Lecture Notes in Computer Science

Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison Lancaster University, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Friedemann Mattern ETH Zurich. Switzerland John C. Mitchell Stanford University, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen University of Dortmund, Germany Madhu Sudan Massachusetts Institute of Technology, MA, USA Demetri Terzopoulos New York University, NY, USA Doug Tygar University of California, Berkeley, CA, USA Moshe Y. Vardi Rice University, Houston, TX, USA Gerhard Weikum Max-Planck Institute of Computer Science, Saarbruecken, Germany Werner Grass Bernhard Sick Klaus Waldschmidt (Eds.)

Architecture of Computing Systems – ARCS 2006

19th International Conference Frankfurt/Main, Germany, March 13-16, 2006 Proceedings

Volume Editors

Werner Grass Bernhard Sick University of Passau Innstr. 33, 94032 Passau, Germany E-mail: {grass, sick}@fmi.uni-passau.de

Klaus Waldschmidt University of Frankfurt/Main Robert-Mayer-Str. 11-15, 60325 Frankfurt, Germany E-mail: waldsch@ti.informatik.uni-frankfurt.de

Library of Congress Control Number: 2006921397

CR Subject Classification (1998): C.2, C.5.3, D.4, D.2.11, H.3.5, H.4, H.5.2

LNCS Sublibrary: SL 1 - Theoretical Computer Science and General Issues

ISSN	0302-9743
ISBN-10	3-540-32765-7 Springer Berlin Heidelberg New York
ISBN-13	978-3-540-32765-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006 Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India Printed on acid-free paper SPIN: 11682127 06/3142 5 4 3 2 1 0

Preface

Technological progress is one of the driving forces behind the dramatic development of computer system architectures over the past three decades. Even though it is quite clear that this development cannot only be measured by the maximum number of components on a chip, Moore's Law may be and is often taken as a simple measure for the non-braked growth of computational power over the years. The more components are realizable on a chip, the more innovative and unconventional ideas can be realized by system architects. As a result, research in computer system architectures is more exciting than ever before.

This book covers the trends that shape the field of computer system architectures. The fundamenatal trade-off in the design of computing systems is between flexibility, performance, power consumption, and chip area. The full exploitation of future silicon capacity requires new architecture approaches and new design paradigms such as multiple computers on a single chip, reconfigurable processor arrays, extensible processor architectures, and embedded memory technologies. For a successful use in practical applications, it is not enough to solve the hardware problems but also to develop platforms that provide software infrastructure and support effective programming.

A quantum jump in complexity is achieved by embedded computing systems with an unprecedented level of connectivity linking together a growing number of physical devices through networks. Embedded systems will become more and more pervasive as the component technologies become smaller, faster, and cheaper. Their complexity arises not only from the large number of components but also from a lack of determinism and a continual evolution of these systems. The research effort needed to design systems so that they can be developed, deployed, maintained, configured, managed, and trusted will be a key issue for many years. Pervasive computing is therefore much more than an Internet access by mobile devices. The papers presented in this book set out the broadness of the research area established by pervasive computing approaches: input devices for wearable systems, mobile collaborative applications, measurement data acquisition, location awareness, QoS awareness, and context awareness.

One possibility to cope with the growing complexity of computing systems is to make them organic or autonomous, that is, to make them self-learning, self-organizing, self-configuring, self-optimizing, self-healing, self-protecting, and proactive.

In this context, completely new problems arise that should be addressed by an interdisciplinary effort. Natural organic and self-organizing systems have been studied in other scientific discplines such as philosophy and biology, and their results should now be considered by architects of organic computing systems. Some of the key questions are:

- 1. Do organic systems feature properties that cannot be derived from the properties of its components? Is this emergent behavior desirable in any case or not?
- 2. Can we really expect to completely control systems with an emergent behavior?
- 3. Which mathematical formalisms can help in constructing and analyzing this type of system?
- 4. How is user privacy maintainable?
- 5. What is the role of trust?

