 2. The node to be moved, in this case, is an
internal node with value 6. Moving an internal node one level up implies moving
the weights in its subtree one level up. In such case, the subtree consisting of
the two weights of value 3 is moved one level up. At the end of this stage, the
highest level l contains ten weights of value 2 and eight weights of value 3; level
l− 1 contains two weights of value 3 and five weights of value 5. For level l− 2,
the smallest two internal nodes have values 6, 8 and the smallest weight in the
list has value 9. This means that all the five remaining weights in the list will
go to level l− 2. Since we are done with all the weights, we only need to enforce
the condition that the number of nodes at level l − 3 is a power of two. Level
l − 2 now contains eight internal nodes and five weights, for a total of thirteen
nodes. All we need to do is to move the three nodes with the largest values,
from level l− 2, one level up. The largest three nodes at level l− 2 are the three
internal nodes of values 12, 12 and 10. So we move eight weights of value 3 and
two weights of value 5 one level up. As a result, the number of nodes at level l−3
will be 8. The final distribution of weights will be: the ten weights of value 2 are
in the highest level l; level l − 1 contains the ten weights of value 3 and three
weights of value 5; and level l− 2 contains the remaining weights, two of value 5
and five of value 9. The corresponding code lengths are 6, 5 and 4 respectively.

3.2 The basic algorithm

The idea of the algorithm should be clear. We construct the optimal code tree
by maintaining the exclusion property for all the levels. Since this property is
always satisfied by the internal nodes, the weights are placed at the levels in such
a way that the exclusion property is satisfied. Adjusting the number of nodes at
each level will not affect this property since we are always moving the largest
nodes one level up to a still empty lower level. A formal description follows.

1. The smallest two weights are found, removed from W , and placed at the
highest level l. Their sum S is computed. The list W is scanned and all
weights less than S are removed and placed in level l. If the number of
leaves at level l is odd, the leaf with the largest weight among these leaves
is moved to level l − 1.



2. In the general iteration, after moving weights from W to level j, determine
the weights from W that will go to level j − 1 as follows. Find the smallest
two internal nodes at level j − 1, and the smallest two leaves from W . Find
the smallest two nodes amongst these four nodes, and let their sum be S.
Scan W for all weights less than S, and move them to level j − 1. If the
number of nodes at level j− 1 is odd, move the subtree of the node with the
largest value among these nodes to level j − 2.

3. When W is exhausted, let m be the number of nodes at the shallowest level
that has leaves. Move the 2⌈log2 m⌉−m subtrees of the nodes with the largest
values, from such level, one level up.

3.3 Proof of correctness

To guarantee its optimality following Lemma 1, we need to show that both the
Kraft equality and the exclusion property hold for the constructed tree.

By construction, the number of nodes at every level of the tree is even. At
Step 3 of the algorithm, if m is a power of 2, no subtrees are moved to the next
level and Kraft equality holds. If m is not a power of two, we move 2⌈log2 m⌉−m
nodes to the next level, leaving 2m − 2⌈log2 m⌉ nodes at this level other than
those of the subtrees that have just been moved one level up. Now, the number
of nodes at the next lower level is m− 2⌈log2 m⌉−1 internal nodes resulting from
the higher level, plus the 2⌈log2 m⌉−m nodes that we have just moved. This sums
up to 2⌈log2 m⌉−1 nodes, that is a power of 2, and Kraft equality holds.

Throughout the algorithm, we maintain the exclusion property by making
sure that the sum of the two nodes with the smallest values is larger than all
the values of the nodes at this level. When we move a subtree one level up, the
root of this subtree is the node with the largest value at its level. Hence, all the
nodes of this subtree at a certain level will have the largest values among the
nodes of this level. Moving these nodes one level up will not destroy the exclusion
property. We conclude that the resulting tree has the exclusion property.

