
TMRAP – Topic Maps Remote Access Protocol

Lars Marius Garshol

Ontopia AS, Oslo, Norway,
larsga@ontopia.net, http://www.ontopia.net

Abstract. This paper describes TMRAP, an abstract web service in-
terface for remote access to topic maps. It can be used to access a topic
map repository to query or update a topic map, or to listen for updates
to parts of a topic map. An HTTP binding for the interface is presented
in this paper; a SOAP binding will be produced in the future.

1 Introduction

The current stack of Topic Maps standards (data model, interchange syntax,
constraint language, and query language) is well suited to building interoperable
Topic Maps applications, given that they meet one restriction. That is, applica-
tions must be restricted to a single server, because no standardized means for
applications to connect to each other over the network currently exists. As has
been argued [Moore03], this is unacceptable.

This paper presents TMRAP, a proposed web service interface that aims to
make it possible for Topic Maps applications to interoperate over the network,
and for systems not based on Topic Maps to connect to Topic Maps servers to add
or retrieve data. The version of TMRAP presented in this paper is an extension
of the original TMRAP 0.2[Moore04], but is not backwards compatible.

It should be noted that TMRAP is not a standard, but a private proposal,
implemented in commercial software. The interface may be freely implemented
in other systems.

1.1 Use cases

Designing a web service interface is not like designing an API. Clients using
a web service should be able to perform a single task as a single operation,
since the overhead of invoking operations is substantial. This is not the case in
an API, which has a much higher granularity, since with an API the cost of
invoking individual operations is negligible by comparison. This implies that a
web service must to a much greater degree make assumptions about the uses to
which it will be put, which again implies that a clear picture of the use cases a
web service will satisfy is essential to its design.

The use cases which TMRAP was designed to meet are presented in this
section. Due to space limitations, the web service is then presented with no
explicit arguments as to why it must take the form it does to satisfy these use
cases.

2

Nearly all use of TMRAP involves interchanging fragments of Topic Maps
data, which may or may not be processed using Topic Maps-aware tools. If the
producer/consumer is not using a Topic Maps-aware tool, using a developer-
friendly syntax such as TM/XML may be more suitable [Garshol05]. TMRAP
allows the client to choose what syntax to receive Topic Maps fragments in.

Connecting portals A simple, but very powerful example, described in [Pepper04],
is that of connecting two portals, A and B, both of which have topic pages about
the same topic. When the user navigates to the page for the topic on A, A can
send B a request, asking if it knows about this topic. On receipt of a positive
answer A can insert a link to the topic page for the same topic in B. TMRAP
supports this scenario, and even allows the two portals to share Topic Maps
data.

Applications working with fragments A more complex example would be
an application that works with only a limited subset (a fragment) of the complete
topic map held by the server. An example of this scenario would be when a Topic
Maps server is integrated into a portal not based on Topic Maps, running on
a different server, which retrieves Topic Maps fragments from the server for
presentation when needed. The portal may also submit searches to the Topic
Maps server, and present the responses to the user.

Integrating with other applications A very common use of TMRAP would
be to use it to integrate a Topic Maps application with one that is not based on
Topic Maps, for example a traditional Content Management System (CMS). The
CMS maintains metadata about information resources in the CMS. The topic
map contains the key metadata from the CMS, together with much additional
information (such as what the resources are about (their subjects), and informa-
tion about the subjects). The CMS would then need to create, update, and delete
topics representing the resources as information about these is updated/changed
in the CMS [Garshol02b].

This topic map could then be edited in a separate topic map editor to further
classify and describe the documents in the CMS. The CMS could also retrieve
fragments for these topics and display them (including associations to topics
that only exist in the topic map) in a portal rendered from the CMS data.

Creating “knowledge hubs” One very interesting use case is creating “knowl-
edge hubs” where information from many sources is brought together and in-
tegrated. This is effectively a form of Enterprise Information Integration (EII)
[Halevy05].

In this scenario, information providers invoke operations on a Topic Maps
server to add information coming from outside sources, and the server then
integrates this information into the existing topic map. Consumers can then
query the integrated topic map and retrieve fragments of information extracted
from the topic map.