These questions were discussed during the conference stimulated by two keynote and three invited speeches. Two of the speakers have taken the opportunity to present their ideas in this book.

Organic computing is a research area initiated by the special interest group ARCS of the German computer societies (GI and ITG) that are responsible for the organization of the ARCS conference series. Future ARCS conferences will therefore continue to give a platform to revolutionary ideas for a new generation of organic computing systems.

The great interest of the research community in the research field of this conference is expressed in a large number of submitted papers. Altogether, we received 174 papers, 32 of them were accepted and are presented in this book. We were especially pleased by the wide range of countries represented at the conference. We thank all the members of the Program Committee, who did a great job. Many additional reviewers supported us in selecting the best papers. We thank all reviewers for their elaborated reviews which greatly helped the authors to further improve their papers. Readers will appreciate this effort yielding a book with high quality.

The organization of this conference was done at two different locations. Organizational tasks were performed at the University of Frankfurt a.M., while the work on the program was done at the University of Passau. We thank all staff members for their excellent work making this conference a success. Special thanks for their excellent work go to: Markus Damm, Diana Firnges, Jan Haase, Johannes Herr, Wilhelm Heupke, Joachim Höhne, Alexander Hofmann, Andreas Hofmann, Eva Kapfer, Anita Plattner, Franz Rautmann, Rüdiger Schroll.

March 2006

Werner Grass Bernhard Sick Klaus Waldschmidt

Organization

ARCS 2006 was jointly organized by GI (German Informatics Society) and ITG (Information Technology Society).

Executive Committee

General Chair:	Klaus Waldschmidt (University of Frankfurt,
	Germany)
Program Chair:	Werner Grass (University of Passau, Germany)
Workshop and Tutorial Chair:	Wolfgang Karl (University of Karlsruhe,
	Germany)

Program Committee

Nader Bagherzadeh	University of California, Irvine, USA
Jürgen Becker	University of Karlsruhe, Germany
Michael Beigl	University of Karlsruhe, Germany
Riccardo Bettati	Texas A&M University, College Station, USA
Uwe Brinkschulte	University of Karlsruhe, Germany
Hermann De Meer	University of Passau, Germany
Francois Dolivo	IBM, Zurich Research Laboratory, Switzerland
Stefan Dulman	Ambient Systems, Enschede, The Netherlands
Marc Duranton	Philips Research, Eindhoven, The Netherlands
Alois Ferscha	University of Linz, Austria
Marisol Garcia-Valls	University Carlos III, Madrid, Spain
Jean-Luc Gaudiot	University of California, Irvine, USA
Werner Grass	University of Passau, Germany
Paul Havinga	University of Twente, The Netherlands
Oliver Heckmann	Technical University of Darmstadt, Germany
Wolfgang Karl	University of Karlsruhe, Germany
Rudolf Kober	Siemens AG, Munich, Germany
Spyros Lalis	University of Thessaly, Greece
Paul Lukowicz	University for Health Sciences, Medical Informatics
	and Technology, Austria
Erik Maehle	University of Lübeck, Germany
Tom Martin	Virginia Tech, Blacksburg, USA
Christian Müller-Schloer	University of Hanover, Germany
Timothy M. Pinkston	University of Southern California, Los Angeles, USA
Ichiro Satoh	National Institute of Informatics, Tokyo, Japan
Hartmut Schmeck	University of Karlsruhe, Germany
Martin Schulz	Lawrence Livermore National Laboratory, Livermore, USA
Karsten Schwan	Georgia Institute of Technology, Atlanta, USA

Bernhard Sick	University of Passau, Germany
Peter Steenkiste	Carnegie Mellon University, Pittsburgh, USA
Roy Sterritt	University of Ulster at Jordanstown, UK
Jürgen Teich	University of Erlangen-Nuremberg, Germany
Yoshito Tobe	Tokyo Denki University, Japan
Kishor Trivedi	Duke University, Durham, USA
Rich Uhlig	Intel Microprocessor Research Lab, USA
Theo Ungerer	University of Augsburg, Germany
Klaus Waldschmidt	University of Frankfurt, Germany
Ralph Welge	University of Lüneburg, Germany
Sami Yehia	ARM Research, Cambridge, UK

