
Agent-Based Computing and Programming of
Agent Systems

Michael Luck1, Peter McBurney2, and Jorge Gonzalez-Palacios1

1 School of Electronics and Computer Science,
University of Southampton, United Kingdom

mml@ecs.soton.ac.uk, jlgp03r@ecs.soton.ac.uk
2 Department of Computer Science,

University of Liverpool, United Kingdom
p.j.mcburney@csc.liv.ac.uk

Abstract. The concepts of autonomous agent and multi-agent system
provide appropriate levels of abstraction for the design, implementation
and simulation of many complex, distributed computational systems,
particularly those systems open to external participants. Programming
such agent systems presents many difficult challenges, both conceptually
and practically, and addressing these challenges will be crucial for the
development of agent technologies. We discuss, at a general level, some
of the issues involved in programming multi-agent and open, distributed
systems, drawing on the recently-published AgentLink III Roadmap of
Agent Based Computing Technologies.

1 Introduction

Since Shoham’s seminal paper [14] on agent-oriented programming in 1993, pro-
gramming of agent systems has been a key focus of interest. Certainly, the issues
surrounding the programming of agent systems had been considered earlier, but
Shoham’s work marked a key point in identifying agent-oriented programming
as a distinct paradigm in a way that had not been done previously. Yet program-
ming agent systems is in fact a broader area that is not restricted to program-
ming paradigms, but includes a whole host of issues ranging from methodological
concerns for developers to the specific agent architectures that are required for
particular interpreters for agent systems. The purpose of this paper is neither
to review the field of programming of agent systems, nor to provide an analysis
of particular problems in the area, but more generally to examine the broader
context for programming of agents systems in relation to the field of agent-based
computing.

As we have argued previously [11], agent technologies can be considered from
three perspectives: as a design metaphor; as a source of distinct technologies;
and as a simulation tool. Interestingly, the programming of agent systems can
be considered in relation to each of these perspectives. First, the programming
of agent systems is clearly related to the design metaphor in the development of
systems involving large numbers of interacting autonomous components. Second,

R.H. Bordini et al. (Eds.): ProMAS 2005, LNAI 3862, pp. 23–37, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

24 M. Luck, P. McBurney, and J. Gonzalez-Palacios

programming such systems requires the use of particular techniques to develop
appropriate architectures and interaction mechanisms. And third, multi-agent
systems may also be used as simulations of a system under construction or
in operation, thereby assisting developers or controllers with programming of
multi-agent systems.

As a design metaphor, agents provide designers and developers with a way
of structuring an application around autonomous, communicative elements, and
lead to the construction of software tools and infrastructure to support systems
development. In this sense, they offer a new and often more appropriate route to
the development of complex systems, especially in open and dynamic environ-
ments. In order to support this view of systems development, particular tools and
techniques need to be introduced. For example, methodologies to guide analysis
and design are required; agent architectures are needed for the design of individ-
ual components, and supporting infrastructure (including more general, current
technologies, such as Web Services) must be integrated.

As a source of technologies, agent-based computing spans a range of specific
techniques and algorithms for dealing with interactions with others in dynamic
and open environments. These include issues such as balancing reaction and
deliberation in individual agent architectures, learning from and about other
agents in the environment and user preferences, finding ways to negotiate and
cooperate with agents and developing appropriate means of forming and manag-
ing coalitions. Moreover, the adoption of agent-based approaches is increasingly
influential in other domains. For example, multi-agent systems can provide faster
and more effective methods of resource allocation in complex environments, such
as the management of utility networks, than any human-centred approach.

As a simulation tool, multi-agent systems can also play a role in programming
MAS. One common means to develop a complex, computational system is to pro-
ceed through construction of a sequence of prototypes, in a Rapid Applications
Development (RAD)-style approach. In such an approach, the successive proto-
types effectively act as simulations of the final system under construction; they
may be used by the system designers and developers as means to understand sys-
tem properties under differing conditions or parameter values, and to learn about
the system dynamics as agents enter, interact and leave the system. If adequate
formal verification methods for multi-agent systems existed, such simulations
would not be necessary, but most systems are too complex for the current state-
of-the-art in formal verification. For example, the development of online auction
systems relies on mathematical game theory for the design of the precise rules
of auctions (what economists call mechanism design). However, with any more
than just a handful of participants, many common auction institutions result in
mathematics that is not tractable, and for which analytic solutions may not be
known to exist. Thus, auction designers are forced to make assumptions about
the participants (for example, that they are utility-maximisers with unbounded
processing capabilities) or the mechanism (for example, that communication be-
tween participants is instantaneous) that do not apply in the real world. More-
over, designers of computational auction systems face problems not envisioned

