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Abstract. In this paper, we present a system for automatic sign lan-
guage recognition of segmented words in American Sign Language (ASL).
The system uses appearance-based features extracted directly from the
frames captured by standard cameras without any special data acquisi-
tion tools. This means that we do not rely on complex preprocessing of
the video signal or on an intermediate segmentation step that may pro-
duce errors. We introduce a database for ASL word recognition extracted
from a publicly available set of video streams. One important property of
this database is the large variability of the utterances for each word. To
cope with this variability, we propose to model distinct pronunciations
of each word using different clustering approaches. Automatic clustering
of pronunciations improves the error rate of the system from 28.4% to
23.2%. To model global image transformations, the tangent distance is
used within the Gaussian emission densities of the hidden Markov model
classifier instead of the Euclidean distance. This approach can further
reduce the error rate to 21.5%.

1 Introduction

In the domain of sign language recognition from video, most approaches try to
segment and track the hands and head of the signer in a first step and subse-
quently extract a feature vector from these regions [1–4]. Segmentation can be
difficult because of possible occlusions between the hands and the head of the
signer, noise or brisk movements. Many approaches therefore use special data ac-
quisition tools like data gloves, colored gloves or wearable cameras. These special
tools may be difficult to use in practical situations.

In this work, we introduce a database of video streams for American sign
language (ASL) word recognition. The utterances are extracted from a publicly
available database and can therefore be used by other research groups. This
database, which we call ‘BOSTON50’, consists of 483 utterances of 50 words. One
important property of this database is the large visual variability of utterances
for each word. This database is therefore more difficult to recognize automatically
than databases in which all utterances are signed uniformly. So far, this problem
has not been dealt with sufficiently in the literature on sign language recognition.

To overcome these shortcomings we suggest the following novel approaches:



1. The system presented in this paper is designed to recognize sign language
words using simple appearance-based features extracted directly from the
frames which are captured by standard cameras without any special data
acquisition tools. This means that we do not rely on complex preprocessing
of the video signal or on an intermediate segmentation step that may produce
errors.

2. Because of the high variability of utterances of the same class, we explic-
itly model different pronunciations of each word of the database. We em-
ploy and compare different clustering methods to determine the partitioning
into pronunciations: manual clustering, k-means clustering, and hierarchical
LBG-clustering. Manual clustering uses a hand-labeled partitioning of the
utterances. The k-means algorithm is initialized with the number of clusters
and manually selected seed utterances. The hierarchical LBG-clustering par-
titions the data automatically and only needs one parameter to control the
coarseness of the clustering. The results obtained lead us to also consider a
nearest neighbor classifier that performs surprisingly well.

3. To deal with the image variability, we model global affine transformations
of the images using the tangent distance [6] within the Gaussian emission
densities instead of the Euclidean distance.

In Sections 2 and 3, we introduce the database BOSTON50 and the appear-
ance-based features used in the system, respectively. Section 4 describes the de-
cision making and the hidden Markov model (HMM) classifier. Tangent distance
and the way it is employed in the HMM is explained in Section 5. In Section 6,
the different clustering methods and their properties are described. Finally, the
experimental results and conclusions are discussed in Sections 7 and 8.

2 Database

The National Center for Sign Language and Gesture Resources of the Boston
University has published a database of ASL sentences1 [7]. It consists of 201
annotated video streams of ASL sentences. Although this database was not
recorded primarily for image processing and recognition research, we consid-
ered it as a starting point for a recognition corpus because the data are available
to other research groups and, thus, can be a basis for comparisons of different
approaches.

The signing is captured simultaneously by four standard stationary cameras
where three of them are black/white and the remaining one is a color camera.
Two black/white cameras, directed towards the signer’s face, form a stereo pair.
Another camera is installed on the side of the signer. The color camera is placed
between the cameras of the stereo pair and is zoomed to capture only the face
of the signer. The movies are recorded at 30 frames per second and the size of
the frames is 312×242 pixels. We use the published video streams at the same
frame rate but extract the upper center part of size 195×165 pixels. (Parts of
the bottom of the frames show some information about the frame and the left
and right border of the frames are unused.)

1 http://www.bu.edu/asllrp/ncslgr.html



Fig. 1. The signers as viewed from the two camera perspectives.