4 Distribution-sensitive construction

Up to this point, we have not shown how to evaluate the internal nodes needed by
our basic algorithm, and how to search within the list W to decide which weights
are at which levels. The basic intuition behind the novelty of our approach is that
it does not require evaluating all the internal nodes of the tree corresponding to
the prefix code, and would thus surpass the Θ(n log n) bound for several cases,
a fact that will be asserted in the analysis. We show next how to implement the
basic algorithm in a distribution-sensitive behavior.

4.1 Example

The basic idea is clarified through an example having 1.5n+ 2 weights. Assume
that the resulting optimal tree will turn out to have n leaves at the highest



level, n/2 at the following level, and two leaves at level 2; the 1.5n leaves, at the
highest two levels, combine to produce two internal nodes at level 2.

In such case, we show how to produce the codeword lengths in linear time.
For our basic algorithm, we need to evaluate the smallest node x of the two
internal nodes at level 2, which amounts to identifying the smallest n/2 nodes
amongst the nodes at the second highest level. In order to be able to achieve this
in linear time, we need to do it without having to evaluate all n/2 internal nodes
resulting from the pair-wise combinations of the highest level n weights. We
show that this can be done through a simple pruning procedure. The nodes at
the second highest level consist of two sets; one set has n/2 leaves whose weights
are known and thus their median M can be found in linear time [2], and another
set containing n/2 internal nodes which are not known but whose median M ′

can still be computed in linear time, by simply finding the two middle weights of
the highest level n leaves and adding them. Assuming without loss of generality
that M > M ′, then the bigger half of the n/2 weights at the second highest
level can be safely discarded as not contributing to x, and the smaller half of
the highest level n weights are guaranteed to contribute to x. The above step
is repeated recursively on a problem half the size. This results in a procedure
satisfying the recurrence T (n) = T (n/2) +O(n), and hence T (n) = O(n).

If the list of weights is already sorted, the number of comparisons required
to find any of the medians M or M ′ is constant. This results in a procedure
satisfying the recurrence Ts(n) = Ts(n/2) +O(1), and hence Ts(n) = O(logn).

4.2 The detailed algorithm

Let l1 > l2 > . . . lk′ be the levels that have already been assigned weights at
some step of our algorithm (other levels only have internal nodes), nj be the

count of the weights assigned to level lj , and µj =
∑j

i=1 ni. At this point, we are
looking forward to find the next level lk′+1 < lk′ that will be assigned weights
by our algorithm. Knowing that the weights that have already been assigned to
higher levels are the only weights that may contribute to the internal nodes of
any level l ≥ lk′+1, we need to evaluate some internal nodes at these levels.

Finding the splitting node. Consider the internal node x at a level l, lk′ >
l ≥ lk′+1, where the count of the weights contributing to the internal nodes of
level l, whose values are smaller (larger) than that of x, is at most µk′/2. The
following recursive procedure is used to evaluate x, which we call the splitting
node of l.

We find the leaf with the median weight M among the list of the nk′ weights
already assigned to level lk′ (partition the nk′ list into two sublists around M),
and recursively evaluate the splitting node M ′ at level lk′ using the list of the
µk′−1 weights of the higher levels (partition the µk′−1 list into two sublists around
M ′). Comparing M to M ′, we either conclude that one of the four sublists -
the two sublists of the nk′ list and the two sublists of the µk′−1 list - will not
contribute to x, or that one of these four sublists contributes to x. If one of the



sublists of the nk′ list is discarded, find a new median M for the other sublist and
compare it withM ′. If one of the sublists of the µk′−1 list is discarded, recursively
find the new splitting node M ′ corresponding to the other sublist and compare
it to M . Once one of the two lists becomes empty, we would have identified the
weights that contribute to x and hence evaluated x. As a byproduct, we also
know which weights contribute to the internal nodes at level l whose values are
smaller (larger) than that of x.

Let T (µk′ , k′) be the time required by the above procedure. The total amount
of work, in all the recursive calls, required to find the medians among the nk′

weights assigned to level k′ is O(nk′ ). The time for the i-th recursive call to
find a splitting node at level k′ is T (µk′−1/2

i−1, k′ − 1) . The following recursive
relations follow

T (µ1, 1) = O(n1),

T (µk′ , k′) ≤
∑

i≥1

T (µk′−1/2
i−1, k′ − 1) +O(nk′ ).

