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Abstract. During knowledge acquisition multiple alternative potential
rules all appear equally credible. This paper addresses the dearth of for-
mal analysis about how to select between such alternatives. It presents
two hypotheses about the expected impact of selecting between classifica-
tion rules of differing levels of generality in the absence of other evidence
about their likely relative performance on unseen data. It is argued that
the accuracy on unseen data of the more general rule will tend to be
closer to that of a default rule for the class than will that of the more
specific rule. It is also argued that in comparison to the more general
rule, the accuracy of the more specific rule on unseen cases will tend to
be closer to the accuracy obtained on training data. Experimental evi-
dence is provided in support of these hypotheses. We argue that these
hypotheses can be of use in selecting between rules in order to achieve
specific knowledge acquisition objectives.

1 Introduction

In many knowledge acquisition contexts there will be many classification rules
that perform equally well on the training data. In the most clear-cut example
from machine learning we have the phenomena of the version space [1], the set
of all rules that are consistent with a set of training data. However, even when
we move away from a situation in which we are expecting to find rules that
are strictly consistent with the training data, in other words, when we allow
rules to misclassify some training cases, there will often be many rules all of
which cover exactly the same training cases. If we are selecting rules to use for
some decision making task, we must select between such rules with identical
performance on the training data. To do so requires a learning bias [2], a means
of selecting between competing hypotheses that utilizes criteria beyond those
strictly encapsulated in the training data. All learning algorithms confront this
problem. This is starkly illustrated by the large numbers of rules with very high
values for any given interestingness measure that are typically discovered during
association rule discovery. Many systems that learn rule sets for the purpose of
prediction mask this problem by making arbitrary choices between rules with
equivalent performance on the training data.

This paper examines the implications of selecting between such rules on the
basis of their relative generality. We contend that learning biases based on rel-
ative generality can usefully manipulate the expected performance of classifiers
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learned from data. The insight that we provide into this issue may assist knowl-
edge engineers make more appropriate selections between alternative rules when
those alternatives derive equal support from the available training data.

We present specific hypotheses relating to reasonable expectations about
classification error for classification rules. We discuss classification rules of the
form Z → y, which should be interpreted as all cases that satisfy conditions
Z belong to class y. We are interested in learning rules from data. We al-
low that evidence about the likely classification performance of a rule might
come from many sources, including prior knowledge, but, in the machine learn-
ing tradition, are particularly concerned with empirical evidence—evidence ob-
tained from the performance of the rule on sample (training) data. We con-
sider the learning context in which a rule Z → y is learned from a training
set D′=(x′1, y

′
1), (x

′
2, y

′
2), . . . , (x

′
n, y′n) and is to be applied to a set of previously

unseen data called a test set D=(x1, y1), (x2, y2), . . . , (xm, ym). For this enter-
prise to be successful, D′ and D should be drawn from the same or from related
distributions, and we assume that this is the case.

We utilize the following notation.

Z(I) represents the set of instances in instance set I covered by condition Z.
E(Z → y, I) represents the number of instances in instance set I that Z → y

misclassifies (the absolute error).
ε(Z → y, I) represents the proportion of instance set I that Z → y misclassifies

(the error) = E(Z→y,D)
|D| .

W � Z denotes that the condition W is a proper generalization of condition Z.
W � Z if and only if the set of descriptions for which W is true is a proper
superset of the set of descriptions for which Z is true.

NODE(W → y, Z → y) denotes that there is no other distinguishing evidence
between W → y and Z → y. This means that there is no available evidence,
other than the relative generality of W and Z, indicating the likely direction
(negative, zero, or positive) of ε(W → y, D)−ε(Z → y, D). In particular, we
require that the empirical evidence be identical. In the current research the
learning systems have access only to empirical evidence and we assume that
W (D′) = Z(D′) → NODE(W → y, Z → y). Note that W (D′) = Z(D′)
does not preclude W and Z from covering different test cases at classifica-
tion time and hence having different test set error. We utilize the notion of
other distinguishing evidence to allow for the real-world knowledge acquisi-
tion context in which evidence other than that contained in the data may
be brought to bear upon the rule selection problem.