Additional Referees

C. Albrecht	C. Hochberger	F. Picioroaga
F. Bagci	C. Hoertnagl	A. Pietzowski
J. H. Bahn	A. Hofmann	T. Pionteck
P. Basanta-Val	T. Hofmeijer	G. Rey
M. Berger	R. Holzer	F. Rochner
G. Brancovici	C. Holzmann	S. Roos
J. Brehm	I. Iliadis	Y. Sazeides
I. Buhan	C. Ilioudis	A. Schill
C. Cachin	G. Karjoth	T. Schöler
J. Camenisch	S. Karlsson	W. Schröder-Preikschat
Z. Chamski	T. Kirste	P. Scotton
S. Cho	D. Koblitz	T. Smaoui
V. Desmet	R. Koch	P. Sobe
O. Durmaz Incel	W. P. Kowalk	P. Soulard
S. Eilers	M. Litza	M. Stolze
I. Estevez-Ayres	T. Loukopoulos	D. Tavangarian
L. Evers	N. Luttenberger	P. Trancoso
F. Fuchs	G. Mahmoudi	J. Trescher
R. Gemesi	M. Marin-Perianu	W. Trumler
M. Gönne	R. Marin-Perianu	V. Turau
M. Graf	N. Meratnia	E. Van Herreweghen
A. Größlinger	M. Mnif	S. Voigt
KE. Grosspietsch	F. Mösch	S. Wang
C. Gruber	M. Mühlhäuser	E. Zehendner
A. Hatanaka	K. Muthukrishnan	A. Zell
A. Hazem El-Mahdy	F. Neeser	Y. Zhu
E. A. Heinz	E. Özer	
J. Henkel	H. Pals	

We also thank all additional referees whose names are unknown to the Executive Committee.

Table of Contents

Invited and Keynote Papers

1
17

Pervasive Computing

FingerMouse – A Button Size Visual Hand Tracking and Segmentation Device	
Patrick de la Hamette, Gerhard Tröster	31
An Ad-Hoc Wireless Network Architecture for Face-to-Face Mobile Collaborative Applications	
Gustavo Zurita, Miguel Nussbaum	42
Background Data Acquisition and Carrying: The BlueDACS Project Thomas Wieland, Martin Fenne, Benjamin Stöcker	56
Prototypical Implementation of Location-Aware Services Based on Super-Distributed RFID Tags Jürgen Bohn	69
Combined Resource and Context Model for QoS-Aware Mobile Middleware	
Sten Lundesgaard Amundsen, Frank Eliassen	84
Distributed Modular Toolbox for Multi-modal Context Recognition David Bannach, Kai Kunze, Paul Lukowicz, Oliver Amft	99

Memory Systems

Dynamic Dictionary-Based Data Compression for Level-1 Caches	
Georgios Keramidas, Konstantinos Aisopos,	
Stefanos Kaxiras	114

A Case for Dual-Mapping One-Way Caches Arul Sandeep Gade, Yul Chu	130
Cache Write-Back Schemes for Embedded Destructive-Read DRAM Haakon Dybdahl, Marius Grannæs, Lasse Natvig	145
A Processor Architecture with Effective Memory System for Sort-Last Parallel Rendering Woo-Chan Park, Duk-Ki Yoon, Kil-Whan Lee, Il-San Kim, Kyung-Su Kim, Won-Jong Lee, Tack-Don Han, Sung-Bong Yang	160
Architectures	