Substitute with T (a, b) = c · 2ba, for a < µk′ , b < k′, and some big enough
constant c. Then, T (µk′ , k′) ≤ c ·2k

′−1
∑

i≥1 µk′−1/2
i−1+O(nk′ ) < c ·2k

′

µk′−1+
c · nk′ . Since µk′ = µk′−1 + nk′ , it follows that

T (µk′ , k′) = O(2k
′

µk′ ).

Consider the case when the list of weightsW is already sorted. Let Ts(µk′ , k′)
be the number of comparisons required by the above procedure. The number of
comparisons, in all the recursive calls, required to find the medians among the
nk′ weights assigned to level k′, is at most log2 (nk′ + 1). The following recursive
relations follow

Ts(µ2, 2) ≤ 2 log2 µ2,

Ts(µk′ , k′) ≤
∑

i≥1

Ts(µk′−1/2
i−1, k′ − 1) + log2 (nk′ + 1).

Since the number of internal nodes at level k′ is at most µk′−1/2, the number
of recursive calls at this level is at most log2 µk′−1. It follows that Ts(µk′ , k′) ≤
log2 µk′−1 ·Ts(µk′−1, k

′ − 1)+ log2 (nk′ + 1) < log2 µk′ ·Ts(µk′ , k′− 1)+ log2 µk′ .

Substitute with Ts(a, b) ≤ logb−1
2 a +

∑b−1
i=1 log

i
2 a, for a < µk′ , b < k′. Then,

Ts(µk′ , k′) < log2 µk′ ·logk
′−2

2 µk′+log2 µk′ ·
∑k′−2

i=1 logi2 µk′+log2 µk′ = logk
′−1

2 µk′+
∑k′−1

i=1 logi2 µk′ . It follows that

Ts(µk′ , k′) = O(logk
′−1 µk′).



Finding the t-th smallest (largest) node. Consider the node x at level lk′ ,
which has the t-th smallest (largest) value among the nodes at level lk′ . The
following recursive procedure is used to evaluate x.

As for the case of finding the splitting node, we find the leaf with the median
weight M among the list of the nk′ weights already assigned to level lk′ , and
evaluate the splitting node M ′ at level lk′ (applying the above recursive proce-
dure) using the list of the µk′−1 leaves of the higher levels. As with the above
procedure, comparing M to M ′, we conclude that either one of the four sublists
- the two sublists of nk′ leaves and the two sublists of µk′−1 leaves - will not
contribute to x, or that one of these four sublists contributes to x. Applying the
aforementioned pruning procedure, we identify the weights that contribute to x
and hence evaluate x. As a byproduct, we also know which weights contribute
to the nodes at level lk′ whose values are smaller (larger) than that of x.

Let T ′(µk′ , k′) be the time required by the above procedure. Then,

T ′(µk′ , k′) ≤
∑

i≥1

T (µk′−1/2
i−1, k′ − 1) +O(nk′ ) = O(2k

′

µk′ ).

Let T ′
s(µk′ , k′) be the number of comparisons required by the above proce-

dure, when the list of weights W is already sorted. Then,

T ′
s(µk′ , k′) ≤

∑

i≥1

Ts(µk′−1/2
i−1, k′ − 1) +O(log nk′) = O(logk

′−1 µk′).