Agent-Based Computing and Programming of Agent Systems 25

by game theory pioneers, such as malicious participants or participants with
buggy code. Accordingly, designers and developers of complex computational
systems often build prototypes in which to simulate system performance.1 Sim-
ilarly, system controllers may use a simulation of a system in order to diagnose
and manage system performance; this is common practice, for example, in util-
ity networks, where a controller may have end-to-end responsibility for quality
of service levels provided over physical infrastructures that are not all within
the same network. As with the designers’ use of MAS systems for simulation,
both the end-system being simulated and the system used for simulation are
multi-agent systems.

Although this paper does not delve deeply into such distinctions, these are a
useful means of drawing out the relevant current and future issues that must be
addressed for agent-based computing to see more general application, and for
programming and development frameworks to consider if they are to move out
of the laboratory, or even provide an alternative to the current de facto use of
object technologies for building agents systems.

Instead, however, the paper is structured as follows. First, in Section 2, we
present in outline form a structure of different levels of abstraction of multi-agent
system, which provides a framework through which research and development
in agent technologies may be viewed. Then, in Section 3, we discuss agent pro-
gramming languages and methods, while in Section 4, we consider infrastructure
and supporting technologies. Specific aspects of programming open multi-agent
systems are then discussed in Section 5, and the paper concludes in Section 6.

2 Levels of Abstraction

There are several distinct high-level trends and drivers, such as Grid computing,
ambient intelligence and service-oriented computing, for example, which have led
to a heightened interest in agent technologies, and in the low-level computing
infrastructures that make them practically feasible. In this context, we consider
the key technologies and techniques required to design and implement agent
systems that are the focus of current research and development. Because agent
technologies are mission-critical for engineering and for managing certain types of
information systems, such as Grid systems and systems for ambient intelligence,
the technologies and techniques discussed below will be important for many
applications, even those not labeled as agent systems. These technologies can be
grouped into three categories, according to the scale at which they apply.

– Organisation-level: at the top level are technologies and techniques related
to agent societies as a whole. Here, issues of organisational structure, trust,
norms and obligations, and self-organisation in open agent societies are

1 For example, Guala [5] describes the simulation activities — both computational
and human — used by economists who advised the US Federal Communications
Commission on the development of online mobile spectrum auctions, undertaken
since 1994.

26 M. Luck, P. McBurney, and J. Gonzalez-Palacios

paramount. Once again, many of these questions have been studied in other
disciplines — for example, in sociology, anthropology and biology. Draw-
ing on this related work, research and development is currently focused on
technologies for designing, evolving and managing complex agent societies.

– Interaction-level: these are technologies and techniques that concern commu-
nications between agents — for example, technologies related to communi-
cation languages, interaction protocols and resource allocation mechanisms.
Many of the problems that these technologies aim to solve have been stud-
ied in other disciplines, including economics, political science, philosophy
and linguistics. Accordingly, research and development is drawing on this
prior work to develop computational theories and technologies for agent in-
teraction, communication and decision-making.

– Agent-level: these are technologies and techniques concerned only with indi-
vidual agents — for example, procedures for agent reasoning and learning.
Problems at this level have been the primary focus of artificial intelligence
since its inception, aiming to build machines that can reason and operate
autonomously in the world. Agent research and development has drawn ex-
tensively on this prior work, and most attention in the field of agent-based
computing now focuses at the previous two higher levels.

This analysis parallels the abstraction of Zambonelli and Omicini [17] in refer-
ring to the macro, meso and micro levels of agent-oriented software engineering,
respectively. Within these levels of abstraction, we can consider technologies pro-
viding infrastructure and supporting tools for agent systems, such as agent pro-
gramming languages and software engineering methodologies. These supporting
technologies and techniques provide the basis for both the theoretical under-
standing and the practical implementation of agent systems, and are considered
in more detail in the next section. In particular, we outline key issues, and con-
sider likely and important challenges to move forward the technology, in research,
development and application.