To create our database for ASL word recognition which we call BOSTON50,
we extracted 483 utterances of 50 words from this database as listed in the
appendix along with the number of utterances of each word. The utterances of
the sign language words are segmented within our group manually.

In the BOSTON50 database, there are three signers, one of them male and
two female. The signers are dressed differently and the brightness of their clothes
is different. We use the frames captured by two of the four cameras, one camera
of the stereo camera pair in front of the signer and the lateral camera. Using
both of the stereo cameras and the color camera may be useful in stereo and
facial expression recognition, respectively. Both of the cameras used are in fixed
positions and capture the videos simultaneously. The signers and the views of
the cameras are shown in Figure 1.

3 Feature Extraction
In this section, we briefly introduce the appearance-based features used in our
ASL word recognition system. In [5], we introduce different appearance-based
features in more detail, including the original image, skin color intensity, and
different kinds of first- and second-order derivatives. The results show that down-
scaled original images extracted after skin intensity thresholding perform very
well. According to these results we employ these features in the work presented
here.

The definition of the features is based on basic methods of image processing.
The features are directly extracted from the images of the video frames. We
denote by Yt(i, j) the pixel intensity at position (i, j) in the frame t of a sequence,
t = 1, . . . , T .

To disregard background pixels, we use a simple intensity thresholding. This
thresholding aims at extracting the hand and the head, which form brighter
regions in the images. This approach is not a perfect segmentation and we cannot
rely on it easily for tracking the hands because the output of the thresholding
consists of the two hands, face and possibly some parts of the signer’s clothes.

Xt(i, j) =

{
Yt(i, j) : Yt(i, j) > Θ

0 : otherwise
(1)



Fig. 2. Example of the features used by the classifier: original image (left), thresholded
image (center), and down-scaled image (right).

Fig. 3. The topology of the employed HMM.

Where Xt(i, j) is an image frame at time t with the brightness threshold Θ.
We can transfer the matrix of an image to a vector xt and use it as a feature

vector. To decrease the size of the feature vector, we use the original image
down-scaled to 13×11 pixels denoted by X ′

t.

xt,d = X ′

t(i, j), d = 13 · j + i, (2)

where xt = [xt,1, ..., xt,d, ..., xt,D] is the feature vector at time t with the dimen-
sion D = 143.

Some examples of features after processing are shown in Figure 2. To increase
the information extracted from the videos, we may use the frames of two cameras.
One of the cameras is installed in front of the signer and the second one is fixed at
one side. We concatenate the information of the frames captured simultaneously
by these cameras. We weight the features extracted by the two cameras because
there is more occlusion of the hands in the images captured by the lateral camera.
According to experiments reported in [5], we weight the features of the front
camera and lateral camera with the weights 0.38 and 0.62, respectively.

4 Decision Process

The decision making of our system employs HMMs to recognize the sign language
words2. This approach is inspired by the success of the application of HMMs in
speech recognition [8] and also most sign language recognition systems [1–5].
The recognition of sign language words is similar to spoken word recognition in
the modelling of sequential samples. The topology of the HMM used is shown
in Figure 3. There is a transition loop at each state and the maximum allowed
transition is set to two, which means that, at most, one state can be skipped.

2 Some of the code used in feature extraction and decision making is based on the LTI
library that is available under the terms of the GNU Lesser General Public License
at http://ltilib.sourceforge.net.



We consider one HMM for each word w = 1, ...,W . The basic decision rule used
for the classification of xT

1 = x1, ..., xt, ... xT is:

xT
1 −→ r(xT

1 ) = arg max
w

(
Pr(w|xT

1 )
)

(3)

= arg max
w

(
Pr(w) · Pr(xT

1 |w)
)
, (4)

where Pr(w) is the prior probability of class w, and Pr(xT
1 )|w) is the class

conditional probability of xT
1 given class w. The Pr(xT

1 )|w) is defined as:

Pr(xT
1 |w) = max

sT

1

T∏

t=1

Pr(st|st−1, w) · Pr(xt|st, w), (5)

where sT
1 is the sequence of states, and Pr(st|st−1, w) and Pr(xt|st, w) are the

transition probability and emission probability, respectively. The transition prob-
ability is estimated by simple counting. We use the Gaussian mixture densities as
emission probability distribution Pr(xt|st, w) in the states. The emission prob-
ability is defined as:

Pr(xt|st, w) =

L(st,w)∑

l=1

Pr(xt, l|st, w)

