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Abstract. Recently, opacity has proved to be a promising technique for
describing security properties. Much of the work has been couched in
terms of Petri nets. Here, we extend the notion of opacity to the model
of labelled transition systems and generalise opacity in order to bet-
ter represent concepts from the work on information flow. In particular,
we establish links between opacity and the information flow concepts of
anonymity and non-interference such as non-inference. We also investi-
gate ways of verifying opacity when working with Petri nets. Our work is
illustrated by an example modelling requirements upon a simple voting
system.
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Introduction

The notion of secrecy has been formulated in various ways in the computer
security literature. However, two views of security have been developed over
the years by two separate communities. The first one starts from the notion
of information flow, describing the knowledge an intruder could gain in terms
of properties such as non-deducibility or non-interference. The second view was
initiated by Dolev and Yao’s work and focussed initially on security protocols [7].
The idea here is to describe properly the capability of the intruder. Some variants
of secrecy appeared, such as strong secrecy, giving more expressivity than the
classical secrecy property but still lacking the expressivity of information flow
concepts.

Recently, opacity has proved to be a promising technique for describing se-
curity properties. Much of the work has been couched in terms of Petri nets.
In this paper, we extend the notion of opacity to the more general framework
of labelled transition systems. When using opacity we have fine-grained control
over the observation capabilities of the players, and we show one way that these
capabilities may be encoded. The essential idea is that a predicate is opaque if an
observer of the system will never be able to establish the truth of that predicate.

In the first section, after recalling some basic definitions, we present a gen-
eralisation of opacity, and show how this specialises into the three previously
defined variants. In Section 2, we show how opacity is related to previous work
in security. In Section 3, we consider the question of opacity checking. After
restricting ourselves to Petri nets, we give some decidability and undecidability
properties. As opacity is undecidable as soon as we consider systems with infinite
number of states, we present an approximation technique which may provide a
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way of model checking even in such cases. Finally, in Section 4, we consider a
voting scheme, and show how the approximation technique might be used. All
the proofs are available in [6].

1 Basic Definitions

The set of finite sequences over a set A will be denoted by A∗, and the empty
sequence by ε. The length of a finite sequence λ will be denoted by len(λ), and
its projection onto a set B ⊆ A by λ |B .

Definition 1 A labelled transition system (LTS) is a tuple Π = (S ,L,∆,S0),
where S is the (potentially infinite) set of states, L is the (potentially infinite)
set of labels, ∆ ⊆ S × L × S is the transition relation, and S0 is the nonempty
(finite) set of initial states. We consider only deterministic LTSs, and so for any
transitions (s, l , s ′), (s, l , s ′′) ∈ ∆, it is the case that s ′ = s ′′1.
A run of Π is a pair (s0, λ), where s0 ∈ S0 and λ = l1 . . . ln is a finite sequence of
labels such that there are states s1, . . . , sn satisfying (si−1, li , si), for i = 1, . . . ,n.
We will denote the state sn by s0⊕λ, and call it reachable from s.
The set of all runs is denoted by run(Π), and the language generated by Π is
defined as L(Π) = {λ | ∃ s0 ∈ S0 : (s0, λ) ∈ run(Π)}.

Let Π = (S ,L,∆,S0) be an LTS fixed for the rest of this section, and Θ be
a set of elements called observables. We will now aim at modelling the different
capabilities for observing the system modelled by Π. First, we introduce a general
observation function and then, specialise it to reflect limited information about
runs available to an observer.

Definition 2 Any function obs : run(Π) → Θ∗ is an observation function. It
is called label-based and: static / dynamic / orwellian / m-orwellian (m ≥ 1) if
respectively the following hold (below λ = l1 . . . ln):

– static: there is a mapping obs ′ : L → Θ ∪ {ε} such that for every run (s, λ)
of Π, obs(s, λ) = obs ′(l1) . . . obs ′(ln).