3

2 The abstract interface

This section defines the abstract interface conceptually, without reference to any
specific technology other than Topic Maps. This enables the same design to be
used with separate bindings to different technologies, such as HTTP and SOAP.
The interface can return fragments representing topics as well as query results
from the tolog query language [Garshol05b]; these can be in any Topic Maps
syntax, chosen by the client. Authentication and access control are left to the
specific bindings.

2.1 Concepts

The interface distinguishes between two actors: a server, containing a topic map
repository, and a client. The topic map repository on the server contains any
number of individual topic maps, each identified by a unique handle, which
is a syntactically opaque string. The server provides access to the repository
through a number of operations, each described in a separate section below. No
assumptions are made about the client.

Operations are of two kinds: server operations, and callbacks to the client
from the server. Each set of operations has a separate section below.

Error handling If a request is in error (incorrect parameters, tolog or fragment
syntax error, no topics found, etc) this must be reported to the client. Erroneous
requests must not cause any state changes on the server, whether to the topic
map or to the list of registered client listeners. The details of error reporting are
left to the protocol bindings.

2.2 Server operations

Server operations are invoked by the client, and the interface does not dictate
what triggers an operation; this is left to the discretion of the client.

The get-topic operation This operation is used to get a fragment represent-
ing a single topic. The parameters to the operation are shown in table 1 on the
following page.

If the topicmap parameter is provided the topic maps identified by it are
queried, otherwise the server decides which topic maps are queried. The rationale
for this is that if the client knows that it wants to query a specific topic map it
can do so. The most common use case, however, is that the client simply knows
that it wants information on a specific topic. In this case it can ask a known
TMRAP server without having to worry about the internal structure of that
server.

There are many possible means by which the server might determine which
topic maps to operate on, such as operating on all, on a default topic map, on
all currently loaded topic maps, on all topic maps to which the client has access

4

Parameter Required? Repeatable? Type? Description

item no yes URI An item identifier of the sought topic.
subject no yes URI A subject locator of the sought topic.
identifier no yes URI A subject identifier of the sought topic.
topicmap no yes String A topic map handle.
syntax no no String A string identifying the syntax used in the fragment.
view no no String A string identifying the view used to define the fragment.

Table 1. The get-topic operation

rights, etc. As there are many ways to decide this, and as the decision strictly
speaking does not affect interoperability, the mechanisms for determining this
are left undefined.

A set of topics is returned containing, for each queried topic map, all topics
matching the parameters. The matching topics are all topics which have one of
the URIs in item as an item identifier, one of the URIs in subject as a subject
locator, or one of the URIs in identifier as a subject identifier.

The set of topics found can have any cardinality. However, all of the topics
found are merged into a single topic (in the returned fragment; the state on the
server should not change), as the semantics of the operation is to return a single
topic. It follows from this that the identifiers passed in the parameters all identify
a single subject, and so even if multiple topics may be found (in the same or
in different topic maps) they must necessarily all represent the same subject. A
fragment representing the merged topic is returned in the syntax specified in the
syntax parameter. The default will be to use XTM, but other alternatives are
possible, as described in 2.4 on page 12.

A challenge in extracting fragments from topic maps is knowing where to
stop. Every topic is defined by means of other topics; its associated topics, topic
type, association types, occurrence types, name scopes, and so on are all topics.
For each of these topics one might conceivably include just the identity, the
identity and the names, or a full fragment, and it is not obvious which of these
options best serve the needs of users.

Analysis of the use cases suggests that there are situations where each of
these possibilities may be what users want, and in some cases even finer-grained
control may be needed. The view parameter can be used to specify what should
be included in the fragment returned. The requested topic will always be included
in full; the view applies to the topics referenced by it. The possible values of this
parameter are:

– stub: only a single identifier will be included, as defined in [Garshol02]. (This
is the default view.)

– names: the identity and the names will be included.

– complete: complete fragments are included, but topics referenced from these
fragments will use the stub view.

5

It is also possible to define custom views with TM-Views [Garshol05] and
reference these using the view parameter. It is assumed that the views will have
been registered with the TMRAP server before the request is received. There
is no support for using multiple views when querying multiple topic maps since
the client in any case receives a single fragment. That is, to the client there is
only one view.

The get-tolog operation This operation is used to get an XML document
representing the results of a tolog query, either as a fragment or as an explicit
representation of the result. The parameters to the operation are shown in ta-
ble 2.