We present two hypotheses relating to classification rules W → y and Z → y
learned from real-world data such that W � Z and NODE(W → y, Z → y).

1. |ε(W → y, D)− ε(true → y, D)| < |ε(Z → y, D)− ε(true → y, D)|
will be true more often than |ε(W → y, D)− ε(true → y, D)| >
|ε(Z → y, D)− ε(true → y, D)|. That is, the error of the more general
rule, W → y, on unseen data will tend to be closer to the proportion of



cases in the domain that do not belong to class y than will the error of the
more specific rule, Z → y.

2. |ε(W → y, D)− ε(W → y, D′)| > |ε(Z → y, D)− ε(Z → y, D′)|
will be true more often than |ε(W → y, D)− ε(W → y, D′)| <
|ε(Z → y, D)− ε(Z → y, D′)|. That is, the error of the more specific
rule, Z → y, on unseen data will tend to be closer to the proportion of
negative training cases covered by the two rules1 than will the error of the
more general rule, W → y.

Another way of stating these two hypotheses is that of two rules with identical
empirical and other support,

1. the more general can be expected to exhibit classification error closer to that
of a default rule, true → y, or, in other words, of assuming all cases belong
to the class, and

2. the more specific can be expected to exhibit classification error closer to that
observed on the training data.

It is important to clarify at the outset that we are not claiming that the more
general rule will invariably have closer generalization error to the default rule
and the more specific rule will invariably have closer generalization error to the
observed error on the training data. Rather, we are claiming that relative gener-
ality provides a source of evidence that, in the absence of alternative evidence,
provides reasonable grounds for believing that each of these effects is more likely
than the contrary.

It should also be noted that with simple assumptions these hypotheses can
be shown to be trivially true given that D′ and D are idd samples from a single
finite distribution D.

Proof. 1. For any rule Z → y and test set D, ε(Z → y, D) = ε(Z → y, Z(D)),
as Z → y only covers instances Z(D) of D.

2. ε(S → y, D) = E(S→y,S(D∩D′))+E(S→y,S(D−D′))
|S(D)|

3. ε(G → y, D) = E(G→y,G(D∩D′))+E(G→y,G(D−D′))
|G(D)|

4. S(D) ⊆ G(D) because S is a specialization of G.
5. S(D ∩D′) = G(D ∩D′) because S(D′) = G(D′).
6. S(D −D′) ⊆ G(D −D′) because S(D) ⊆ G(D).
7. from 2-6, E(S → y, S(D ∩D′)) is a larger proportion of the error of S → y

than is E(G → y, G(D ∩D′)) of G → y and hence performance on D′ is a
larger component of the performance of S → y and performance on D −D′

is a larger component of the performance of G → y.
2

However, in most domains of interest the dimensionality of the instance space
will be very high. In consequence, for realistic training and test sets the propor-
tion of the training set that appears in the test set, |D∩D′|

|D| , will be small. Hence

1 Recall that both rules have identical empirical support and hence cover the same
training cases.



this effect will be negligible, as performance on the training set will be a negligible
portion of total performance. What we are more interested in is off-training-set
error. We contend that the force of these hypotheses will be stronger than ac-
counted for by the difference made by the overlap between training and test sets,
and hence that they do apply to off-training-set error. We note, however, that it
is trivial to construct no-free-lunch proofs, such as those of Wolpert [3] and Schaf-
fer [4], that this is not, in general, true. Rather, we contend that the hypotheses
will in general be true for ‘real-world’ learning tasks. We justify this contention
by recourse to the similarity assumption [5], that in the absence of other in-
formation, the greater the similarity between two objects in other respects, the
greater the probability of their both belonging to the same class. We believe
that most machine learning algorithms depend upon this assumption, and that
this assumption is reasonable for real-world knowledge acquisition tasks. Test
set cases covered by a more general but not a more specific rule are likely to be
less similar to training cases covered by both rules than are test set cases covered
by the more specific rule. Hence satisfying the left-hand-side of the more specific
rule provides stronger evidence of likely class membership.