3 Agent Programming

3.1 Agent Programming Languages

Most research in agent-oriented programming languages is based on declarative
approaches, mostly logic based. Imperative languages are in essence inappro-
priate for expressing the high-level abstractions associated with agent systems
design; however, agent-oriented programming languages should (and indeed tend
to) allow for easy integration with (legacy) code written in imperative languages.
From the technological perspective, the design and development of agent-based
languages is also important.

Currently, real agent-oriented languages (such as BDI-style ones) are limited,
and used largely for research purposes; apart from some niche applications, they
remain unused in practice. However, recent years have seen a significant increase
in the degree of maturity of such languages, and major improvements in the

Agent-Based Computing and Programming of Agent Systems 27

development platforms and tools that support them [1]. Current research em-
phasises the role of multi-agent systems development environments to assist in
the development of complex multi-agent systems, new programming principles
to model and realise agent features, and formal semantics for agent programming
languages to implement specific agent behaviours.

A programming language for multi-agent systems should respect the prin-
ciple of separation of concerns and provide dedicated programming constructs
for implementing individual agents, their organisation, their coordination, and
their environment. However, due to the lack of dedicated agent programming
languages and development tools (as well as more fundamental concerns relat-
ing to the lack of clear semantics for agents, coordination, etc), the construction
of multi-agent systems is still a time-consuming and demanding activity.

One key challenge in agent-oriented programming is to define and implement
some truly agent-oriented languages that integrate concepts from both declar-
ative and object-oriented programming, to allow the definition of agents in a
declarative way, yet supported by serious monitoring and debugging facilities.
These languages should be highly efficient, and provide interfaces to existing
mainstream languages for easy integration with code and legacy packages. While
existing agent languages already address some of these issues, further progress is
expected in the short term, but thorough practical experimentation in real-world
settings (particularly large-scale systems) will be required before such languages
can be adopted by industry, in the medium to long term.

In addition to languages for single agents, we also need languages for high-
level programming of multi-agent systems. In particular, the need for expressive,
easy-to-use, and efficient languages for coordinating and orchestrating intelligent
heterogeneous components is already pressing and, although much research is
already being done, the development of an effective programming language for
coordinating huge, open, scalable and dynamic multi-agent systems composed
of heterogeneous components is a longer term goal.

3.2 Formal Methods

While agent-oriented programming ultimately seeks practical application, the
development of appropriate languages demands an associated formal analysis.
While the notion of an agent acting autonomously in the world is intuitively
simple, formal analysis of systems containing multiple agents is inherently com-
plex. In particular, to understand the properties of systems containing multiple
actors, powerful modelling and reasoning techniques are needed to capture pos-
sible trajectories of the system. Such techniques are required if agents and agent
systems are to be modelled and analysed computationally.

Research in the area of formal models for agent systems attempts to represent
and understand properties of the systems through the use of logical formalisms
describing both the mental states of individual agents and the possible interac-
tions in the system. The logics used are often logics of belief or other modalities,
along with temporal modalities, and such logics require efficient theorem-proving
or model-checking algorithms when applied to problems of significant scale.

28 M. Luck, P. McBurney, and J. Gonzalez-Palacios

Recent efforts have used logical formalisms to represent social properties, such
as coalitions of agents, preferences and game-type properties.

It is clear that formal techniques such as model checking are needed to test, de-
bug and verify properties of implemented multi-agent systems. Despite progress,
there is still a real need to address the issues that arise from differences in agent
systems, in relation to the paradigm, the programming languages used, and es-
pecially the design of self-organising and emergent behaviour. For the latter, a
programming paradigm that supports automated checking of both functional
and non-functional system properties may be needed. This would lead to the
need to certify agent components for correctness with respect to their specifi-
cations. Such a certification could be obtained either by selecting components
that have already been verified and validated off-line using traditional techniques
such as inspection, testing and model checking or by generating code automati-
cally from specifications. Furthermore, techniques are needed to ensure that the
system still executes in an acceptable, or safe, manner during the adaptation
process, for example using techniques such as dependency analysis or high level
contracts and invariants to monitor system correctness before, during and after
adaptation.