=

L(st,w)∑

l=1

Pr(l|st, w).P r(xt|st, w, l), (6)

where L(st, w) is the number of densities in each state and

Pr(xt|st, w, l) =
D∏

d=1

1√
2πσ2

l,st,w,d

· exp

(
−

(xt,d − µl,st,w,d)
2

2σ2
l,st,w,d

)
. (7)

(8)

In this work, the sum is approximated by the maximum, and the emission
probability is defined as:

Pr(xt|st, w) = max
l

Pr(xt, l|st, w)

= max
l

Pr(l|st, w).P r(xt|st, w, l). (9)

To estimate Pr(xt|st, w), we use the maximum likelihood estimation method
for the parameters of the Gaussian distribution, i.e. the mean µst,w,d and the
variances σst,w,d. Here, the covariance matrix is modeled to be diagonal, i.e. all
off-diagonal elements are fixed at zero. The number of states for the HMM of each
word is determined by the minimum sequence length of the training samples.
Instead of a density-dependent estimation of the variances, we use pooling during
the training of the HMM, which means that we do not estimate variances for



each density of the HMM, but instead we estimate one set of variances for all
densities in the complete model (word-dependent pooling).

We use the Viterbi algorithm to find the maximizing state sequence sT
1 . In

the Viterbi algorithm, we calculate the score of the observation feature vector xt

in the emission probability distribution Pr(xt|st, w) at each state st. Assuming
the Gaussian function with diagonal covariances for Pr(xt|st, w), as described
above, this score is calculated as:

− log Pr(xt|st, w) = min
l

{1

2

D∑

d=1

(xt,d − µl,st,w,d)
2

σ2
l,st,w,d︸ ︷︷ ︸

distance

− log Pr(l|st, w) +

1

2

D∑

d=1

log(2πσ2
l,st,w,d)

}
. (10)

In this work, the feature vector xt is a down-scaled image at time t with a

dimensionality of D = 143. Therefore, the sum
∑D

d=1(xt,d−µl,st,w,d)
2/σ2

l,st,w,d is
the distance between the observation image at time t and the mean image µl,st,w

of the state st which is scaled by the variances σ2
l,st,w,d. This scaled Euclidean

distance can be replaced by other distance functions such as the tangent distance,
which we will introduce in the following section.

The number of utterances in the database for each word is not large enough
to separate them into training and test sets, for example some words of the
database occur only twice. Therefore, we employ the leaving one out method
for training and classification, i.e. we test the classifier on each sample in turn
while training on the remaining 482 samples. The percentage of the misclassified
utterances is the error rate of the system.

5 Tangent Distance

In this section, we give an overview of the invariant distance measure called
tangent distance, which was first introduced in [9]. The incorporation into a
statistical system was presented in [6]. An invariant distance measure ideally
takes into account transformations of the patterns, yielding small values for
patterns which mostly differ by a transformation that does not change class-
membership.

Let xt ∈ IRD be a pattern, and xt(α) denote a transformation of xt that

depends on a parameter L-tuple α ∈ IRL, where we assume that this transfor-
mation does not affect class membership (for small α). The set of all transformed

patterns is now a manifold Mxt
=
{
xt(α) : α ∈ IRL

}
⊂ IRD in pattern space.

The distance between two patterns can then be defined as the minimum dis-
tance between the manifold Mxt

of the pattern xt and the manifold Mµ of
a class specific prototype pattern µ. This manifold distance is truly invariant
with respect to the regarded transformations. However, the distance calculation
between manifolds is a hard non-linear optimization problem in general. The



manifolds can be approximated by a tangent subspace M̂. The tangent vectors

xt,l that span the subspace are the partial derivatives of xt(α) with respect to the
parameters αl (l = 1, . . . , L), i.e. xt,l = ∂xt(α)/∂αl. Thus, the transformation
xt(α) can be approximated using a Taylor expansion at α = 0:

xt(α) = xt(0) +
L∑

l=1

αlxt,l +
L∑

l=1

O(α2
l ) (11)

The set of points consisting of the linear combinations of the tangent vectors

xt,l added to xt forms the tangent subspace M̂xt
, a first-order approximation of

Mxt
:

M̂xt
=
{
xt +

L∑
l=1

αlxt,l : α ∈ IRL
}
⊂ IRD (12)