Parameter Required? Repeatable? Type? Description

tolog yes no String A tolog query.
topicmap yes no String A topic map handle.
syntax no no String A syntax identifier.
view no no String View identifier.

Table 2. The get-tolog operation

This operation has two modes of operation: if the requested syntax is tolog
there are no restrictions on the query, and an XML structure giving the actual
query results is returned. Otherwise, the query must produce only a single col-
umn containing only topics, and all topics in the result are output in the same
way as for the get-topic operation, except that they are not merged (as there
is no implication that all topics found by a single tolog query must represent the
same subject).

A request against the Opera topic map requesting tolog syntax using the
stub view and the following query

select $COMPOSER, count($OPERA) from

composed-by($OPERA : opera, $COMPOSER : composer)

order by $OPERA desc limit 2?

would produce the following result:

<result xmlns:x="http://www.topicmaps.org/xtm/1.0/"

xmlns:l="http://www.w3.org/1999/xlink">

<head>

<column>COMPOSER</column>

<column>OPERA</column>

</head>

<body>

<row>

6

<value>

<x:subjectIndicatorRef

l:href="http://en.wikipedia.org/wiki/Verdi"/>

</value>

<value>28</value>

</row>

<row>

<value>

<x:subjectIndicatorRef

l:href="http://en.wikipedia.org/wiki/Mascagni"/>

</value>

<value>16</value>

</row>

</body>

</result>

When the syntax is tolog, the fragments within the value elements are in-
cluded using XTM.

The RELAX-NG schema [ISO19757-2] for tolog query results is:

start =

element result {

element head {

element column { text }*

},

element body {

element row {

element value { any }*

}*

}

}

using wildcard here as there are many alternatives for the

fragments, and specifying them all is complex

any = (text | element * { anyatt*, any })*

anyatt = attribute * { text }

The add-fragment operation This operation is used to import a topic map
fragment into the repository. The parameters to the operation are shown in
table 3 on the next page.

The fragment is imported into the identified topic map. Usually this will be
used to create a single topic, but the operation is deliberately not restricted
to only this. Implementations will most likely have limits on the sizes of the
fragments they accept.

7

Parameter Required? Repeatable? Type? Description

syntax yes no String A string identifying the syntax used in the fragment.
fragment yes no String A fragment representing part of a topic map.
topicmap yes no String A topic map handle.

Table 3. The add-fragment operation

Formally, the operation deserializes the received fragment into a TMDM
instance [ISO13250-2], then merges that instance into the TMDM instance iden-
tified in the topicmap parameter, using normal TMDM merging rules.

The delete-topic operation This operation is used to delete a topic from
a topic map in the repository. The parameters to the operation are shown in
table 4.

Parameter Required? Repeatable? Type? Description

item no yes URI An item identifier of the sought topic.
subject no yes URI A subject locator of the sought topic.
identifier no yes URI A subject identifier of the sought topic.
topicmap no yes String A topic map handle.

Table 4. The delete-topic operation

All topics in the selected topic map(s) which match the parameters are
deleted. Deleting a topic means removing all its base names, variants, and oc-
currences, as well as all associations in which it plays a role. The topic will also
be removed wherever it is used as a scope or type, but the scoped and typed
topic map constructs are left undeleted.

The rationale for deleting all associations is that after removing one role
from the association unary associations are invalid, while binary associations are
meaningless. Associations of higher arities might still be meaningful, but in the
interest of simplicity they are treated the same way. Several years of experience
with this operation (in an API, admittedly) suggests that in practice this works
very well.

The get-topic-page operation This operation is used to ask the server
whether it has any pages for a specific topic. The pages in question might be
pages in some Topic Maps application that can display the topic to a user (known
as “view pages”), or pages where the user can edit the topic (known as “edit
pages”), or other kinds of pages.

The get-topic-page operation is really meant to satisfy the portal inte-
gration use case mentioned above, and in particular the scenario described in

8

[Pepper04] as “VISIT”, where one portal dynamically links to the topic page for
the same topic in another portal.

The parameters to the operation are shown in table 5 on the next page.

Parameter Required? Repeatable? Type? Description

item no yes URI An item identifier of the sought topic.
subject no yes URI A subject locator of the sought topic.
identifier no yes URI A subject identifier of the sought topic.
topicmap yes no String A topic map handle.
syntax yes no String A string identifying the syntax to be used in the response.