4 Infrastructure and Supporting Technologies

Any infrastructure deployed to support the execution of agent applications, such
as those found in ambient and ubiquitous computing must, by definition, be
long lived and robust. In the context of self-organising systems, this is further
complicated, and new approaches supporting the evolution of the infrastructures,
and facilitating their upgrade and update at runtime, will be required. Given
the potentially vast collection of devices, sensors, and personalised applications
for which agent systems and self-organisation may be applicable, this update
problem is significantly more complex than so far encountered. More generally,
middleware, or platforms for agent interoperability, as well as standards, will be
crucial for the medium term development of agent systems.

4.1 Interoperability

At present, the majority of agent applications exist in academic and commercial
laboratories, but are not widely available in the real world. The move out of the
laboratory is likely to happen over the next ten years, but far greater automation
than is currently available in dealing with knowledge management is needed for
information agents. In particular, this demands new web standards that enable
structural and semantic description of information; and services that make use
of these semantic representations for information access at a higher level. The
creation of common ontologies, thesauri or knowledge bases plays a central role
here, and merits further work on the formal descriptions of information and
actions, and, potentially, a reference architecture to support the higher level
services mentioned above.

Agent-Based Computing and Programming of Agent Systems 29

Distributed agent systems that adapt to their environment must both adapt
individual agent components and coordinate adaptation across system layers
(i.e. application, presentation and middleware) and platforms. In other words
interoperability must be maintained across possibly heterogeneous agent com-
ponents during and after self-organisation actions and outcomes. Furthermore,
agent components are likely to come from different vendors and hence the de-
veloper may need to integrate different self-organisation mechanisms to meet
application requirements. The problem is further complicated by the diversity of
self-organisation approaches applicable at different system layers. In many cases,
even solutions within the same layer are often not compatible. Consequently, de-
velopers need tools and methods to integrate the operation of agent components
across the layers of a single system, among multiple computing systems, as well
as between different self-organisation frameworks.

4.2 Agent Oriented Software Engineering Methodologies

Despite a number of languages, frameworks, development environments, and
platforms that have appeared in the literature, implementing multi-agent sys-
tems is still a challenging task. To manage the complexity of multi-agent systems
design and implementation, the research community has produced a number of
methodologies that aim to structure agent development. However, even if prac-
titioners follow such methodologies during the design phase, there are difficulties
in the implementation phase, partly due to the lack of maturity in both method-
ologies and programming tools. There are also difficulties in implementation due
to: a lack of specialised debugging tools; skills needed to move from analysis
and design to code; the problems associated with awareness of the specifics of
different agent platforms; and in understanding the nature of what is a new and
distinct approach to systems development.

In relation to open and dynamic systems, new methodologies for systemati-
cally considering self-organisation are required. These methodologies should be
able to provide support for all phases of the agent-based software engineering
lifecycle, allowing the developer to start from requirements analysis, identify
the aspects of the problem that should be addressed using self-organisation
and design and implement the self-organisation mechanisms in the behaviour
of the agent components. Such methodologies should also encompass techniques
for monitoring and controlling the self-organising application or system once
deployed.

4.3 Integrated Development Environments

In general, integrated development environment (IDE) support for developing
agent systems is rather weak, and existing agent tools do not offer the same level
of usability as state-of-the-art object oriented IDEs. One main reason for this is
the previous unavoidable tight coupling of agent IDEs and agent platforms, which
results from the variety of agent models, platforms and programming languages.

30 M. Luck, P. McBurney, and J. Gonzalez-Palacios

This is now changing, however, with an increased trend towards modelling rather
than programming.

With existing tools, multi-agent systems often generate a huge amount of
information related to the internal state of agents, messages sent and actions
taken, but there are not yet adequate methods for managing this information
in the context of the development process. This has impacts both for dealing
with the information generated in the system and for obtaining this information
without altering the design of the agents within it.

Platforms like JADE provide general introspection facilities for the state of
agents and for messages, but they enforce a concrete agent architecture that
may not be appropriate for all applications. Thus, tools for inspecting any agent
architecture, analogous to the remote debugging tools in current object-oriented
IDEs, are needed, and some are now starting to appear [2]. Extending this to
address other issues related to debugging for organisational features, and for
considering issues arising from emergence in self-organising systems will also be
important in the longer term. The challenge is relevant now, but will grow in
importance as the complexity of installed systems increases further.