Finding lk′+1, the next level that will be assigned weights. Consider
level lk′ − 1, which is the next level lower than level lk′ . We start by finding
the minimum weight w among the weights remaining in W at this point of the
algorithm, and use this weight to search within the internal nodes at level lk′ −1
in a manner similar to binary search. The basic idea is to find the maximum
number of the internal nodes at level lk′ − 1 with the smallest values, such that
the sum of their values is less than w. We find the splitting node x at level lk′ −1,
and evaluate the sum of the weights contributing to the internal nodes, at that
level, whose values are smaller than that of x. Comparing this sum with w,
we decide which sublists of the µk′ leaves to proceed to find its splitting node.
At the end of this searching procedure, we would have identified the weights
contributing to the r smallest internal nodes at level lk′ − 1, such that the sum
of their values is less than w and r is maximum. We conclude by setting lk′+1

to be equal to lk′ − ⌈log2 (r + 1)⌉.
To prove the correctness of this procedure, consider any level l, such that

r > 1 and lk′ − ⌈log2 (r + 1)⌉ < l < lk′ . The values of the two smallest internal
nodes at level l are contributed to by at most 2lk′−l ≤ 2⌈log2 (r+1)⌉−1 ≤ t internal
nodes from level lk′−1. Hence, the sum of these two values is less than w. For the
exclusion property to hold, no weights are assigned to any of these levels. On the
contrary, the values of the two smallest internal nodes at level lk′ −⌈log2 (r + 1)⌉
are contributed to by more than r internal nodes from level lk′ − 1, and hence
the sum of these two values is more than w. For the exclusion property to hold,
at least the weight w is assigned to this level.



The time required by this procedure is the O(n−µk′) time to find the weight
w among the weights remaining in W , plus the time for the calls to find the
splitting nodes. Let T ′′(µk′ , k′) be the time required by this procedure. Then,

T ′′(µk′ , k′) ≤
∑

i≥1

T (µk′/2i−1, k′) +O(n− µk′) = O(2k
′

µk′ + n).

Let T ′′
s (µk′ , k′) be the number of comparisons required by the above proce-

dure, when the list of weights W is already sorted. Then,

T ′′
s (µk′ , k′) ≤

∑

i≥1

Ts(µk′/2i−1, k′) +O(1) = O(logk
′

µk′).

Maintaining Kraft equality. After deciding the value of lk′+1, we need to
maintain Kraft equality in order to produce a binary tree corresponding to the
optimal prefix code. This is accomplished by moving the subtrees of the t nodes
with the largest values from level lk′ one level up. Let m be the number of
nodes currently at level lk′ , then the number of the nodes to be moved up t is
2lk′−l

k′+1⌈m/2lk′−l
k′+1⌉ − m. Note that when lk′+1 = lk′ − 1 (as in the case of

our basic algorithm), then t equals one if m is odd and zero otherwise.
To establish the correctness of this procedure, we need to show that both the

Kraft equality and the exclusion property hold. For a realizable construction,
the number of nodes at level lk′ has to be even, and if lk′+1 6= lk′ − 1, the
number of nodes at level lk′ −1 has to divide 2lk′−l

k′+1−1. If m divides 2lk′−l
k′+1 ,

no subtrees are moved to level lk′ − 1 and Kraft equality holds. If m does not
divide 2lk′−l

k′+1 , then 2lk′−l
k′+1⌈m/2lk′−l

k′+1⌉ − m nodes are moved to level
lk′ − 1, leaving 2m− 2lk′−l

k′+1⌈m/2lk′−l
k′+1⌉ nodes at level lk′ other than those

of the subtrees that have just been moved one level up. Now, the number of
nodes at level lk′ − 1 is m − 2lk′−l

k′+1−1⌈m/2lk′−l
k′+1⌉ internal nodes resulting

from the nodes of level lk′ , plus the 2lk′−l
k′+1⌈m/2lk′−l

k′+1⌉ −m nodes that we
have just moved. This sums up to 2lk′−l

k′+1−1⌈m/2lk′−l
k′+1⌉ nodes, which divides

2lk′−l
k′+1−1, and Kraft equality holds. The exclusion property holds following the

same argument mentioned in the proof of the correctness of the basic algorithm.
The time required by this procedure is basically the time needed to find the

weights contributing to the t nodes with the largest values at level lk′ , which is

O(2k
′

µk′). If W is sorted, the required number of comparisons is O(logk
′−1 µk′ ).

Summary of the algorithm.

1. The smallest two weights are found, moved from W to the highest level l1,
and their sum S is computed. The rest of W is searched for weights less than
S, which are moved to level l1.