– dynamic: there is a mapping obs ′ : L×L∗ → Θ∪{ε} such that for every run
(s, λ) of Π, obs(s, λ) = obs ′(l1, ε)obs

′(l2, l1) . . . obs ′(ln , l1 . . . ln−1).
– orwellian: there is a mapping obs ′ : L × L∗ → Θ ∪ {ε} such that for every

run (s, λ) of Π, obs(s, λ) = obs ′(l1, λ) . . . obs ′(ln , λ).
– m-orwellian: there is a mapping obs ′ : L × L∗ → Θ ∪ {ε} such that for

every run (s, λ) of Π, obs(s, λ) = obs ′(l1, κ1) . . . obs ′(ln , κn), where for i =
1, . . . ,n, κi = lmax{1,i−m+1}lmax{1,i−m+1}+1 . . . lmin{n,i+m−1}.

In each of the above four cases, we will often use obs(λ) to denote obs(s, λ)
which is possible as obs(s, λ) does not depend on s.

Note that allowing obs ′ to return ε allows one to model invisible actions. The
different kinds of observable functions reflect different computational power of
the observers. Static functions correspond to an observer which always interprets

1 A nondeterministic LTS can be transformed into a deterministic one through a
relabeling that assigns a unique label to each transition.



Opacity Generalised to Transition Systems 3

the same executed label in the same way. Dynamic functions correspond to an
observer which has potentially infinite memory to store labels, but can only use
knowledge of previous labels to interpret a label. Orwellian functions correspond
to an observer which has potentially infinite memory to store labels, and can
use knowledge (either subsequent or previous) of other labels to (re-)interpret a
label. m-orwellian functions are a restricted version of the last class where the
observer can store only a bounded number of labels. Static functions are nothing
but 1-orwellian ones; static functions are also a special case of dynamic functions;
and both dynamic and m-orwellian are a special case of orwellian functions.

It is possible to define state-based observation functions. For example, a
state-based static observation function obs is one for which there is obs ′ :
S → Θ ∪ {ε} such that for every run (s, l1 . . . l1), we have obs(s, l1 . . . ln) =
obs ′(s)obs ′(s⊕l1) . . . obs ′(s⊕l1 . . . ln).

Let us consider an observation function obs. We are interested in whether an
observer can establish a property φ (a predicate over system states and traces)
for some run having only access to the result of the observation function. We
will identify φ with its characteristic set: the set of runs for which it holds.

Now, given an observed execution of the system, we would want to find out
whether the fact that the underlying run belongs to φ can be deduced by the
observer (note that we are not interested in establishing whether the underlying
run does not belong to φ; to do this, we would rather consider the property
φ = run(Π) \ φ).

What it means to deduce a property can mean different things depending on
what is relevant or important from the point of view of real application. Below,
we give a general formalisation of opacity and then specialise it in three different
ways.

Definition 3 A predicate φ over run(Π) is opaque w.r.t. the observation func-
tion obs if, for every run (s, λ) ∈ φ, there is a run (s ′, λ

′
) /∈ φ such that

obs(s, λ) = obs(s ′, λ
′
). Moreover, φ is called: initial-opaque / final-opaque /

total-opaque if respectively the following hold:

– there is a predicate φ′ over S0 such that for every run (s, λ) of Π, we have
φ(s, λ) = φ′(s).

– there is a predicate φ′ over S such that for every run (s, λ) of Π, we have
φ(s, λ) = φ′(s⊕λ).

– there is a predicate φ′ over S ∗ such that for every run (s, l1 . . . ln) of Π, we
have φ(s, l1 . . . ln) = φ′(s, s⊕l1, . . . , s⊕l1 . . . ln).

In the first of above three cases, we will often write s ∈ φ whenever (s, λ) ∈ φ.

Initial-opacity has been illustrated by the dining cryptographers example
(in [4] with two cryptographers and [5] with three). It would appear that it is
suited to modelling situations in which initialisation information such as crypto
keys, etc., needs to be kept secret. More generally, situations in which confidential
information can be modelled in terms of initially resolved non-determinism can
be captured in this way. Final-opacity models situations where the final result
of a computation needs to be secret. Total-opacity is a generalisation of the two
other properties asking not only the result of the computation and its parameters
to be secret but also the states visited during computation.
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Proposition 1. Let φ and φ′ be two predicates over run(Π). If φ is opaque
w.r.t. an observation function obs and φ′ ⇒ φ, then φ′ is opaque w.r.t. obs.