Using the linear approximation M̂xt
has the advantage that distance calculations

are equivalent to the solution of linear least square problems, or equivalently,
projections into subspaces, which are computationally inexpensive operations.
The approximation is valid for small values of α, which nevertheless is sufficient in
many applications, as Fig. 4 shows for example of an image frame of BOSTON50
dataset. These examples illustrate the advantage of tangent distance over other
distance measures, as the depicted patterns all lie in the same subspace and can
therefore be represented by one prototype and the corresponding tangent vectors.
The tangent distance between the original image and any of the transformations
is therefore zero, while the Euclidean distance is significantly greater than zero.
Using the squared Euclidean norm, the tangent distance is defined as:

d(xt, µ) = min
α,β∈IRL

{
||(xt +

L∑
l=1

αlxt,l) − (µ +
L∑

l=1

βlµl)||
2
}

(13)

This distance measure is also known as two-sided tangent distance. To reduce
the effort for determining d(xt, µ), it may be convenient to restrict the tangent
subspaces to the derivatives of the reference or the observation. The resulting
distance measure is then called one-sided tangent distance. In this work, we
replaced the Euclidean distance with the one-sided tangent distance using the
derivatives of the mean image µst

in state st.

Fig. 4. Example of first-order approximation of affine transformations. (Left to right:
original image, ± horizontal translation, ± vertical translation, ±axis deformation, ±
diagonal deformation, ± scale, ± rotation)



6 Clustering

Due to the high variability of utterances for each word in the database, we
consider different pronunciations for utterances of each word. Note that this
approach involves a tradeoff; while we may be able to better model the different
pronunciations when we use separate HMMs, we are left with fewer data to
estimate the HMMs from. We employ and compare three methods of clustering
to determine the partitioning into clusters.

Manual Clustering. We observed that there are large visual differences be-
tween the utterances of each word, and that they are visually distinguishable.
Thus, we are able to label the utterances of different pronunciations for each word
as a baseline. We separated the 483 utterances of the BOSTON50 database to
83 pronunciations for the 50 words. The results obtained using this method serve
as a lower bound for the automatic methods described in the following because
we cannot hope to obtain a better cluster structure. Obviously, for any larger
task it will not be feasible to perform a manual labelling. Interestingly, as the
experimental results show, the automatic methods can yield error rates that are
close to the ones obtained with manually selected labels.

k-means Clustering. One basic but very popular clustering approach is the
k-means clustering method. In this method the number of clusters is assumed
to be known beforehand and equal to k. We choose one utterance of each of the
clusters that were labeled manually as a seed in the initialization. The algorithm
continues by adding other utterances to the cluster.

In this algorithm for all words of the database: after initializing k (number
of the clusters) and calculating the µi as the mean of a the Gaussian function
made by utterances of each cluster, all samples would be classified to the nearest
cluster. This would be repeated until no change happens in clusters.

LBG-Clustering. The k-means clustering still uses some manually extracted
information, i.e. the number of clusters and the initializing seeds of the clusters.
We employ the LBG-clustering algorithm proposed by [10] to overcome this
constraint and obtain a fully automatic clustering algorithm. This method is
described as follows: We perform the clustering for all words of the database as
it is shown in Figure 5. First, we assume that all utterances belong to one cluster
or particular pronunciation and create an HMM with all utterances existing for
a word. If the criterion for dividing a cluster is met, we divide this HMM into two
new cluster centers by adding or subtracting a small value to all means of the
states in the model. Then we calculate the similarity between all possible pairs
of cluster centers for the word and merge them if the criterion for merging is
met. We continue to divide and merge the clusters until no change in the cluster
assignment occurs.

The criterion function is defined to calculate the dispersion or scattering of
the utterances in a cluster. We use the mean squared distance of the utterances
to the mean model as a measure of scatter and normalize that value to the
range [0, 1]. We consider a threshold value for this criterion function to control
the coarseness of the clustering.
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Fig. 5. The LBG-clustering.

Nearest Neighbor Classifier. Nearest neighbor classification is a special case
in modelling of the different pronunciations. In nearest neighbor classification
the number of pronunciations is considered to be equal to the number of the
training utterances for each word. Using each training utterance in the database,
we create an HMM. According to the leaving one out method used in this work
we separate an utterance as a test utterance from the database. This unknown
utterance is classified as belonging to the same class as the most similar or
nearest utterance in the training set of the database. This process is repeated
for all utterances in the database.