A final point that should be noted is that these hypotheses apply to individual
classification rules — structures that associate an identified region of an instance
space with a single class. However, as will be discussed in more detail below, we
believe that the principle is nonetheless highly relevant to ‘complete classifiers,’
such as decision trees, that assign different regions of the instance space to differ-
ent classes. This is because each individual region within a ‘complete classifier’
(such as a decision tree leaf) satisfies our definition of a classification rule, and
hence the hypotheses can cast light on the likely consequences of relabeling sub-
regions of the instance space within such a classifier (for example, generalizing
one leaf of a decision tree at the expense of another).

2 Evaluation

To evaluate these hypotheses we sought to generate rules of varying generality
but identical empirical evidence (no other evidence source being considered in
the research), and to test the hypotheses’ predictions with respect to these rules.

We wished to provide some evaluation both of whether the predicted effects
are general (with respect to rules with the relevant properties selected at random)
as well as whether they apply to the type of rule generated in standard machine
learning applications. We used rules generated by C4.5rules (release 8) [6], as an
exemplar of a machine learning system for classification rule generation.

One difficulty with employing rules formed by C4.5rules is that the system
uses a complex resolution system to determine which of several rules should be
employed to classify a case covered by more than one rule. As this is taken into
account during the induction process, taking a rule at random and considering
it in isolation may not be representative of its application in practice. We de-
termined that the first listed rule was least affected by this process, and hence
employed it. However, this caused a difficulty in that the first listed rule usually



Table 1. Algorithm for generating a random rule

1. Randomly select an example x from the training set.
2. Randomly select an attribute a for which the value of a for x (ax) is not unknown.
3. If a is categorical, form the rule IF a = ax THEN c, where c is the most frequent

class in the cases covered by a = ax.
4. Otherwise (if a is ordinal), form the rule IF a#ax THEN c, where # is a random

selection between ≤ and ≥ and c is the most frequent class in the cases covered
by a#ax.

covers few training cases and hence estimates of its likely test error can be ex-
pected to have low accuracy, reducing the likely strength of the effect predicted
by Hypothesis 2.

For this reason we also employed the C4.5rules rule with the highest cover
on the training set. We recognized that this would be unrepresentative of the
rule’s actual deployment, as in practice cases that it covered would frequently be
classified by the ruleset as belonging to other classes. Nonetheless, we believed
that it provided an interesting exemplar of a form of rule employed in data
mining.

To explore the wider scope of the hypotheses we also generated random rules
using the algorithm in Table 1.

From the initial rule, formed by one of these three processes, we developed
a most specific rule. The most specific rule was created by collecting all training
cases covered by the initial rule and then forming the most specific rule that
covered those cases. For a categorical attribute a this rule included a clause
a ∈ X, where X is the set of values for the attribute of cases in the random
selection. For ordinal attributes, the rule included a clause of the form x ≤ a ≤ z,
where x is the lowest value and z the highest value for the attribute in the random
sample.

Next we found the set of all most general rules—those rules R formed by
deleting clauses from the most specific rule S such that cover(R) = cover(S)
and there is no rule T that can be formed by deleting a clause from R such that
cover(T ) = cover(R). The search for the set of most general rules was performed
using the OPUS complete search algorithm [7].

Then we formed the:

random most general rule: a single rule selected at random from the most
general rules.

combined rule: a rule for which the condition was the conjunction of all con-
ditions for rules in the set of most general rules.

default rule: a rule with the antecedent true.

The class for all rules was assigned to the class with the greatest number of
instances covered by the initial rule. All rules other than the default rule covered



Table 2. Generality relationships between rules

More Specific More General

most specific rule combined rule
most specific rule random most general rule
most specific rule initial rule
combined rule random most general rule

exactly the same training cases. Hence all rules other than the default rule had
identical empirical support.

We present an example to illustrate these concepts. We utilize a two dimen-
sional instance space, defined by two attributes, A and B, and populated by
training examples belonging to two classes denoted by the shapes ∗ and �. This
is illustrated in Fig. 1. Fig. 1(a) presents the hypothetical initial rule, derived
from some external source. Fig. 1(b) shows the most specific rule, the rule that
most tightly bounds the cases covered by the initial rule. Note that while we have
presented the initial rule as covering only cases of a single class, when developing
the rules at differing levels of generality we do not consider class information.
Fig. 1(c) and (d) shows the two most general rules that can be formed by delet-
ing different combinations of boundaries from the most specific rule. Fig. 1(d)
shows the combined rule, formed from the conjunction of all most general rules.
The generality relationships between these rules are presented in Table 2.