2 Opacity in Security

The goal of this section is to show how our notion of opacity relates to other con-
cepts commonly used in the formal security community. We will compare opacity
to forms of anonymity and non-interference, as well as discuss its application to
security protocols.

2.1 Anonymity

Anonymity is concerned with the preservation of secrecy of identity through the
obscuring of the actions of that identity. It is a function of the behaviour of the
underlying (anonymising) system, as well as being dependent on capability of
the observer.

The static, dynamic and orwellian forms of observation function presented in
Definition 2 model three different strengths of observer. We now introduce two
observation functions needed to render anonymity in terms of suitable opacity
properties.

Let Π = (S ,L,∆,S0) be an LTS fixed for the rest of this section, and A =
{a1, . . . , an} ⊆ L be a set of labels over which anonymity is being considered.
Moreover, let α, α1, . . . , αn /∈ L be fresh labels.
The first observation function, obss

A, is static and defined so that obss
A(λ) is

obtained from λ by replacing each occurrence of ai by α. The second observation
function, obsd

A, is dynamic and defined thus: let ai1 , . . . , aiq (q ≥ 0) be all the
distinct labels of A appearing within λ listed in the (unique) order in which they
appeared for the first time in λ; then obs(λ) is obtained from λ by replacing
each occurrence of aij by αj . For example,

obss
{a,b}(acdba) = αcdαα and obsd

{a,b}(acdba) = α1cdα2α1.

Strong anonymity In [22], a definition of strong anonymity is presented for the
process algebra CSP. In our (LTS) context, this definition translates as follows.

Definition 4 Π is strongly anonymous w.r.t. A if L(Π) = L(Π ′), where Π ′

is obtained from Π by replacing each transition (s, ai , s
′) with n transitions:

(s, a1, s
′), . . . , (s, an , s ′).

In our framework, we have that

Definition 5 Π is O-anonymous w.r.t. A if, for every sequence µ ∈ A∗, the
predicate φµ over the runs of Π defined by

φµ(s, λ) =
(

len(λ |A) = len(µ) ∧ λ |A 6= µ
)

is opaque w.r.t. obss
A.
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We want to ensure that every possible sequence µ (with appropriate length
restrictions) of anonymised actions is a possible sequence within the LTS. In
Definition 5 above, the opacity of the predicate φµ ensures that the sequence µ
is a possible history of anonymised actions, because it is the only sequence for
which the predicate φµ is false, and so φµ can only be opaque if µ is a possible
sequence.

Theorem 1. Π is O-anonymous w.r.t. A iff it is strongly anonymous w.r.t. A.

Weak anonymity A natural extension of strong anonymity is weak anonymity 2.
This models easily the notion of pseudo-anonymity : actions performed by the
same party can be correlated, but the identity of the party cannot be determined.

Definition 6 Π is weakly anonymous w.r.t. A if π(L(Π)) ⊆ L(Π), for every
permutation π over the set A.

In our framework, we have that

Definition 7 Π is weak-O-anonymous if, for every sequence µ ∈ A∗, the pred-
icate φµ over the runs of Π introduced in Definition 5 is opaque w.r.t. obsd

A.

Theorem 2. Π is weak-O-anonymous w.r.t. A iff it is weak-anonymous w.r.t. A.

Other observation functions Dynamic observation functions can model for
example the downgrading of a channel. Before the downgrade nothing can be
seen, after the downgrade the observer is allowed to see all transmissions on
that channel. A suitable formulation would be as follows.

Suppose that A represents the set of all possible messages on a confidential
channel, and δ ∈ L \ A represents an action of downgrading that channel. Then
obs(λ) is obtained from λ by deleting each occurrence of ai which is preceded
(directly or indirectly) by an occurrence of δ. In other words, if the downgrade
action appears earlier in the run, then the messages on the channel are observed
in the clear, otherwise nothing is observed.

Orwellian observation functions can model conditional or escrowed anonymity,
where someone can be anonymous when they initially interact with the system,
but some time in the future their identity can be revealed, as outlined below.

