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Abstract

We consider preprocessing a set S of n points in convex position in the plane into a data
structure supporting queries of the following form: given a point q and a directed line ` in
the plane, report the point of S that is farthest from (or, alternatively, nearest to) the point q
among all points to the left of line `. We present two data structures for this problem. The first
data structure uses O(n1+ε) space and preprocessing time, and answers queries in O(21/ε log n)
time, for any 0 < ε < 1. The second data structure uses O(n log3 n) space and polynomial
preprocessing time, and answers queries in O(log n) time. These are the first solutions to the
problem with O(log n) query time and o(n2) space.

The second data structure uses a new representation of nearest- and farthest-point Voronoi
diagrams of points in convex position. This representation supports the insertion of new points
in clockwise order using only O(log n) amortized pointer changes, in addition to O(log n)-time
point-location queries, even though every such update may make Θ(n) combinatorial changes
to the Voronoi diagram. This data structure is the first demonstration that deterministically
and incrementally constructed Voronoi diagrams can be maintained in o(n) amortized pointer
changes per operation while keeping O(log n)-time point-location queries.

1 Introduction

Line simplification is an important problem in the area of digital cartography [Cro91, Den98, MS92].
Given a polygonal chain P , the goal is to compute a simpler polygonal chain Q that provides a good
approximation to P . Many variants of this problem arise depending on how one defines simpler and
how one defines good approximation. Almost all of the known methods of approximation compute
distances between P and Q. Therefore, preprocessing P in order to quickly answer distance queries
is a subproblem common to most line simplification algorithms.
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Of particular relevance to our work is a line simplification algorithm proposed by Daescu et
al. [DMSW06]. Given a polygonal chain P = (p1, p2, . . . , pn), they show how to compute a subse-
quence P ′ = (pi1 , pi2 , . . . , pim), with i1 = 1 and im = n, such that each segment [pijpij+1 ] of P ′ is
a good approximation of the subchain of P from pij to pij+1 . The amount of error is determined
by the point of the subchain that is farthest from the line segment [pijpij+1 ]. To compute this
approximation efficiently, the key subproblem they solve is the following:

Problem 1 (Halfplane Farthest-Point Queries). Preprocess n points p1, p2, . . . , pn in convex posi-
tion in the plane into a data structure supporting the following query: given a point q and a directed
line ` in the plane, report the point pi farthest from q among those to the left of line `.

Daescu et al. [DMSW06] show that, with O(n log n) preprocessing time and space, these queries
can be answered in O(log2 n) time. On the other hand, a näıve approach achieves O(log n) query
time by using O(n3) preprocessing time and O(n3) space. A natural open question1 is whether
O(log n) query time can be obtained with a data structure using subcubic and preferably sub-
quadratic space.

In this paper, we solve this problem with two data structures. The first, relatively simple data
structure uses O(n1+ε) preprocessing time and space, and answers queries in O(21/ε log n) time,
for any 0 < ε < 1. The second, more sophisticated data structure uses O(n log3 n) space and
polynomial preprocessing time, and answers queries in O(log n) time. Both of our data structures
apply equally well to halfplane farthest-point queries, described above, as well as the opposite
problem of halfplane nearest-point queries. Together we refer to these queries as halfplane proximity
queries.

Dynamic Voronoi diagrams. An independent contribution of the second data structure is that
it provides a new efficient representation for maintaining the nearest- or farthest-point Voronoi
diagram of a dynamic set of points. So far, point location in dynamic planar Voronoi diagrams has
proved difficult because the complexity of the changes to the Voronoi diagram or Delaunay trian-
gulation for an insertion can be linear at any one step. The randomized incremental construction
avoids this worst-case behavior through randomization. However, for the deterministic insertion
of points, the linear worst-case behavior cannot be avoided, even if the points being incrementally
added are in convex position, and are added in order (say, clockwise). For this specific case, we give
a representation of a (nearest- or farthest-point) Voronoi diagram that supports O(log n)-time point
location in the diagram while requiring only O(log n) amortized pointer changes in the structure
for each update. So as not to oversell this result, we note that we do not have an efficient method
of determining which pointers to change (it takes Θ(n) time per change), so the significance of this
representation is that it serves as a proof of the existence of an encoding of Voronoi diagrams that
can be modified with few changes to the encoding while still supporting point-location queries.