Note that it could not be guaranteed that any pair of these rules were strictly
more general or more specific than each other as it was possible for the most
specific and random most general rules to be identical (in which case the set of
most general rules would contain only a single rule and the initial and combined
rules would also both be identical to the most specific and random most general
rules. It was also possible for the initial rule to equal the most specific rule even
when there were multiple most general rules. Also, it was possible for no gen-
erality relationship to hold between an initial and the combined or the random
most general rule developed therefrom.

We wished to evaluate whether the predicted effects held between the rules of
differing levels of generality so formed. It was not appropriate to use the normal
machine learning experimental method of averaging over multiple runs for each
of several data sets, as our prediction is not about relationships between average
outcomes, but rather relationships between specific outcomes. Further, it would
not be appropriate to perform multiple runs on each of several data sets and
then compare the relative frequencies with which the predicted effects held and
did not hold, as this would violate the assumption of independence between ob-
servations relied on by most statistical tools for assessing such outcomes. Rather,
we applied the process once only to each of the following 50 data sets from the
UCI repository [8]:
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a) Initial rule:
IF A ≤ 6 ∧ 3 ≤ B ≤ 7

THEN ∗
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b) Most specific rule:
IF 3 ≤ A ≤ 5 ∧ 4 ≤ B ≤

6
THEN ∗
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c) Most General Rule 1:
IF 4 ≤ B ≤ 6

THEN ∗
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d) Most General Rule 2: IF A ≤ 5
THEN ∗
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e) Combined Rule:
IF A ≤ 5 ∧ 4 ≤ B ≤ 6

THEN ∗

Fig. 1. Types of rule generated



Table 3. Results for initial rule is C4.5rules rule with most coverage

|D − x| > |D − y| |T − x| < |T − y|
x y w:d:l p w:d:l p

Most Specific Combined 27:15: 5 < 0.001 21:15:11 0.055
Most Specific Random MG 29:14: 4 < 0.001 23:14:10 0.017
Most Specific Initial 33:10: 4 < 0.001 28:10: 9 0.001

Combined Random MG 8: 9: 0 0.004 8: 9: 0 0.004

Note: x represents the accuracy of rule x on the test data. y represents the accuracy
of rule y on the test data. T represents the accuracy of rules x and y on the training
data (both rules cover the same training cases and hence have identical accuracy on
the training data). D represents the accuracy of the default rule on the test data.

abalone, anneal, audiology, imports-85, balance-scale, breast-cancer,
breast-cancer-wisconsin, bupa, chess, cleveland, crx, dermatology, dis,
echocardiogram, german, glass, heart, hepatitis, horse-colic,
house-votes-84, hungarian, allhypo, ionosphere, iris, kr-vs-kp,
labor-negotiations, lenses, long-beach-va, lung-cancer, lymphography,
new-thyroid, optdigits, page-blocks, pendigits, pima-indians-diabetes,
post-operative, promoters, primary-tumor, sat, segmentation, shuttle,
sick, sonar, soybean-large, splice, switzerland, tic-tac-toe, vehicle,
waveform, wine.

These were all appropriate data sets from the repository to which we had ready
access and to which we were able to apply the combination of software tools
employed in the research. Note that there is no averaging of results. Statistical
analysis of the outcomes over the large number of data sets is used to compensate
for random effects in individual results due to the use of a single run.

3 Results

Results are presented in Tables 3 to 5. Each table row represents one of the
combinations of a more specific and more general rule. The right-most columns
present win/draw/loss summaries of the number of times the relevant differ-
ence between values is respectively positive, equal, or negative. The first of
these columns relates to Hypothesis 1. The second relates to Hypothesis 2. Each
win/draw/loss record is followed by the outcome of a one-tailed sign test repre-
senting the probability of obtaining those results by chance. Where rules x and
y are identical for a data set, or where one of the rules made no decisions on the
unseen data, no result has been recorded. Hence not all win/draw/loss records
sum to 50.