Suppose that there are n identities Idi , each identity being capable of per-
forming actions represented by ai ∈ A. Moreover, α /∈ L represents the encrypted
observation of any of these actions, and ρi ∈ L\A represents the action of identity
Idi being revealed. Then obs(λ) is obtained from λ by replacing each occurrence
of ai by α, provided that ρi never occurs within λ.

2.2 Non-Interference

Opacity can be linked to a particular formulation of non-interference. A discus-
sion of non-interference can be found in [10] and [21]. The basic idea is that labels

2 We believe that this formulation of weak anonymity was originally due to Ryan and
Schneider.
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are split into two sets, High and Low . Low labels are visible by anyone, whereas
High labels are private. Then, a system is non-interfering if it is not possible
for an outside observer to gain any knowledge about the presence of High labels
in the original run (the observer only sees Low labels). This notion is in fact
a restriction of standard non-interference. It was originally called non-inference
in [18], and is called strong non-deterministic non-interference in [11].

Definition 8 Π satisfies non-inference if L(Π) |Low ⊆ L(Π).

In other words, for any run (s, λ) of Π, there exists a run (s ′, λ
′
) such that

λ
′
is λ with all the labels in High removed.

The notion of non-interference (and in particular non-inference) is close to
opacity as stated by the two following properties. First, we show that it is possible
to transform certain initial opacity properties into non-inference properties.

Proposition 2. Any initial opacity problem involving static observation func-
tion can be reduced to a non-inference problem.

A kind of converse result also holds, in the sense that one can transform any
non-inference property to a general opacity property.

Proposition 3. Any non-inference problem can be reduced to an opacity prob-
lem.

Non-interference in general makes a distinction between public (Low) and
private (High) messages, and any revelation of a high message breaks the non-
interference property. We believe that the ability to fine-tune the obs function
may make opacity better suited to tackling the problem of partial information
flow, where a message could provide some partial knowledge and it may take a
collection of such leakages to move the system into a compromised state.

2.3 Security Protocols

Opacity was introduced in the context of security protocols in [15]. With one
restriction, the current version of opacity is still applicable to protocols. Namely,
since we require the number of initial states to be finite, the initial choices made
by the various honest agents must come from bounded sets.

To formalise opacity for protocols in the present framework, labels will be
messages defined by the simple grammar

m ::= a | 〈m,m〉 | {m}m

where a ranges over a set A of atomic messages; 〈m1,m2〉 represents the pairing
(concatenation) of messages m1 and m2; and {m1}m2

is the encoding of message
m1 using message m2. A subset K of A is the set of keys, each key k in K having
an inverse denoted by k−1. The notation E ` m, where m is a message and E
is a finite set of messages (environment), comes from Dolev-Yao theory [7] and
denotes the fact that m is deducible from E .
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Two messages, m1 and m2, are similar for environment E iff E ` m1 ∼
m2 where ∼ is the smallest (w.r.t. set inclusion) binary relation satisfying the
following:

a ∈ Atoms

a ∼ a

u1 ∼ u2 v1 ∼ v2

〈u1, v1〉 ∼ 〈u2, v2〉

E ` k−1 u ∼ v

{u}k ∼ {v}k

¬ E ` k−1 ¬ E ` k ′−1

{u}k ∼ {v}k ′

In other words, messages are similar if it is not feasible for an intruder to distin-
guish them using the knowledge E . Such a notion was introduced in [2], where
it was shown to be sound in the computational model, and its generalisation
including the case of equational theories appears in [1].

To state which part of a message is visible from the outside, we will use the
notion of a pattern [2], which adds a new message � to the above grammar, rep-
resenting undecryptable messages. Then, pattern(m,E ) is the accessible skeleton
of m using messages in E as knowledge and E ` m1 ∼ m2 ⇔ pattern(m1,E ) =
pattern(m2,E ). It is defined thus:

pattern(a,E ) = a

pattern(〈m1,m2〉,E ) = 〈pattern(m1,E ), pattern(m2,E )〉

pattern({m1}m2
,E ) =

{

{pattern(m1)}m2
if E ` m2

� otherwise .