2. In the general iteration of the algorithm, after assigning weights to k′ levels,
perform the following steps:

(a) Find lk′+1, the next level that will be assigned weights.



(b) Maintain the Kraft equality at level lk′ by moving the t subtrees with
the largest values from this level one level up.

(c) Find the values of the smallest two internal nodes at level lk′+1, and the
smallest two weights from those remaining in W . Find the two nodes
with the smallest values among these four, and let their sum be S.

(d) Search the rest of W , and move the weights less than S to level lk′+1.

3. When W is exhausted, maintain Kraft equality at the last level that has
been assigned weights.

4.3 Complexity analysis

Using the bounds deduced for the described steps of the algorithm, we conclude
that the time required by the general iteration is O(2k

′

µk′ + n). If W is sorted,

the required number of comparisons is O(logk
′

µk′).

To complete the analysis, we need to show the effect of maintaining the Kraft
equality on the complexity of the algorithm. Consider the scenario when, as a
result of moving subtrees one level up, all the weights at a level move up to
the next level that already had other weights. As a result, the number of levels
that contain leaves decreases. It is possible that within a single iteration the
number of such levels decreases by one half. If this happens for several iterations,
the amount of work done by the algorithm would have been significantly large
compared to the actual number of distinct codeword lengths k. Fortunately, this
scenario will not happen quite often. In the next lemma, we bound the number of
iterations performed by the algorithm by 2k. We also show that, at any iteration,
the number of levels that contain leaves is at most twice the number of distinct
optimal codeword lengths for the weights that have been assigned so far.

Lemma 2. Consider the set of weights, all having the j-th largest optimal code-

word length. During the execution of the algorithm, such set of weights will be

assigned to at most two consecutive levels, among those levels that contain leaves.

Hence, these two levels will be the at most 2j − 1 and 2j highest such levels.

Proof. Consider a set of weights that will turn out to have the same codeword
length. During the execution of the algorithm, assume that some of these weights
are assigned to three levels. Let li > li+1 > li+2 be such levels. It follows that
li − 1 > li+2. Since we are maintaining the exclusion property throughout the
algorithm, there will exist some internal nodes at level li − 1 whose values are
strictly smaller than the values of the weights at level li+2 (some may have the
same value as the smallest weight at level li+2). The only way for all these weights
to catch each other at the same level of the tree would be as a result of moving
subtrees up (starting from level li+2 upwards) to maintain the Kraft equality.
Suppose that, at some point of the algorithm, the weights that are currently at
level li are moved up to catch the weights of level li+2. It follows that the internal
nodes that are currently at level li − 1 will accordingly move to the next lower
level of the moved weights. As a result, the exclusion property will not hold; a



fact that contradicts the behavior of our algorithm. It follows that such set of
weights will never catch each other at the same level of the tree; a contradiction.

We prove the second part of the lemma by induction. The base case follows
easily for j = 1. Assume that the argument is true for j − 1. By induction, the
levels of the weights that have the (j − 1)-th largest optimal codeword length
will be the at most 2j − 3 and 2j − 2 highest such levels. From the exclusion
property, it follows that the weights that have the j-th largest optimal codeword
length must be at the next lower levels. Using the first part of the lemma, the
number of such levels is at most two. It follows that these weights are assigned
to the at most 2j − 1 and 2j highest levels. ⊓⊔

Using Lemma 2, the time required by our algorithm to assign the set of
weights whose optimal codeword length is the j-th largest, among all distinct
lengths, is O(22jn) = O(4jn). Summing for all such lengths, the total time

required by our algorithm is
∑k

j=1 O(4jn) = O(4kn). The next theorem follows.

Theorem 1. The above algorithm runs in O(4kn) time to construct minimum-

redundancy prefix codes.

Corollary 1. Deciding if the maximum difference in the optimal codeword lengths

is no more than a specified constant can be done in linear time.