Controller Synthesis for Mapping Partitioned Programs on Array	
Architectures	
Hritam Dutta, Frank Hannig, Jürgen Teich	176
M ² E: A Multiple-Input, Multiple-Output Function Extension for	
RISC-Based Extensible Processors	
Xiaoyong Chen, Douglas L. Maskell	191
An Operating System Infrastructure for Fault-Tolerant Reconfigurable	
Networks	
Dirk Koch, Thilo Streichert, Steffen Dittrich, Christian Strengert,	
Christian D. Haubelt, Jürgen Teich	202
Architectural Tradeoffs in Wearable Systems	
Nagendra Bhargava Bharatula, Urs Anliker, Paul Lukowicz,	
Gerhard Tröster	217

Multiprocessing

Do Trace Cache, Value Prediction and Prefetching Improve SMT Throughput? Chen-Yong Cher, Il Park, T.N. VijayKumar	<u> </u>
	202
Scalable and Partitionable Asynchronous Arbiter for Micro-threaded Chip Multiprocessors Nabil Hasasneh, Ian Bell, Chris Jesshope	252
GigaNetIC – A Scalable Embedded On-Chip Multiprocessor Architecture for Network Applications Jörg-Christian Niemann, Christoph Puttmann, Mario Porrmann, Ulrich Rückert	268

Energy Efficient Design

Efficient System-on-Chip Energy Management with a Segmented	
Bloom Filter	
Mrinmoy Ghosh, Emre Özer, Stuart Biles, Hsien-Hsin S. Lee	283
Estimating Energy Consumption for an MPSoC Architectural	
Exploration	
Rabie Ben Atitallah, Smail Niar, Alain Greiner, Samy Meftali,	
Jean Luc Dekeyser	298
An Energy Consumption Model for an Embedded Java Virtual Machine Sébastien Lafond, Johan Lilius	311
	011
Power Awareness	
DASCOM: Dower Model for Supercomputers	

Arrvindh Shriraman, Nagarajan Venkateswaran,	
Niranjan Soundararajan	326
Power-Aware Collective Tree Exploration Miroslaw Dynia, Miroslaw Korzeniowski, Christian Schindelhauer	341
Biologically-Inspired Optimization of Circuit Performance and Leakage: A Comparative Study Ralf Salomon, Frank Sill	352

Network Protocols

A Synchronous Multicast Application for Asymmetric Intra-campus	
Networks: Definition, Analysis and Evaluation	
Pilar Manzanares-Lopez, Juan Carlos Sanchez-Aarnoutse,	
Josemaria Malgosa-Sanahuja, Joan Garcia-Haro	367
A Real-Time MAC Protocol for Wireless Sensor Networks: Virtual	
TDMA for Sensors (VTS)	
Esteban Egea-López, Javier Vales-Alonso,	
Alejandro S. Martínez-Sala, Joan García-Haro,	
Pablo Pavón-Mariño, M. Victoria Bueno-Delgado	382
An Effective Video Streaming Method for Video on Demand Services in Vertical Handoff	
Jae-Won Kim, Hye-Soo Kim, Jae-Woong Yun, Sung-Jea Ko	397

Security

A High-Throughput System Architecture for Deep Packet Filtering in	
Network Intrusion Prevention	
Dae Y. Kim, Sunil Kim, Lynn Choi, Hyogon Kim	407
A Hierarchical Key Management Approach for Secure Multicast	
Jian Wang, Miodrag J. Mihaljevic, Lein Harn, Hideki Imai	422
o tan 1, ang, 1200anag o Pilitago to, 2000 12ang 12ao to 110ao Pilita	
A Cache Design for a Security Architecture for Microprocessors (SAM)	
Jörg Platte, Edwin Naroska, Kai Grundmann	435
Jory 1 will, Duwlit Warosna, Mai Granannanni	400

Distributed Networks

Constraint-Based Deployment of Distributed Components in a Dynamic	
Network	
Didier Hoareau, Yves Mahéo	450
Comparative Analysis of Ad-Hoc Networks Oriented to Collaborative Activities	
Sebastián Echeverría, Raúl Santelices, Miguel Nussbaum	465
Fault Tolerant Time Synchronization for Wireless Sensor Networks Soyoung Hwang, Yunju Baek	480
Author Index	495