To simplify the presentation, we assume that a security protocol is repre-
sented by an LTS Π = (S ,L,∆,S0) (for protocols semantics, see [14]). As proto-
cols are commonly interested in initial opacity (opacity on the value of one of the
parameter, e.g., a vote’s value), the predicate φ will be a suitable subset of S0.
The observation function obs will be orwellian with obs(li , λ) = pattern(li ,E ),
where E is the set of messages appearing in λ. (note that, in the case of a
bounded protocol, an m-orwellian function will be sufficient). Then, opacity of
φ w.r.t. obs is equivalent to the concept introduced in [15].

3 Opacity Checking

Opacity is a very general concept and many instantiations of it are undecidable.
This is even true when LTSs are finite. We will formulate such a property as
Proposition 5 (part 4), but first we state a general non-decidability result.

Proposition 4. Opacity is undecidable.

It follows from the above proposition that the undecidability of the reachabil-
ity problem for a class of machines generating LTSs renders opacity undecidable.
We will therefore restrict ourselves to Petri nets, a rich model of computation
in which the reachability problem is still decidable [20]. Furthermore, Petri nets
are well-studied structures and there is a wide range of tools and algorithms for
their verification.
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3.1 Petri Nets

We will use Petri nets with weighted arcs [20], and give their operational se-
mantics in terms of transition sequences.3 Note that this varies slightly from the
one used in [4] where the step sequence semantics allowed multiple transitions
to occur simultaneously. Here, transitions are clearly separated.

A (weighted) net is a triple N = (P ,T ,W ) such that P and T are disjoint
finite sets, and W : (T × P) ∪ (P × T ) → N. The elements of P and T are
respectively the places and transitions, and W is the weight function of N . In
diagrams, places are drawn as circles, and transitions as rectangles. If W (x , y) ≥
1 for some (x , y) ∈ (T × P) ∪ (P × T ), then (x , y) is an arc leading from x to
y . As usual, arcs are annotated with their weight if this is 2 or more. The pre-
and post-multiset of a transition t ∈ T are multisets of places, preN (t) and
postN (t), respectively given by

preN (t)(p) = W (p, t) and postN (t)(p) = W (t , p),

for all p ∈ P . A marking of a net N is a multiset of places. Following the standard
terminology, given a marking M of N and a place p ∈ P , we say that p is marked
if M (p) ≥ 1 and that M (p) is the number of tokens in p. In diagrams, M will
be represented by drawing in each place p exactly M (p) tokens (black dots).
Transitions represent actions which may occur at a given marking and then lead
to a new marking. A transition t is enabled at a marking M if M ≥ preN (t).
Thus, in order for t to be enabled at M , for each place p, the number of tokens in
p under M should at least be equal to the total number of tokens that are needed
as an input to t , respecting the weights of the input arcs. If t is enabled at M ,
then it can be executed leading to the marking M ′ = M − preN (t) + postN (t).
This means that the execution of t ‘consumes’ from each place p exactly W (p, t)
tokens and ‘produces’ in each place p exactly W (t , p) tokens. If the execution
of t leads from M to M ′ we write M [t〉M ′ and call M ′ reachable from M . A
marked Petri net Σ = (N ,S0) comprises a net N = (P ,T ,W ) and a finite set
of initial markings S0. It generates the LTS ΠΣ = (S ,T ,∆,S0) where S is the
set of all the markings reachable from the markings in S0, T is the set of labels,
and ∆ is defined by (M , t ,M ′) ∈ ∆ if M [t〉M ′. The language of Σ is that of ΠΣ .

In the case of Petri nets, there are still some undecidable opacity problems.

Proposition 5. The following problems are undecidable for Petri nets:

1. Initial opacity when considering a static observation function.
2. Initial opacity when considering a state-based static observation function.
3. Initial opacity when considering an orwellian observation function even in

the case of finite LTSs generated by marked nets.
4. Opacity when considering a constant observable function even in the case of

finite LTSs generated by a marked nets.

An analysis of the proof of the last result identifies two sources for the com-
plexity of the opacity problem. The first one is the complexity of the studied
property, captured through the definition of φ. In particular, the latter may be

3 It should be stressed that the transitions in the Petri net context correspond to the
labels rather than arcs in the LTS framework.
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used to encode undecidable problems and so in practice one should presumably
restrict the interest to relatively straightforward versions of opacity, such as the
initial opacity. The second source is the complexity of the observation function,
and it is presumably reasonable to restrict the interest to some simple classes of
observation functions, such as the static observation functions. This should not,
however, be considered as a real drawback since the initial opacity combined with
an n-orwellian observation function yields an opacity notion which is powerful
enough to deal, for example, with bounded security protocols (section 2.3).