The inherent complexity of agent applications also demands a new generation
of CASE tools to assist application designers in harnessing the large amount of
information involved. This requires providing reasoning at appropriate levels
of abstraction, automating the design and implementation process as much as
possible, and allowing for the calibration of deployed multi-agent systems by
simulation and run-time verification and control.

More generally, there is a need to integrate existing tools into IDEs rather
than starting from scratch. At present there are many research tools, but little
that integrates with generic development environments, such as Eclipse; such
advances would boost agent development and reduce implementation costs. In-
deed, developing multi-agent systems currently involves higher costs than using
conventional paradigms due to the lack of supporting methods and tools.

The next generation of computing system is likely to demand large num-
bers of interacting components, be they services, agents or otherwise. Cur-
rent tools work well with limited numbers of agents, but are generally not yet
suitable for the development of large-scale (and efficient) agent systems, nor
do they offer development, management or monitoring facilities able to deal
with large amounts of information or tune the behaviour of the system in such
cases.

4.4 Metrics

Metrics for agent-oriented software are also needed: engineering always implies
some activity of measurement, and traditional software engineering already uses
widely applied measuring methods to quantify aspects of software such as
complexity, robustness and mean time between failures. However, the dynamic
nature of agent systems, and the generally non-deterministic behaviour of
self-organising agent applications deem traditional techniques for measurement
and evaluation inappropriate. Consequently, new measures and techniques for

Agent-Based Computing and Programming of Agent Systems 31

both quantitatively and qualitatively assessing and classifying multi-agent
systems applications (be they self-organising or not) are needed.

5 Open Systems

5.1 Introduction

The advent of low-cost computation has driven the proliferation of computers
and computational devices over the last two decades, and with them, a pro-
liferation of physical networks. With the interconnections provided by physical
networks come requirements for computational societies — means of distributing
data gathering, processing intelligence, resource allocation and system control,
as in ambient intelligence, pervasive computing, Grid computing, etc. These
computational societies increasingly require applications which are large-scale,
decentralised, proactive, situated and open.

However, traditional approaches (for example, object-oriented and component-
based computing) have fallen short in engineering these types of application
because they utilise too low a level of abstraction, focusing on the “physical
distribution of data, resources and processes,” rather than on the “logical distri-
bution of responsibility, control and regulation,” to quote Pitt’s apt distinction
[13, p. 140]. As a consequence, alternative approaches have been proposed, with
a consensus emerging that the concept of autonomous agency provides the ap-
propriate level of abstraction to successfully develop these types of systems [8].
As mentioned above, this has led to the appearance of several agent-oriented
software methodologies, which aim to support development of open systems.

More specifically, an open system is a one that allows run-time incorpora-
tion of components that may not be known at design time. In addition, the
components of an open system are typically not designed and developed by the
same design team or for the same stakeholders, and different teams may use
different development tools or adopt different policies or objectives, leading to
the appearance of self-interested components. In whatever way or for whom the
components are developed, they will normally have the right to access the cor-
responding facilities provided by the system, as well as having an obligation to
adhere to the system’s rules.

5.2 Specification of Open Systems

Even though several methodologies exist to support the development of open
systems, these present drawbacks when dealing with the incorporation of new
components to an existing system. In fact, the phase of operation of a system is
generally not considered in methodologies. For example, despite the importance
of providing developers with a description of system properties, the problem of
what must be present in such a description and how it must be described has
been scarcely addressed.

Although each system can have its own form of specification (comprising a list
of the features provided by the system, as well as the requirements to join it), a

32 M. Luck, P. McBurney, and J. Gonzalez-Palacios

common model of specification would bring multiple benefits. First, by using pre-
defined models, the time spent on creating specifications can be reduced. Second,
using common models would promote the creation of standards, of which much
has already been written, and much work undertaken. Finally, by defining and
structuring the description of a system, the model of specification is valuable
in defining the inputs of run-time components that check system properties,
for example that new agents comply with required characteristics, and do not
violate operating principles.