As can be seen from Table 3, with respect to the conditions formed by creating
an initial rule from the C4.5rules rule with the greatest cover, all win/draw/loss



Table 4. Results for initial rule is C4.5rules first rule

|D − x| > |D − y| |T − x| < |T − y|
x y w:d:l p w:d:l p

Most Specific Combined 16:13: 9 0.115 17:13: 8 0.054
Most Specific Random MG 19:10: 9 0.044 20:10: 8 0.018
Most Specific Initial 20: 9: 9 0.031 21: 9: 8 0.012

Combined Random MG 5: 5: 1 0.109 5: 5: 1 0.109

See Table 3 for abbreviations.

Table 5. Results for initial rule is random rule

|D − x| > |D − y| |T − x| < |T − y|
x y w:d:l p w:d:l p

Most Specific Combined 26: 5:12 0.017 21: 5:17 0.314
Most Specific Random MG 26: 5:12 0.017 21: 5:17 0.314
Most Specific Initial 26: 5:12 0.017 21: 5:17 0.314

Combined Random MG 0: 2: 1 1.000 1: 2: 0 1.000

See Table 3 for abbreviations.

comparisons but one significantly (at the 0.05 level) support the hypotheses. The
one exception is marginally significant (p = 0.055).

Where the initial rule is the first rule from a C4.5rules rule list (Table 4),
all win/draw/loss records favor the hypotheses, but some results are not sig-
nificant at the 0.05 level. It is plausible to attribute this outcome to greater
unpredictability in the estimates obtained from the performance of the rules on
the training data when the rules cover fewer training cases, and due to the lower
numbers of differences in rules formed in this condition.

Where the initial rule is a random rule (Table 5), all of the results favor the
hypotheses, except for one comparison between the combined and random most
general rules for which a difference in prediction accuracy was only obtained
on one of the fifty data sets. Where more than one difference in prediction
accuracy was obtained, the results are significant at the 0.05 level with respect
to Hypothesis 1, but not Hypothesis 2.

These results appear to lend substantial support to Hypothesis 1. For all but
one comparison (for which only one domain resulted in a variation in performance
between treatments) the win/draw/loss record favors this hypothesis. Of these
eleven positive results, nine are statistically significant at the 0.05 level. There
appears to be good evidence that of two rules with equal empirical and other
support, the more general can be expected to obtain prediction accuracy on
unseen data that is closer to the frequency with which the class is represented
in the data.



The evidence with respect to Hypothesis 2 is slightly less strong, however. All
conditions result in the predicted effect occurring more often than the reverse.
However, only five of these results are statistically significant at the 0.05 level.
The results are consistent with an effect that does exist but is weak where
the accuracy of the rules on the training data differs substantially from the
accuracy of the rules on unseen data. An alternative interpretation is that they
are manifestations of an effect that only applies under specific constraints that
are yet to be identified.

4 Discussion

We believe that our findings have important implications for knowledge acquisi-
tion. We have demonstrated that in the absence of other suitable biases to select
between alternative hypotheses, biases based on generality can manipulate ex-
pected classification performance. Where a rule is able to achieve high accuracy
on the training data, our results suggest that very specific versions of the rule
will tend to deliver higher accuracy on unseen cases than will more general al-
ternatives with identical empirical support. However, there is another trade-off
that will also be inherent in selecting between two such alternatives. The more
specific rule will make fewer predictions on unseen cases.

Clearly this trade-off between expected accuracy and cover will be difficult
to manage in many applications and we do not provide general advice as to how
this should be handled. However, we contend that practitioners are better off
aware of this trade-off than making decisions in ignorance of their consequences.

Pazzani, Murphy, Ali, and Schulenburg [9] have argued with empirical sup-
port that where a classifier has an option of not making predictions (such as
when used for identification of market trading opportunities), selection of more
specific rules can be expected to create a system that makes fewer decisions of
higher expected quality. Our hypotheses provide an explanation of this result.
When the accuracy of the rules on the training data is high, specializing the rules
can be expected to raise their accuracy on unseen data towards that obtained
on the training data.