What now follows is a crucial result stating that initial opacity with an n-
orwellian observation function is decidable provided that the LTS generated by
a marked Petri net is finite4. In fact, this result could be generalised to any
finite LTS; i.e., in the case of a finite LTS, initial opacity w.r.t. an n-orwellian
observation function is decidable.

3.2 Approximation of Opacity

As initial opacity is, in general, undecidable when LTSs are allowed to be infinite,
we propose in this section a technique which might allow us to verify it, at least
in some cases, using what we call under/over-opacity.

Definition 9 For i = 1, 2, 3, let Πi be an LTS. Moreover, let obsi be an ob-
servation function and φi a predicate for the runs of Πi such that the following
hold:

(∀ ξ ∈ run(Π1) ∩ φ1) (∃ ξ′ ∈ run(Π2) ∩ φ2) obs1(ξ) = obs2(ξ
′)

(∀ ξ ∈ run(Π3) \ φ3) (∃ ξ′ ∈ run(Π1) \ φ1) obs3(ξ) = obs1(ξ
′) .

Then φ1 is under/over-opaque (or simply uo-opaque) w.r.t. obs1 if for every
ξ ∈ run(Π2) ∩ φ2 there is ξ′ ∈ run(Π3) \ φ3 such that obs3(ξ) = obs1(ξ

′).

Intuitively, Π2 provides an over-approximation of the runs satisfying φ1, while
Π3 provides an under-approximation of those runs that do not satisfy φ1. One
can then show that uo-opacity w.r.t. obs1 implies opacity w.r.t. obs1. Given Π1,
obs1 and φ1, the idea then is to be able to construct an over-approximation and
under-approximation to satisfy the last definition. A possible way of doing this
in the case of marked Petri nets is described next.

Uo-opacity for Petri nets Suppose that Σ = (N ,S0) is a marked Petri net,
Π1 = ΠΣ , obs1 is a static observation function for Π1 and φ1 ⊆ S0 is an initial
opacity predicate for Π1.

Deriving over-approximation The over-approximation is obtained by generating
the coverability graph Π2 of Σ (see [9] for details), starting from the initial
nodes in S0 ∩ φ1. The only modification of the original algorithm needed is that
in our setup there may be several starting nodes S0 ∩ φ1 rather than just one.
However, this is a small technical detail. The observation function obs2 is static
and defined in the same way as obs1. The predicate φ2 is true for all the initial
nodes S0 ∩ φ1. Crucially, Π2 is always a finite LTS.

4 Note that the finiteness of LTS is decidable, and can be checked using the standard
coverability tree construction [20].
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Proposition 6. (∀ ξ ∈ run(Π1) ∩ φ1) (∃ ξ′ ∈ run(Π2) ∩ φ2) obs1(ξ) = obs2(ξ
′).

Deriving under-approximation A straightforward way of finding under-approxi-
mation is to impose a maximal finite capacity max for the places of Σ (for
example, by using the complement place construction), and then deriving the
LTS Π3 assuming that the initial markings are those in S0 \φ1. The observation
function obs3 is static and defined in the same way as obs1. The predicate φ3 is
false for all the initial nodes S0 \ φ1.

Clearly, Π3 is always a finite LTS. However, for some Petri nets with an
infinite reachability graph (as shown later on by our example), this under-
approximation may be too restrictive, even if one takes arbitrarily large bound
max . Then, in addition to using instance specific techniques, one may attempt
to derive more generous under-approximation, in the following way.

We assume that there are some (invisible) transitions in Σ mapped by obs1

to ε transitions, and propagate the information that a place could become un-
bounded due to infinite sequence of invisible transitions. The construction re-
sembles the coverability graph generation.