Table 5. The get-topic-page operation

The response from the request is a topic map describing the structure on the
server. The response must contain at least what is described here, but the deci-
sion to return a topic map rather than some custom XML format means that the
operation is inherently extensible. In the following, the prefix rap is to be under-
stood as the subject indentifier namespace http://psi.ontopia.net/tmrap/.

The response must include the following:

– A topic of type rap:server, representing the server.
– One topic of type rap:topicmap for each topic map in which one or more

matching topics were found. Each topic map must have exactly one occur-
rence of type rap:handle containing the topic map handle. Each topic map
must have a rap:contained-in association to the server it’s hosted on.

– A single topic containing the results of merging all matching topics. Only
identifiers and names need be included.

– For each view and edit page for this topic on the server a topic of type
rap:view-page or rap:edit-page, with the URI of the page as the sub-
ject locator of the topic. Each page must also have a rap:contained-in

association to the topic map it is rendered from.

Note that if no topics are matched the response will contain only the server
topic.

An example might help clarify this. The result of asking Ontopia’s online
demo server (once it’s set up) for the topic “Japan” would give the following
result (when querying the i18n.ltm topic map) in TM/XML.

<topic-pages xmlns="http://psi.ontopia.net/tmrap/"

xmlns:tm="http://psi.ontopia.net/xml/tm-xml/"

xmlns:iso="http://psi.topicmaps.com/iso13250/"

xmlns:oasis="http://psi.oasis-open.org/iso/3166/#">

<server id="online-demo">

<iso:topic-name>

9

<tm:value>Ontopia Omnigator online demo</tm:value>

</iso:topic-name>

</server>

<topicmap id="i18n.ltm">

<iso:topic-name>

<tm:value>Scripts and languages</tm:value>

</iso:topic-name>

<handle datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>i18n.ltm</handle>

<contained-in role="containee" otherrole="container"

topicref="online-demo"/>

</topicmap>

<oasis:country>

<tm:identifier>http://psi.oasis-open.org/iso/3166/#392</tm:identifier>

<iso:topic-name>

<tm:value>Japan</tm:value>

</iso:topic-name>

</oasis:country>

<view-page id="p1">

<tm:locator>http://www.ontopia...?tm=i18n.ltm&id=japan</tm:locator>

<contained-in role="containee" otherrole="container"

topicref="i18n.ltm"/>

</view-page>

</topic-pages>

The add-type-listener operation This operation is used to register a client
to receive callbacks for all updates to topics of a specific type. The parameters
to the operation are shown in table 6.

Parameter Required? Repeatable? Type? Description

item no yes URI An item identifier of the sought topic.
subject no yes URI A subject locator of the sought topic.
identifier no yes URI A subject identifier of the sought topic.
topicmap yes no String A topic map handle.
client yes no Handle The client handle is defined by the binding.
syntax no no String A string identifying the syntax to be used in notifications.

Table 6. The add-type-listener operation

All topics matching the parameters are found in the identified topic map.
It is an error if this is not exactly one topic. This means that one will get an

10

error message if the topic type is not found on the server, or if what the client
considered to be one topic is more than one topic to the server.

Every time a topic that is an instance of this type is created, modified, or
deleted the corresponding client operation is triggered on all clients. Registra-
tions are persistent until explicitly removed.

The syntax parameter is used by the client to indicate what syntax it would
like to receive notifications in. All topic-created and topic-updated notifica-
tions must use this syntax. The default is XTM.

The remove-type-listener operation This operation is used to unregister a
client that has already registered with the add-type-listener request so that
update callbacks are no longer received. The parameters to the operation are
shown in table 7.

Parameter Required? Repeatable? Type? Description

item no yes URI An item identifier of the sought topic.
subject no yes URI A subject locator of the sought topic.
identifier no yes URI A subject identifier of the sought topic.
topicmap yes no String A topic map handle.
client yes no Handle The client handle is defined by the binding.

Table 7. The remove-type-listener operation

All topics matching the parameters are found in the identified topic map. It
is an error if this is not exactly one topic. This client is then removed as one of
the clients registered to receive callbacks for this topic type. It is an error if this
client is not registered previously.