Since the conference version of this paper first appeared, there have been two significant follow-
up works. First, Allen et al. [ABIL] showed how to compute the necessary K topological changes
in the Voronoi diagram in O(K polylog n) time. In particular, this result implies an explicit prepro-
cessing algorithm for building our second data structure that runs in O(n polylog n) time. Second,
Pettie [Pet10] gave a simpler proof of our O(log n) upper bound on the number of topological
changes, and proved a matching lower bound when following the same combinatorial approach and
not exploiting any further geometry.

1Daescu et al. [DMSW06] pose a closely related problem, whether O(logn) query time is possible with O(n logn)
space and preprocessing time.
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Currently, the best incremental data structure supporting nearest-neighbor queries (one inter-
pretation of “dynamic Voronoi diagrams”) supports queries and insertions in O(log2 n/ log logn).
This result uses techniques for decomposable search problems described by Overmars [Ove83]; see
[CT92]. More recently, Chan [Cha10] developed a randomized data structure supporting nearest-
neighbor queries in O(log2 n) time, insertions in O(log3 n) expected amortized time, and deletions
in O(log6 n) expected amortized time. By contrast, our data structure for points in convex position
added in clockwise order achieves O(log n) query time, O(polylog n) insert time, O(n log3 n) space,
and O(n polylog n) preprocessing time.

2 A Simple Data Structure

When referring to some or all of n points in convex position and clockwise order p1, p2, . . . , pn, the
indices are to be understood modulo n, and p[i,j] refers to the contiguous sequence of points going
clockwise from pi to pj , wrapping around pn and p1 if j < i.

In this section, we prove the following theorem:

Theorem 2. There is a data structure for halfplane proximity queries on a static set of n points
in convex position that achieves O(21/ε log n) query time using O(n1+ε) space and preprocessing,
for any 0 < ε < 1.

Our proof is based on starting from the näıve O(n3)-space data structure mentioned in the
introduction, and then repeatedly applying a space-reducing transformation. We assume that
either all queries are halfplane farthest-point queries or all queries are halfplane nearest-point
queries; otherwise, we can simply build two data structures, one for each type of query.

Both the starting data structure and the reduction use Voronoi diagrams as their basic primitive.
More precisely, we use the farthest-site Voronoi diagram for the case of halfplane farthest-point
queries, and the nearest-site Voronoi diagram for the case of halfplane nearest-point queries. When
the points are in convex position and given in clockwise order, Aggarwal et al. [AGSS89] showed
that either Voronoi diagram can be constructed in linear time. Answering point-location queries
in either Voronoi diagram of points in convex position can be done in O(log n) time using O(n)
preprocessing and space [EGS86].

Lemma 3. There is a static data structure for halfplane proximity queries on a static set of n
points in convex position, called Okey, that achieves O(log n) query time using O(n3) space and
preprocessing.

Proof. Let p1, p2, . . . , pn denote the n points in convex position in clockwise order. The Okey data
structure consists of one Voronoi diagram V (i, j) for every contiguous subsequence p[i,j] of points.
(This exact data structure was suggested in the conclusion of [DMSW06], but without details or
analysis.) The space and preprocessing is thus O(n3).

To answer a halfplane proximity query for a point q and a directed line `, we first find the
subsequence of points on the left of line `. In O(log n) time, we can determine whether ` intersects
the convex hull, and if so, find the two edges (pi, pi+1) and (pj , pj+1) of the convex hull that are
intersected by the query line [O’R98, Section 7.9.1]. Then, depending on the orientation of the line `
(i.e., which edge is struck first), we can decide between the two possible intervals: p[i+1,j] or p[j+1,i].
Then we locate q in the appropriate Voronoi diagram, either V (i + 1, j) or V (j + 1, i) (or V (1, n)
if ` does not intersect the convex hull), and return the site pk that generated the corresponding
Voronoi region. The total query time is O(log n).
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Transform 4.2 Given any static data structure D for halfplane proximity queries on a static set
of n points in convex position that achieves Q(n) query time using M(n) space and preprocessing,
and for any parameter m ≤ n, there is a static data structure for halfplane proximity queries on
a static set of n points in convex position, called D-Dokey, that achieves 2Q(n) + O(log n) query
time using dn/meM(m) + O(n2/m) space and preprocessing.