As in the case of the reachability graph, the states in Π3 are ω-markings (see
the proof of Proposition 6). Then Π3 is built by starting from the initial states
S0 \ φ1, and performing a depth-first exploration. At each visited ω-marking
M , we find (for example, using a nested call to a coverability graph generation
restricted to the invisible transitions starting from M ) whether there exists M ′ >
M reachable from M through invisible transitions only5; then we set M (p) = ω,
for every place p such that M ′(p) > M (p). Note that the above algorithm may
be combined with the capacity based approach and then it always produces a
finite Π3. In general, however, Π3 is not guaranteed to be finite.

It should be pointed out that Π3 generated in this way will not, in general,
be a deterministic LTS, but this does not matter as the only thing we will be
interested in is the language it generates.

Proposition 7. (∀ ξ ∈ run(Π3) \ φ3) (∃ ξ′ ∈ run(Π1) \ φ1) obs3(ξ) = obs1(ξ
′).

Deciding uo-opacity Assuming that we have generated over- and under- ap-
proximations Π2 and Π3, uo-opacity holds iff obs2(L(Π2)) ⊆ obs3(L(Π3)). And
the latter problem is decidable whenever Π2 and Π3 are finite LTSs as it then
reduces to that of inclusion of two regular languages.

4 A Simple Voting Scheme

To illustrate our work, we give an example of a simple voting system. Another
one, inspired by an anonymity requirement required in the chemical industry, is
described in [6].

In this example, we consider a vote session allowing only two votes: 1 and 2.
We then describe a simple voting scheme in the form of a Petri net (see figure 1).
The voting scheme contains two phases. The first one called voting phase (when
there is a token in Voting) allows any new voter to enter the polling station

5 This search does not have to be complete for the method to work, however, the more
markings M

′ we find, the better the overall result is expected to be.
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Fig. 1. Net for the voting system, and below its coverability graph.

(transition NV ) and vote (transitions V 1 and V 2). Votes are stored in two places
Results1 and Results2. A particular voter A is identified, and we formulate our
properties with respect to A. After an indeterminate time, the election enters
the counting phase (when there is a token in Counting, after executing transition
C , and no token in Voting). Then the different votes are counted. Votes for 1 are
seen via transition C1 and vote for 2 via C2. This net has one obvious limitation.
At the end, there still can be some tokens left in places Results1 and Results2
so this scheme does not ensure that every vote is counted.

We want to verify that the vote cast by A is secret: the two possible initial
markings are {Voting , 1} and {Voting , 2}. We prove that it is impossible to detect
that “1” was marked (a symmetric argument would show that it is impossible
to detect whether “2” was marked). The observation function is static and only
transitions C1 and C2 are visible, i.e., obs(C1) = C1, obs(C2) = C2 and
obs(t) = ε for any other transition t .

To verify opacity, we will use the under/over approximation method. The
coverability graph (over-approximation) can be computed (see figure 1) using,
for example, Tina [24]. After application of the observation function and simplifi-
cation, we obtain that obs2(L(Π2)) = {C1,C2}

∗(see section 3.2 for the definition
of Π2.)
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However, the simple under approximation using bounded capacity places will
not work in this case, as for any chosen maximal capacity max , the language
L(Π3) will be finite whereas obs2(L(Π2)) is infinite. Thus, we use the second
under approximation technique. The following array represents the reachable
states of the system starting from marking {Voting , 2} using this technique.

Waiting Voting Results1 Results2 1 2 Counting
A ω 1 ω ω 0 1 0
B ω 1 ω ω 0 0 0
C ω 0 ω ω 0 1 1
D ω 0 ω ω 0 0 1

The behaviour of this reachability graph, i.e. obs3(L(Π3)), is simple:

C1C2 C1 C2

A

C

B

D

ε

εε

Thus, the under-approximation is in this case: obs3(L(Π3)) = {C1,C2}∗,
and so obs2(L(Π2)) ⊆ obs3(L(Π3)) holds. We can now conclude that opacity of
φ w.r.t. obs is verified and so the vote cast by A is kept secret.