7 Experimental Results

The experiments have been started by employing an HMM for each word of
the BOSTON50 database resulting in an error rate of 28.4% with Euclidean
distance. We repeated the experiment using the different proposed clustering
methods and the tangent distance.

The results are summarized in Table 1. The results show that, in all exper-
iments, tangent distance improves the error rate of the classifiers by between
2 and 10 percent relative. Furthermore, employing clustering methods and the
nearest neighbor classifier yields a lower error rate than obtained without con-
sidering different pronunciations. The threshold value used in LBG-clustering is
a normalized value. When the threshold value is set to 1, no clustering occurs,
and when it is set to 0 each utterance will form a separate cluster and the clas-
sifier converges to the nearest neighbor classifier. The error rate of the classifier
using LBG-clustering with respect to the threshold value is shown in Fig. 6. We
can observe that, with a threshold value of 1, no clustering happens and the

Table 1. Error rates [%] of the HMM classifier with different distances and clusterings.

Euclidean Tangent
Distance Distance

No Clustering 28.4 27.7

Manual Partitioning 22.8 20.5

k-means Clustering 23.8 21.3
LBG Clustering 23.2 21.5

Nearest Neighbor 23.6 22.2
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Fig. 6. Error rate of the system with respect to the threshold of clustering.

error rate is equal to the error rate of the classifier without any pronunciation
modeling. When decreasing the threshold value, the error rate is reduced and we
can achieve the best error rate of 23.2% and 21.5% using the Euclidean distance
and the tangent distance, respectively. The fluctuations we can observe in the
diagram for threshold values between 0 and 0.4 lead us to the conclusion that
the determination of the best threshold value is not very reliable. Nevertheless,
we can observe that there is a strong trend of reducing error rates for smaller
threshold values. This leads us to consider the nearest neighbor classifier, which
corresponds to the threshold value zero and achieves error rates of 23.6% and
22.2% with the Euclidean distance and the tangent distance, respectively. Be-
cause these values are only slightly less than the best, –but unstable– result
for LBG clustering, this approach should be considered for tasks with a large
variability of utterances.

The best error rate of 20.5% is achieved using manual clustering and tangent
distance but the results achieved using other clustering methods will be prefer-
able for large databases because they do not involve human labeling of video
sequences. The best pronunciation clustering method without human interven-
tion is the hierarchical LBG-clustering with tangent distance and an error rate
of 21.5%, which is an improvement of over 22 percent relative.

In the experiments reported above, mixture densities with a maximum num-
ber of five densities are used in each state. We have repeated the experiments
employing single density and mixture densities, consisting of more densities, in
the states of the HMMs. Table 2 shows the results of the experiments employing
the tangent distance and different clustering methods. The results show that us-
ing a higher number of densities within a mixture density improves the accuracy
of the system. In other words, the mixture densities can model the variability of
the utterances even without employing the clustering methods. The error rate
of the system without any clustering method is 22.8%. In most experiments, the
better results are achieved when mixture densities are used in the states. When
mixture densities are used, the influence of different clustering methods on the
error rate of the system is much less than single density experiments.



Table 2. Error rates [%] of the HMM classifier employing single and mixture densities.

Single Density Mixture Density

No Clustering 47.4 22.8

Manual Partitioning 35.4 21.9
k-means Clustering 33.1 21.1
LBG Clustering 21.7 22.1

About half of the remaining errors are due to visual singletons in the dataset,
which cannot be classified correctly using the leaving one out approach. This
means that one word was uttered in a way that is visually not similar to any of the
remaining utterances of that word. For example, all but one of the signs for POSS
show a movement of the right hand from the shoulder towards the right side of
the signer, while the remaining one shows a movement that is directed towards
the center of the body of the signer. This utterance thus cannot be classified
correctly without further training material that shows the same movement. This
is one of the drawbacks of the small amount of training data available.

A direct comparison to results of other research groups is unfortunately not
possible here, because there are no results published on publicly available data so
far, and research groups working on sign language or gesture recognition usually
use databases that were created within the group. We hope that other groups
will produce results for comparison on the BOSTON50 database in the future.

8 Conclusion

In this paper we introduced an appearance-based sign language recognition sys-
tem. According to our results, considering different pronunciations for sign lan-
guage words improves the accuracy of the system.