In particular, because of the autonomous and pro-active nature of the com-
ponents (agents) of multi-agent systems, such specifications are likely to be vital
in appropriately enabling and regulating self-interested behaviour in open sys-
tem. This suggests that tools and techniques for the development of open systems
(including the above discussed methodologies, design tools, monitoring tools, de-
buggers, platforms, and so on) will be required if the requirements of large-scale
open systems that underlie visions of Grid computing and similar paradigms are
to be satisfied. In addition, a focus on standardisation of abstractions, operating
models, interaction protocols and other patterns of activity will be needed.

In relation to these issues, we outline below some further concerns in the
context of the current situation that require further research and development.

5.3 Methodologies

Current methodologies are not complete or detailed enough. Even if we restrict
our attention only to the analysis and design phases of the development cy-
cle, very few methodologies cover all the corresponding activities. For example,
SODA does not address intra-agent issues, Gaia does not consider how the ser-
vices an agent provides are realised [15], Gaia extended with organisational ab-
stractions is not sufficiently elaborated [16], the models of MAS-CommonKADS
require further improvement, as recognised by its developers [7], and the evalu-
ation of MESSAGE reports that it is not complete nor mature [9].

5.4 Agent Architectures

Despite the focus on development and programming, it is impossible not to
consider specific agent architectures during the design and programming of in-
dividual agents. Different approaches are taken by different methodologies, with
three significant styles as follows.

– For some methodologies, architectures are outside their scope since they were
designed only for analysis and high-level design, for example, Gaia [15].

– Some methodologies and languages are tied to a specific architecture. For
example the methodological work of Kinny, Georgeff and Rao [10] is tied to
the BDI architecture.

– Some other methodologies are tied to a specific architecture but it is sug-
gested that the same principles can be applied to other architectures, or that
other architectures can be adapted to fit. For example, MESSAGE [9] uses
the generic Layer Architecture for this purpose.

Agent-Based Computing and Programming of Agent Systems 33

While there are clearly efforts to incorporate architectures into methodolo-
gies, no methodology satisfactorily incorporates even a subset of the most popu-
lar agent architectures. Conversely, the development of programming languages
seems to require commitment to particular architectures (see, for example, 3APL
[6], AgentSpeak(L) [3], and AGENT-0[14]), yet mapping from one to another is
problematic. The variety of domains of application of agent-based computing,
especially in open systems, requires programming languages such as these to be
broadly applicable; for this to be the case, some solution, technical or consensual,
is needed.

5.5 Interactions in Open Systems

Interactions are a key element in both the modelling and operation of multi-agent
systems, since agents achieve their goals by interacting with other agents. In the
case of open systems, interaction mechanisms should be flexible enough to allow
new agents to be incorporated into the system. However, most methodologies
neither facilitate nor obstruct the development of open systems, and some effort
is required to explicitly consider this issue. For example, enriching the analysis
and upper design phases of MESSAGE [9] with the organisational abstractions
recommended by Zambonelli et al. [16] could lead to a methodology suitable for
tackling open systems.

6 Conclusions

In any high-technology domain, the systems deployed in commercial or industrial
applications tend to embody research findings somewhat behind the leading edge
of academic and industrial research. Multi-agent systems are no exception to this,
with currently-deployed systems having features found in published research and
prototypes of three to five years ago. By looking at current research interests
and areas of focus, we were therefore able in [12] to extrapolate future trends
in deployed systems, which we classified into four broad phases of development
of multi-agent system technology over the next decade; we summarise these
phases here.

The four phases are, of necessity, only indicative, since there will always be
some companies and organisations which are leading users of agent technologies,
pushing applications ahead of these phases, while many other organisations will
not be as advanced in their use of the technology. We aim to describe the majority
of research challenges at each time period.

6.1 Phase 1: Current

Multi-agent systems are currently typically designed by one design team for
one corporate environment, with participating agents sharing common high-
level goals in a single domain. These systems may be characterised as closed. (Of

34 M. Luck, P. McBurney, and J. Gonzalez-Palacios

course, there is also work on individual competitive agents for automated negoti-
ation, trading agents, and so forth, but typically also constrained by closed envi-
ronments.) The communication languages and interaction protocols are typically
in-house protocols, defined by the design team prior to any agent interactions.
Systems are usually only scalable under controlled, or simulated, conditions. De-
sign approaches, as well as development platforms, tend to be ad hoc, inspired
by the agent paradigm rather than using principled methodologies, tools or lan-
guages. Although this is still largely true, there is now an increased focus on, for
example, taking methodologies out of the laboratory and into development envi-
ronments, with commercial work being done on establishing industrial-strength
development techniques and notations. As part of this effort, some platforms
now come with their own protocol libraries and force the use of standardised
messages, taking one step towards the short-term agenda.