Where a classifier must always make decisions and maximization of prediction
accuracy is desired, our results suggest that rules for the class that occurs most
frequently should be generalized at the expense of rules for alternative classes.
This is because as each rule is generalized it will trend towards the accuracy of a
default rule for that class, which will be highest for rules of the most frequently
occurring class.

Another point that should be considered, however, is alternative sources of
information that might be brought to bear upon such decisions. We have em-
phasized that our hypotheses relate only to contexts in which there is no other
evidence available to distinguish between the expected accuracy of two rules
other than their relative generality. In many cases we believe it may be possible
to derive such evidence from training data. For example, we are likely to have
differing expectations about the likely accuracy of the two alternative general-
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a) Initial rule:
IF 4 ≤ B ≤ 6

THEN ∗
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b) First generalization:
IF 4 ≤ B ≤ 7
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c) Second generalization:
IF 3 ≤ B ≤ 6

THEN ∗

Fig. 2. Alternative generalizations to a rule

izations depicted in Fig. 2. This figure depicts a two dimensional instance space,
defined by two attributes, A and B, and populated by training examples belong-
ing to two classes denoted by the shapes ∗ and �. Three alternative rules are
presented together with the region of the instance space that each covers. In this
example it appears reasonable to expect better accuracy from the rule depicted
in Fig. 2b than that depicted in Fig. 2c as the former generalizes toward a region
of the instance space dominated by the same class as the rule whereas the latter
generalizes toward a region of the instance space dominated by a different class.

While our experiments have been performed in a machine learning context,
the results are applicable in wider knowledge acquisition contexts. For exam-
ple, interactive knowledge acquisition environments [10, 11] present users with
alternative rules all of which perform equally well on example data. Where the
user is unable to bring external knowledge to bear to make an informed judge-
ment about the relative merits of those rules, the system is able to offer no
further advice. Our experiments suggest that relative generality is a factor that
an interactive knowledge acquisition system might profitably utilize.

4.1 On the difficulty of measuring degree of generalization

It might be tempting to believe that our hypotheses could be extended by in-
troducing a measure of magnitude of generalization together with predictions
about the magnitude of the effects on prediction accuracy that may be expected
from generalizations of different magnitude.

However, we believe that it is not feasible to develop meaningful measures of
magnitude of generalization suitable for such a purpose. Consider, for example,
the possibility of generalizing a rule with conditions age < 40 and income <
50000 by deleting either condition. Which is the greater generalization? It might



be thought that the greater generalization is the one that covers the greater
number of cases. However, if one rule covers more cases than another then there
will be differing evidence in support of each. Our hypotheses do not relate to
this situation. We are interested only in how to select between alternative rules
when the only source of evidence about their relative prediction performance is
their relative generality.

If it is not possible to develop measures of magnitude of generalization then
it appears to follow that it will never be possible to extend our hypotheses to
provide more specific predictions about the magnitude of the effects that may
be expected from a given generalization or specialization to a rule.

5 Conclusion

We have presented two hypotheses relating to expectations regarding the ac-
curacy of two alternative classification rules with identical supporting evidence
other than their relative generality. The first hypothesis is that the accuracy
on unseen data of the more general rule will be more likely to be closer to the
accuracy on unseen data of a default rule for the class than will the accuracy on
unseen data of the more specific rule. The second hypothesis is that the accu-
racy on previously unseen data of the more specific rule will be more likely to
be closer to the accuracy of the rules on the training data than will the accuracy
of the more general rule on unseen data.

We have provided experimental support for those hypotheses, both with re-
spect to classification rules formed by C4.5rules and random classification rules.
However, the results with respect to the second hypothesis were not statistically
significant in the case of random rules. These results are consistent with the
two hypotheses, albeit with the effect of the second being weak when there is
low accuracy for the error estimate for a rule derived from performance on the
training data. They are also consistent with the second hypothesis only applying
to a limited class of rule types. Further research into this issue is warranted.

These results may provide a first step towards the development of useful
learning biases based on rule generality that do not rely upon prior domain
knowledge, and may be sensitive to alternative knowledge acquisition objectives,
such as trading-off accuracy for cover.
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