5 Related Work

Concepts similar to opacity have been studied using epistemic logics, or logics
of knowledge [8]. These logics include a “knowledge” operator, representing the
case where an agent knows a fact, and are particularly suitable for reasoning
about security within a multi-agent context [16, 12, 3]. The semantics can given
within a “possible worlds” model: an agent knows a fact in a given world if it
is true in every world that the agent considers possible. Opacity appears to be
closely related to this knowledge operator, in that a property is opaque when
the observer cannot be sure that it is true (see also below). That is, there is a
world (a high level trace) that the observer considers possible, in which the fact
does not hold. In [25] the notion of ignorance is developed, where an agent is
ignorant of a fact φ when it cannot say for certain either that φ holds or that
¬ φ holds. In our terms, an agent would be ignorant of φ if both φ and ¬ φ were
opaque.

There is a clear and strong relationship between our work and that contained
in [13], and through it also with that in [8]. For example, final-opacity could be
understood, using the terminology of [13], in the following way. To start with,
we assume that an agent i is modelled by our obs function and, for every point
(r ,m), we have ri(m) = obs(r ,m). In other words, the i -th agent (in the sense
of [13]) is observing the system. To model predicates within our approach, we
then use information functions of [13], saying that f is such a function and, for
every point (r ,m), f (r ,m) returns a true or false value which only depends on
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the m-th state of the run r . Then, applying Definition 3.3 of [13], results in
the following rendering of our notion of final-opacity: “for every point (r ,m)
there is another point (r ′,m ′) such that obs(r ,m) = obs(r ′,m ′) and f (r ,m) =
¬ f (r ′,m ′)”. Indeed, this looks very similar to the definition used by us, but is
in fact strictly stronger, since our definition should correspond to the following:
“for every point (r ,m) with f (r ,m) = true, there is another point (r ′,m ′) such
that obs(r ,m) = obs(r ′,m ′) and f (r ′,m ′) = false”. And the notion based on
Definition 3.3 of [13] is basically equivalent to opacity of both f and f ′ = ¬ f . We
therefore feel that there is no straightforward way of embedding our approach
within that proposed in [13] (and so also [8]). We also feel that the basic reason
behind this is that our notion of information hiding is ‘asymmetric’ in a sense
that different values are obscured in possibly different ways. To make this more
concrete, we could propose a slight modification of the definition from [13] along
the following lines:

Assume additionally that for every v in the range of f there exists pos-
sibly empty set Mask(v) of values in the domain of f . Then, if f is a
j -information function, then agent j mantains f -secrecy w.r.t. i in sys-
tem R if, for all points (r ,m) and values v ∈ Mask(f (r ,m)) there is a
point (r ′,m ′) such that ri(m) = r ′

i (m
′) and f (r ′,m ′) = v .

Intuitively, Mask(v) provides sufficient obscurity from the point of view of agent
j about the actual value of v . In our case we could then set Mask(true) = false
and Mask(false) = ∅ (the latter to indicate that we do not care about the
states where our predicate is false). And final-opacity would then be expressible
using the modified definition. Our hypothesis is that such a modification consti-
tutes an interesting true weakening of the security notion discussed in [13], and
consequently it deserves an investigation in its own right.

6 Conclusions

We have presented a general definition of opacity that extends previous work.
This notion is no longer bound to the Petri net formalism and applies to any
labelled transition system. However, restricting ourselves to initial opacity in
the case of Petri nets allows us to find some decidability results. Furthermore,
in this general model we can show how opacity relates to other information flow
properties such as anonymity or non-inference.

Non-decidability results show that the opacity problem is a complex one. Its
complexity is related to the complexity of the checked property, the complexity
of the adversary’s observational capabilities and the complexity of the system.
The first point can be addressed by considering initial opacity which is still very
expressive. The second one can be simplified by considering only n-orwellian
observation functions. To solve the third problem, we can restrict ourselves to
finite automata but this causes us to lose significant expressive power.

In the case of infinite Petri nets, over- and under- approximating gives a way
of checking opacity. This technique works well in the case of our voting example.
We intend in future work to find a better abstraction for Petri nets and some
well suited abstractions for other formalisms.
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Some of the work done within epistemic logic has been with a view to model
checking (see [17, 19, 23] for recent examples). Automatic verification is also an
important goal of our work, and so exploring the connections between epistemic
logic and opacity should prove a strong basis for further research.
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