Proof. Let p1, p2, . . . , pn be the n points in convex position in clockwise order. We define the dn/me
breakpoints to be the points pk with k ≡ 1 (mod m), i.e., the points pim+1 for i ∈ {0, 1, . . . , dn/me−
1}. The data structure consists of two substructures:

D Substructure: We construct an instance of the data structure D on the half-open inter-
val of points between every consecutive pair of breakpoints. More precisely, for each i ∈
{0, 1, . . . , dn/me−1}, we construct an instance of D on the points p[im+1,min{n,(i+1)m}]. These
structures require dn/me(M(m) + O(1)) space and preprocessing.

Voronoi Substructure: For each breakpoint pk, we construct Voronoi diagrams on all intervals
of points of length an exact power of two with one endpoint at pk. More precisely, for each
i ∈ {0, 1, . . . , dn/me − 1}, and for each j ∈ {0, 1, . . . , blog nc}, we construct two Voronoi
diagrams, one on the points p[im+1,im+2j ], and one on the points p[im+1,im+2−2j ]. The space
and preprocessing requirements for these Voronoi diagrams are

O

 n

m
·
blognc∑
j=0

2j

 = O

(
n2

m

)
.

Overall, the space and preprocessing required for D-Dokey is dn/meM(m) +O(n2/m) as claimed.
It remains to show how we can use D-Dokey to answer halfplane proximity queries in 2Q(n) +

O(log n) time. Suppose that we are given a point q and a directed line `. As described in the
proof of Lemma 3, in O(log n) time, we can find the interval pi, pi+1, . . . , pj of points to the left of
line `. If this interval contains no breakpoints, then it is contained in the interval of a D substruc-
ture, so we can answer the query in Q(n) time by passing it to the D substructure. Otherwise,
let pi′ and pj′ be the first and the last breakpoints in the interval, respectively. We ask the D
substructure immediately preceding pi′ (representing the interval p[i′−m,i′−1] if i′ > 0, and the in-
terval p[(dn/me−1)m+1,n] if i′ = 0) and the D substructure immediately succeeding pj′ (representing
the interval p[j′,min{n,j′+m−1}]) the same halfplane proximity query. These queries cover the ranges
p[i,i′−1] and p[j′,j]. To cover the remaining range p[i′,j′] between the two breakpoints, we use the
property that any interval can be covered (with overlap) by two intervals of length an exact power
of two. Namely, let k = 2blg(j

′−i′)c, where the difference j′ − i′ accounts for wraparound modulo n.
We query q in the Voronoi diagram on the interval p[i′,i′+k] and in the one on the interval p[j′−k,j′].
Together, the four queries cover (with overlap) the desired interval p[i,j]. Among the four results
from the four queries, we return the best (either farthest or nearest) relative to point q.

By starting with the data structure Okey of Lemma 3, and repeatedly applying the Dokey
transformation of Transformation 4, we obtain the structure Okey-Dokey-Dokey-Dokey-. . . , or
Okey-Dokeyk, which leads to the following:

Corollary 5. For every integer k ≥ 1, Okey-Dokeyk−1 is a data structure for halfplane proximity
queries on a static set of n points in convex position that achieves O(2k log n) query time using
O(k n(2k+1)/(2k−1)) = O(k n1+1/(k−1/2)) space and preprocessing.

2We use the term “Transform” to denote a type of theorem that represents a data structure transformation.
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external
nodes

expandedoriginal tree

superroot

Figure 1: Expanding a rooted binary tree with external nodes and a superroot (squares). Internal
nodes are circles.