6.2 Phase 2: Short-Term Future

In the next phase of development, systems will increasingly be designed to cross
corporate boundaries, so that the participating agents have fewer goals in com-
mon, although their interactions will still concern a common domain, and the
agents will be designed by the same team, and will share common domain knowl-
edge. Increasingly, standard agent communication languages, such as FIPA ACL
[4], will be used, but interaction protocols will be mixed between standard and
non-standard ones. These systems will be able to handle large numbers of agents
in pre-determined environments, such as those of Grid applications. Development
methodologies, languages and tools will have reached a degree of maturity, and
systems will be designed on top of standard infrastructures such as web services
or Grid services, for example.

6.3 Phase 3: Medium-Term Future

In the third phase, multi-agent systems will permit participation by heteroge-
neous agents, designed by different designers or teams. Any agent will be able to
participate in these systems, provided their (observable) behaviour conforms to
publicly-stated requirements and standards. However, these open systems will
typically be specific to particular application domains, such as B2B eCommerce
or bioinformatics. The languages and protocols used in these systems will be
agreed and standardised, perhaps drawn from public libraries of alternative pro-
tocols that will, nevertheless, likely differ by domain. In particular, it will be
important for agents and systems to master this semantic heterogeneity. Sup-
porting this will be the increased use of new, commonly agreed modelling lan-
guages (such as Agent-UML, an extension of UML 2.0), which will promote the
use of IDEs and, hopefully, start a harmonisation process as was the case for
objects with UML.

Systems will scale to large numbers of participants, although typically only
within the domains concerned, and with particular techniques (such as domain-
bridging agents), to translate between separate domains. System development

Agent-Based Computing and Programming of Agent Systems 35

will proceed by standard agent-specific methodologies, including templates and
patterns for different types of agents and organisations. Agent-specific program-
ming languages and tools will be increasingly used, making the use of formal
verification techniques possible to some extent. Semantic issues related to, for
example, coordination between heterogeneous agents, access control and trust,
are of particular importance here. Also, because these systems will typically be
open, issues such as robustness against malicious or faulty agents, and finding
an appropriate trade-off between system adaptability and system predictability,
will become increasingly important.

6.4 Phase 4: Long-Term Future

The fourth phase in this projected future will see the development of open
multi-agent systems spanning multiple application domains, and involving het-
erogeneous participants developed by diverse design teams. Agents seeking to
participate in these systems will be able to learn the appropriate behaviour for
participation in the course of interacting, rather than having to prove adher-
ence before entry. Selection of communications protocols and mechanisms, and
of participant strategies, will be undertaken automatically, without human in-
tervention. Similarly, ad hoc coalitions of agents will be formed, managed and
dissolved automatically. Although standard communication languages and inter-
action protocols will have been available for some time, systems in this phase
will enable these mechanisms to emerge by evolutionary means from actual par-
ticipant interactions, rather than being imposed at design time. In addition,
agents will be able to form and re-form dynamic coalitions and virtual organisa-
tions on-the-fly and pursue ever-changing goals through appropriate interaction
mechanisms for distributed cognition and joint action. In these environments,
emergent phenomena will likely appear, with systems having properties (both
good and bad) not imagined by the initial design team. Multi-agent systems will
be able, adaptable and adept in the face of such dynamic, indeed turbulent, envi-
ronments, and they will exhibit many of the self-aware characteristics described
in the autonomic computing vision.

By this phase, systems will be fully scalable in the sense that they will not
be restricted to arbitrary limits (on agents, users, interaction mechanisms, agent
relationships, complexity, etc). As previously, systems development will proceed
by use of rigorous agent-specification design methodologies, in conjunction with
programming and verification techniques.

6.5 Realization

Of course, achieving the ambitious future vision outlined in these four phases
of development will not proceed without obstacles. Significant research, devel-
opment and deployment challenges exist for both academic researchers and for
commercial developers of agent computing technologies. Languages and method-
ologies for programming autonomous agents and multi-agent systems are among

36 M. Luck, P. McBurney, and J. Gonzalez-Palacios

the most important of these, and will remain at the centre of agent-based
computing for at least the next decade.