2.3 Client operations

The operations in this section are operations on the client invoked by the server in
response to the client registering itself using the add-type-listener operation.

The topic-created operation This operation is invoked by the server every
time a topic of a type which the client has registered itself as a listener for is
created. The parameters are shown in table 8.

The fragment provided contains the created topic (in the syntax requested
by the client). The interface does not require any specific behaviour from the
client in response to the request.

The topic-updated operation This operation is invoked by the server every
time a topic is updated of a type which the client has registered itself as a listener
for. The parameters are shown in table 9.

11

Parameter Required? Repeatable? Type? Description

server yes no URI The URI of the server.
topicmap yes no String A topic map handle.
fragment yes no String A fragment representing the created topic.

Table 8. The topic-created operation

Parameter Required? Repeatable? Type? Description

server yes no URI The URI of the server.
topicmap yes no String A topic map handle.
fragment yes no String A fragment representing the updated topic.

Table 9. The topic-updated operation

The fragment provided contains the updated topic as it was after the update,
in the syntax requested by the client. The interface does not require any specific
behaviour from the client in response to the request.

Note that the change to the topic may be to the identifiers, in which case the
client may not be able to tell which topic has changed. For this reason the server
must include any identifiers removed or added in the update in the notification,
but the removed identifiers must be omitted in following update notifications.

The topic-deleted operation This operation is invoked by the server every
time a topic is deleted of a type which the client has registered itself as a listener
for. The parameters are shown in table 10.

Parameter Required? Repeatable? Type? Description

server yes no URI The URI of the server.
topicmap yes no String A topic map handle.
item no yes URI An item identifier of the deleted topic.
subject no yes URI A subject locator of the deleted topic.
identifier no yes URI A subject identifier of the deleted topic.

Table 10. The topic-deleted operation

The identifiers given identify the deleted topic to the client. No specific be-
haviour is required from the client.

2.4 Syntax identifiers

The syntaxes are identified by their MIME types [RFC2045]. The valid alterna-
tives are shown in table 11. If no syntax is specified, the default is to produce
an XTM fragment as defined in [Garshol02].

12

Syntax MIME type

XTM application/x-xtm
LTM text/x-ltm
AsTMa= text/x-astma
TM/XML text/x-tmxml
tolog text/x-tolog

Table 11. Topic map syntax MIME types

The TM/XML syntax is described in [Garshol05].

3 The HTTP binding

An HTTP binding of the TMRAP abstract interface could take several ap-
proaches. It could use SOAP [SOAP]; it could take a RESTful approach [Fielding00];
or it could aim for a more straightforward, traditional HTTP approach. As men-
tioned in the abstract, this paper opts for the last of these, but there are plans
to add SOAP support in the future.

3.1 To REST or not to REST

REST is best thought of as a style guide for creating web services, famously
defined by [Fielding00]. The argument for not using it in TMRAP is that it
recommends using the HTTP methods (GET, PUT, etc) to operate directly on
resources exposed on the web. It could be described as object-oriented instead of
the traditional procedural approach, where URIs represent resources (or objects)
instead of procedures.

It should be quite clear from the operations provided that TMRAP is very
much in the traditional camp, and not at all REST-like. The rationale is that,
perhaps somewhat perversely, Topic Maps provide no easily addressable isolated
resources to expose and operate on. Further, REST makes heavy demands on the
underlying HTTP infrastructure, which may not always support everything that
is needed very well (URL mapping of complex URLs, obscure HTTP operations,
etc etc).

In short, the argument generally put forward for REST is elegance [Barta05],
whereas the argument against it in this paper is lack of elegance for this particular
purpose, as well as a desire to avoid infrastructure problems.

3.2 The binding itself

The general approach taken by the binding is simple: server and client endpoints
are defined using HTTP URIs. Each operation has a separate URI obtained
by concatenating the endpoint URI with the operation name. Each parameter
becomes a URI query parameter in the traditional ?foo=1&bar=2&baz=3 syntax.

13

Authentication and access control are not considered part of the HTTP bind-
ing, but are provided by the application server itself, using the normal HTTP
mechanisms.