Due to the modeling of different pronunciations of each word in the database,
we employed three kinds of the clustering methods; manual clustering, k-means
clustering and hierarchical LBG-clustering. These methods can be chosen ac-
cording to the size of the database in different applications.

Although manual clustering gives more accuracy, it needs manually extracted
information and can therefore only be employed for small sets of data. The
k-means clustering needs less initial information and only needs to be initial-
ized with the number of clusters and manually selected seed utterances, so
this method is also suitable for medium size databases. In contrast, the LBG-
clustering method partitions the data automatically and is preferable for large
databases where extracting labels manually is unfeasible. According to the re-
sults of the experiments on the BOSTON50 database, LBG-clustering leads us
to use the nearest neighbor classifier that performs surprisingly well. In all ex-
periments, the tangent distance was compared to the Euclidean distance within
the Gaussian emission densities. Using the tangent distance that models small
global affine transformations of the images improves the accuracy of the classifier
significantly.



Appendix: visual lexicon data

The BOSTON50 database consists of 50 sign language words that are listed with
the number of occurrences here:

IXi (37), BUY (31), WHO (25), GIVE (24), WHAT (24), BOOK (23), FU-
TURE (21), CAN (19), CAR (19), GO (19), VISIT (18), LOVE (16), ARRIVE
(15), HOUSE (12), IXi“far” (12), POSS (12), SOMETHING/ONE (12), YES-
TERDAY (12), SHOULD (10), IX-1p (8), WOMAN (8), BOX (7), FINISH (7),
NEW (7), NOT (7), HAVE (6), LIKE (6), BLAME (6), BREAK-DOWN (5),
PREFER (5), READ (4),COAT (3), CORN (3), LEAVE (3), MAN (3), PEOPLE
(3),THINK (3), VEGETABLE (3) VIDEOTAPE (3), BROTHER (2), CANDY
(2), FRIEND (2), GROUP (2), HOMEWORK (2), KNOW (2),LEG (2), MOVIE
(2), STUDENT (2), TOY (2), WRITE (2).

References

1. Y. Nam and K. Wohn. Recognition of Space-Time Hand-Gestures Using Hidden
Markov Model. In Proceedings of the ACM Symposium on Virtual Reality Software

and Technology, pp. 51–58, Hong Kong, July 1996.
2. B. Bauer, H. Hienz, and K.F. Kraiss. Video-Based Continuous Sign Language

Recognition Using Statistical Methods. In Proceedings of the International Con-

ference on Pattern Recognition, pp. 463–466, Barcelona, Spain, September 2000.
3. T. Starner, J. Weaver, and A. Pentland. Real-Time American Sign Language

Recognition Using Desk and Wearable Computer Based Video. IEEE Trans. Pat-

tern Analysis and Machine Intelligence, 20(12):1371–1375, December 1998.
4. C. Vogler and D. Metaxas. Adapting Hidden Markov Models for ASL Recognition

by Using Three-dimensional Computer Vision Methods. In Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, pp. 156–161. Orlando,
FL, October 1997.

5. M. Zahedi, D. Keysers, and H. Ney. Appearance-based Recognition of Words in
American Sign Language. 2nd Iberian Conference on Pattern Recognition and

Image Analysis, Volume LNCS 3522 of Lecture Notes in Pattern Recognition and
Image Analysis, pp. 511–519, Estoril, Portugal, June 2005.

6. D. Keysers, W. Macherey, and H. Ney. Adaptation in Statistical Pattern Recog-
nition Using Tangent Vectors. IEEE Trans. Pattern Analysis and Machine Intel-

ligence, 26(2):269–274, February 2004.
7. C. Neidle, J. Kegl, D. MacLaughlin, B. Bahan, and R.G. Lee. The Syntax of

American Sign Language: Functional Categories and Hierarchical Structure. MIT
Press, Cambridge, MA, 2000.

8. L.R. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. In Proceedings of the IEEE, 77(2):267–296, February 1989.

9. P. Simard, Y. Le Cun, and J. Denker. Efficient Pattern Recognition Using a New
Transformation Distance. In Advances in Neural Information Processing Systems

5, pp. 50–58, Morgan Kaufmann, 1993.
10. Y. Linde, A. Buzo, and R. Gray. An Algorithm for Vector Quantization Design.

IEEE Trans. on Communications, Vol. 28, pp. 84–95, January 1980.