Consider the case when the list of weights W is already sorted. The only step
left to mention, for achieving the claimed bounds, is how to find the weights of
W smaller than the sum of the values of the smallest two nodes at level lj . Once
we get this sum, we apply an exponential search that is followed by a binary
search on the weights of W for an O(log nj) comparisons. Using Lemma 2, the
number of comparisons performed by our algorithm to assign the weights whose
codeword length is the j-th largest, among all distinct lengths, is O(log2j−1 n).
Summing for all such lengths, the number of comparisons performed by our
algorithm is

∑k

j=1 O(log2j−1 n) = O(log2k−1 n). The next theorem follows.

Theorem 2. If the list of weights is sorted, constructing minimum-redundancy

prefix codes can be done using O(log2k−1 n) comparisons.

Corollary 2. For k < c · logn/ log logn, and any constant c < 0.5, the above

algorithm requires o(n) comparisons.

5 The improved algorithm

The drawback of the algorithm we described in the previous section is that
it uses many recursive median-finding calls. The basic idea we use here is to
incrementally process the weights throughout the algorithm by partitioning them
into unsorted blocks, such that the weights of one block are smaller or equal to the
smallest weight of the succeeding block. The time required during the recursive
calls becomes shorter when handling these shorter blocks. The details follow.



The invariant we maintain is that during the execution of the general itera-
tion of the algorithm, after assigning weights to k′ levels, the weights that have
already been assigned to a level lj ≥ lk′ are partitioned into blocks each of size at

most nj/2
k′−j weights, such that the weights of one block are smaller or equal to

the smallest weight of the succeeding block. To accomplish this invariant, once
we assign weights to a level, the median of the weights of each block among
those already assigned to all the higher levels is found, and each of these blocks
is partitioned into two blocks around this median weight. Using Lemma 2, the
number of iterations performed by the algorithm is at most 2k. The amount of
work required for this partitioning is O(n) for each of these iterations, for a total
of O(nk) time for this partitioning phase.

The basic step for all our procedures is to find the median weight among the
weights already assigned to a level lj . This step can now be done faster. To find
such median weight, we can identify the block that has such median in constant
time, then we find the required weight in O(nj/2

k′−j) time, which is the size of
the block at this level. The recursive relations for all our procedures performed
at each of the k general iterations of the algorithm can be written as

Gk′

(µ1, 1) = O(n1/2
k′−1),

Gk′

(µk′ , k′) ≤
∑

i≥1

Gk′

(µk′−1/2
i−1, k′ − 1) +O(nk′ ).

Substitute with Gk′

(a, b) = c · a/2k
′−b, for a < µk′ , b < k′, and some big

enough constant c. Then, Gk′

(µk′ , k′) ≤ c/2 ·
∑

i≥1 µk′−1/2
i−1 + O(nk′ ) < c ·

µk′−1 + c · nk′ . Since µk′ = µk′−1 + nk′ , it follows that

Gk′

(µk′ , k′) = O(µk′ ) = O(n).

Since the number of iterations performed by the algorithm is at most 2k, by
Lemma 2. Summing up for these iterations, the running time for performing the
recursive calls is O(nk) as well. The next main theorem follows.

Theorem 3. Constructing minimum-redundancy prefix codes is done in O(nk).

6 Conclusion

We gave a distribution-sensitive algorithm for constructing minimum-redundancy
prefix codes, whose running time is a function of both n and k. For small val-
ues of k, this algorithm asymptotically improves over other known algorithms
that require O(n logn); it is quite interesting to know that the construction of
optimal codes can be done in linear time when k turns out to be a constant.
For small values of k, if the sequence of weights is already sorted, the number
of comparisons performed by our algorithm is asymptotically better than other
known algorithms that require O(n) comparisons; it is also interesting to know



that the number of comparisons required for the construction of optimal codes
is poly-logarithmic when k turns out to be a constant.

Two open issues remain; first is the possibility of improving the algorithm
to achieve an O(n log k) bound, and second is to make the algorithm faster in
practice by avoiding so many recursive calls to a median-finding algorithm.
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