It’s tempting to map the syntax parameter to the Accept header in HTTP,
but for this to provide any benefit it requires the user to learn the syntax for
specifying alternatives, and it requires implementations to do the same. Few
HTTP client libraries provide any support for this, and so it seems better to
map syntax in the same way as the other parameters.

All operations which make modifications (this includes the client operations)
must be accessed using the POST method, while all operations which only re-
trieve information must use GET. (This means that the fragment parameter
will automatically travel in the request body, as with POST all parameters are
transmitted in the body.)

If errors occur, as defined above, the server must return an HTTP response
with response code 400 (“Bad Request”). Including an informative error message
in the response is encouraged.

4 Related work

Substantial work has already been done in this area, and so the charge might be
made against TMRAP that it needlessly proliferates the number of alternative
interfaces. To answer this charge we review related work.

The most complete and well-documented alternative Topic Maps interface
proposal to date is clearly TMIP[Barta05]. This protocol takes a REST-based
approach, and is entirely dependent on TMQL (which is not yet stable). It sup-
ports retrieval of fragments in various syntaxes, and updates to selected topics.
There is no explicit support for deletion and creation, however, although there
are hints as to how these might be achieved. There is no support for events.

An alternative is the Topic Maps Service[NetworkedPlanet05] web service
based on SOAP and WSDL. This service provides predefined methods for re-
turning topic fragments by certain criteria (topics by type, topic by id, topic by
subject identifier, hierarhices, etc), and also for updates and deletes. There is
also support for retrieving fragments by means of TMRQL queries. There is no
support for events, and TMRQL is unsuitable for our purposes as it requires the
topic maps to be stored in specific SQL databases [Barta05b].

A third alternative is the SPARQL Protocol for RDF[SPARQL], which is
based on RDF and the RDF query language SPARQL. The protocol is abstract,
and has a standard WSDL binding. The present version only provides support
for running SPARQL queries and returning the results.

Other related work is reviewed by [Barta05], of which the most relevant are
Shark[Schwotzer04] and [Thompson04]. Shark is designed for mobile handheld
units, and so has rather different design considerations. [Thompson04] is inter-
esting, but based on the as-yet unstable TMQL, REST-based, and not described
in any detail.

14

As should be evident, no interface currently exists that, in our opinion, meets
all our use cases. In particular, no other interface provides event callbacks. Of
the Topic Maps-based proposals, two use TMQL (which is unstable), the third
uses TMRQL (which is unsuitable), and the fourth (Shark) is intended for a
different environment.

Some protocols [Barta05] provide operations not found in TMRAP that allow
clients to get information about the server. Such information might include which
topic maps are available, which formats are supported by the server, etc. Such
operations have been left out of TMRAP as there is nothing in the use cases
to suggest that it would be useful. Introspection operations only seem useful in
cases where clients are looking servers up in some form of registry and connecting
to them dynamically. However, the use cases all involve interaction between a
client and a server already known to the person (or tool) configuring the client,
and so support for this does not seem necessary.

5 Conclusion

In this article is presented the design of a Topic Maps web service interface that
is based on stable and documented technologies, and which, we believe, satisfies
a number of important use cases, and thus opens the possibility for Topic Maps
applications that are more open and accessible than what has been seen thus
far.

5.1 Further work

The web service interface will be implemented in the commercial Ontopia Knowl-
edge Suite (OKS) over the coming months, and used in a number of different
projects. Further revisions will be made if experience with usage in these projects
indicate that revisions are needed.

In addition, it is thought that special requests that allow legacy data (XML
that is not a Topic Maps syntax, CSV files, etc) to be imported into a topic
map may well be needed. That is, clients may wish to add fragments of data
to a topic map that is not in any Topic Maps syntax. In these cases, it may be
easiest for the server to handle the conversion into Topic Maps, and so special
requests may be added that allow legacy data to be imported directly into the
server. (One assumes that some form of conversion tool or configuration will
already have been installed on the server.)

Finally, it is possible that support will be added for subscription to RSS
channels containing topic map update information. Enabling the listener mech-
anism to support more fine-grained subscription, possibly via tolog queries, is
also being considered.

References

[Barta05] TMIP, A RESTful Topic Maps Interaction Proto-
col ; Barta, R.; Extreme Markup 2005, Montral, Canada.