Acknowledgements

This paper is in part based on, and borrows heavily from, the AgentLink III
Roadmap [12] which, in turn, drew on inputs and contributions from the
PROMAS Technical Forum Group (as well as others) during the lifetime of
AgentLink III.

References

1. R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, editors. Multi-
Agent Programming: Languages, Platforms and Applications. Springer, 2005.

2. J. Botia, A. Lopez-Acosta, and A. Gomez-Skarmeta. Aclanalyser: A tool for de-
bugging multi-agent systems. In Proceedings of the Sixteenth European Conference
on Artificial Intelligence, pages 967–968, 2004.

3. M. d’Inverno and M. Luck. Engineering AgentSpeak(L): A formal computational
model. Journal of Logic and Computation, 8(3):233–260, 1998.

4. FIPA. Communicative Act Library Specification. Standard SC00037J, Foundation
for Intelligent Physical Agents, 3 December 2002.

5. F. Guala. Building economic machines: The FCC Auctions. Studies in the History
and Philosophy of Science, 32(3):453–477, 2001.

6. K. V. Hindriks, F. S. de Boer, W. van der Hoek, , and J-J. Ch. Meyer. Formal
semantics for an abstract agent programming language. In Intelligent Agents IV:
Proceedings of the Fourth International Workshop on Agent Theories, Architectures
and Languages, Lecture Notes in Artificial Intelligence, Volume 1365, pages 215–
229. Springer-Verlag, 1998.

7. C. A. Iglesias, M. Garijo, J. C. Gonzalez, and J. R. Velasco. Analysis and design
of multiagent systems using mas-commonkads. In M. P. Singh, A. Rao, and M. J.
Wooldridge, editors, Intelligent Agents IV: Proceedings of the Fourth International
Workshop on Agent Theories, Architectures, and Languages, Lecture Notes in Ar-
tificial Intelligence, Volume 1365, pages 313–326. Springer-Verlag, 1998.

8. N. R. Jennings. An agent-based approach for building complex software systems.
Communications of the ACM, 44(4):35–41, 2001.

9. P. Kearney, J. Stark, G. Caire, F. J. Garijo, J. J. Gomez Sanz, J. Pavon, F. Leal,
P. Chainho, and P. Massonet. Message: Methodology for engineering systems of
software agents. Technical Report EDIN 0223-0907, Eurescom, 2001.

10. D. Kinny, M. Georgeff, and A. Rao. A methodology and modelling technique for
systems of bdi agents. In W. van der Velde and J. Perram, editors, Agents Breaking
Away: Proceedings of the Seventh European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, Lecture Notes in Artificial Intelligence, Volume
1038, pages 56–71. Springer-Verlag, 1996.

11. M. Luck, P. McBurney, and C. Preist. A manifesto for agent technology: To-
wards next generation computing. Autonomous Agents and Multi-Agent Systems,
9(3):203–252, 2004.

12. M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing
as Interaction. A Roadmap for Agent Based Computing. AgentLink III, 2005.

Agent-Based Computing and Programming of Agent Systems 37

13. J. Pitt. The open agent society as a platform for the user-friendly information
society. AI and Society, 19:123–158, 2005.

14. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92,
1993.

15. M. Wooldridge, N. Jennings, and D. Kinny. The Gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.

16. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Organisational rules as an ab-
straction for the analysis and design of multi-agent systems. International Journal
of Software Engineering and Knowledge Engineering, 11(3):303–328, 2001.

17. F. Zambonelli and A. Omicini. Challenges and research directions in agent-oriented
software engineering. Autonomous Agents and Multi-Agent Systems, 9(3):253–283,
2004.

	Introduction
	Levels of Abstraction
	Agent Programming
	Agent Programming Languages
	Formal Methods

	Infrastructure and Supporting Technologies
	Interoperability
	Agent Oriented Software Engineering Methodologies
	Integrated Development Environments
	Metrics

	Open Systems
	Introduction
	Specification of Open Systems
	Methodologies
	Agent Architectures
	Interactions in Open Systems

	Conclusions
	Phase 1: Current
	Phase 2: Short-Term Future
	Phase 3: Medium-Term Future
	Phase 4: Long-Term Future
	Realization

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