15

http://www.mulberrytech.com/Extreme/Proceedings/html/2005/Barta01/
EML2005Barta01.html

[Barta05b] SQL as TM Query Language? No, thanks! ; Barta, R.; private blog entry,
undated. http://topicmaps.it.bond.edu.au/docs/38?style=printable

[Fielding00] Architectural Styles and the Design of Network-based Software Architec-
tures; Fielding, R. T.; Doctoral dissertation, University of California, Irvine, 2000.
http://www.ics.uci.edu/ fielding/pubs/dissertation/top.htm

[Halevy05] Enterprise Information Integration: Successes, Challenges and Controver-
sies; Halevy, A., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J., Rosen-
thal, A., Sikka, V.; Proceedings of SIGACM-SIGMOD ’05 Baltimore, USA; 778-787.
http://www.cs.washington.edu/homes/alon/files/eiisigmod05.pdf

[Garshol02] XTM Fragment Interchange 0.1 ; Garshol, L. M.; Ontopia Technical Re-
port 2002-09-23. http://www.ontopia.net/topicmaps/materials/xtm-fragments.html

[Garshol02b] Topic maps in content management – The rise of the ITMS ; Garshol,
L. M.; Proceedings of XML 2002, IDEAlliance, Baltimore, USA; 2002-12-08.
http://www.ontopia.net/topicmaps/materials/itms.html

[Garshol05] TM/XML – Representing Topic Maps in XML; Garshol, L. M., Bogachev,
D.; forthcoming, to be published in proceedings of TMRA’05.

[Garshol05b] tolog – a topic maps query language; Garshol, L. M., forthcoming, to be
published in proceedings of TMRA’05.

[ISO13250-2] ISO 13250-3: Topic Maps – Data Model; International Organization for
Standardization; Geneva. http://www.isotopicmaps.org/sam/sam-model/

[ISO19757-2] ISO 19757-2: Document Schema Definition Languages
(DSDL) – Part 2: Regular-grammar- based validation – RE-
LAX NG; International Organization for Standardization; Geneva.
http://www.y12.doe.gov/sgml/sc34/document/0362 files/relaxng-is.pdf

[Moore03] Semantic Web Servers; Moore, G.; Extreme Markup 2003, Montral,
Canada. http://www.ontopia.net/topicmaps/materials/semantic-web-servers.ppt

[Moore04] Topic Maps Remote Access Protocol ; Moore, G.; 2004-04-06, Ontopia.
http://www.jtc1sc34.org/repository/0507.htm

[NetworkedPlanet05] Topic Map Web Services; Moore, G.,
Ahmed, Kal; NetworkedPlanet. Available on 2005-08-12 from
http://www.networkedplanet.com/technology/webservices/intro.html

[Pepper04] Seamless Knowledge–Spontaneous Knowledge Federation us-
ing TMRAP ; Pepper, S., Garshol, L. M.; Extreme Markup 2004,
Montral, Canada. http://www.ontopia.net/topicmaps/materials/ Seam-
less+Knowledge+with+TMRAP.ppt

[RFC2045] Multipurpose Internet Mail Extensions (MIME) Part One: Format of In-
ternet Message Bodies; Freed, N., Borenstein, N.; IETF RFC 2045; November 1996;
http://www.isi.edu/in-notes/rfc2045.txt

[SOAP] SOAP Version 1.2 Part 1: Messaging Framework ; Gudgin, M., Hadley, M.,
Mendelsohn, N., Moreau, J., Frystyk Nielsen, H.; W3C Recommendation; 24 June
2003. http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

[Schwotzer04] Shark - a System for Management, Synchronization and Exchange of
Knowledge in Mobile User Groups; Schwotzer, T., Geihs, K.; Technical Report, Intel-
ligent Networks and Management of Distributed Systems, TU Berlin; http://ivs.tu-
berlin.de/ thsc/Shark IKnow.pdf

[SPARQL] SPARQL Protocol for RDF ; Grant Clark, K.; W3C Working Draft 27 May
2005; http://www.w3.org/TR/rdf-sparql-protocol/

16

[Thompson04] Scalable, document-centric addressing of semantic stores using
the XPointer Framework and the REST architectural style; Thompson, B.,
Moore, G., Parsia, B., Bebee, B. R.; Extreme Markup 2004, Montral, Canada.
http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Thompson01/
EML2004Thompson01.html