Proof. The proof is by induction on k. In the base case k = 1, we can use the Okey data structure
from Lemma 3 because (2k + 1)/(2k− 1) = 3. For k > 1, assume by induction that we have a data
structure for k−1 that achieves query time at most c(2k−1) log n using space and preprocessing at
most c(k − 1)n(2k−1)/(2k−3). Assume that the constant c is at least twice as large as the constants
implicit in the O notation in Transform 4. We apply the Dokey transformation from Transform 4
to this data structure, substituting m = n(2k−3)/(2k−1). Thus, n/m = n2/(2k−1) and n2/m =
n(2k+1)/(2k−1). The resulting query time is at most 2c(2k− 1) log n+ (c/2) log n ≤ c(2k+1− 1) log n,
as desired. The resulting space and preprocessing time is at most (n/m+1)c(k−1)m(2k−1)/(2k−3)+
(c/2)n2/m = c(n2/(2k−1) + 1)(k − 1)n + (c/2)n(2k+1)/(2k−1) = c(k − 1)n(2k+1)/(2k−1) + c(k − 1)n +
(c/2)n(2k+1)/(2k−1) ≤ c k n(2k+1)/(2k−1) for sufficiently large n, as desired.

The space and preprocessing time of Okey-Dokeyk−1 according to Corollary 5 can be written
as n1+2/(2k−1). For any given ε > 0, we choose k = d1/2 + 1/εe. Then the space and preprocessing
time are O(n1+ε) and the query time is O(21/ε log n), proving Theorem 2.

3 Grappa Trees

Our faster data structure for halfplane proximity queries requires the manipulation of binary trees
with topology determined by a Voronoi diagram. To support efficient manipulation of such trees, we
introduce a data structure called grappa trees. This data structure is a modification of Sleator and
Tarjan’s link-cut trees [ST83] that supports some unusual additional operations. For convenience,
we expand a given rooted binary tree by adding an external vertex in place of each absent left/right
child and adding a superroot vertex above the root; see Figure 1. Thus every internal (original)
vertex is incident to exactly three edges, and the external vertices and superroot are the leaves. (A
slight aberration: although the root is the child of the superroot, it is neither a left nor right child.)

Definition 6. Grappa trees solve the following data-structural problem: maintain a forest of ex-
panded rooted binary trees with specified topology, and a “left mark” and “right mark” on each edge,
subject to

T = Make-Tree(v): Create a new tree T with a single internal vertex v (not previously in another
tree). Implicitly this operation also creates two external vertices and a superroot for v, and
three edges with null labels.
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T = Link(v, w): Given an external vertex v in one tree Tv and the superroot w of a different tree Tw,
connect the parent v′ of v via an edge to the root child w′ of w, deleting the extra nodes v
and w, and merging Tv and Tw into a new tree T . The new edge (v′, w′) is assigned the left
and right marks of (w,w′).3

(T1, T2) = Cut(e): Delete the existing edge e = (v, w) in tree T , splitting T into two trees T1 and
T2 containing v and w, respectively. If say T1 contains the superroot of T , then v gains a
new external child (replacing the connection to w), and w becomes a root and gains a new
superroot parent (replacing the connection to v). The new edges incident to v and w acquire
the same left and right labels as the original edge e.

Evert(v): Make external node v the superroot of its tree, reversing the orientation (which endpoint
is closer to the superroot) of every edge along the superroot-to-v path. The left/rightness of
each child/edge is uniquely determined by preserving the cyclic order of edges around each
vertex.

Left-Mark(T, v,m`): Set the left mark of every edge on the superroot-to-v path in T to the new
mark m`, overwriting the previous left marks of these edges.

Right-Mark(T, v,mr): Set the right mark of every edge on the superroot-to-v path in T to the new
mark mr, overwriting the previous right marks of these edges.

(e,m∗` ,m
∗
r) = Oracle-Search(T,Oe): Search for the edge e in tree T . The data structure can find

e only via oracle queries: given two incident edges f and f ′ in T , the provided oracle
Oe(f, f

′,m`,mr,m
′
`,m

′
r) determines in constant time which “side” of f contains e, i.e.,

whether e is in the component of T − f that contains f ′, or in the rest of the tree (which
includes f itself).4 The data structure provides the oracle with the left mark m` and the right
mark mr of edge f , as well as the left mark m′` and the right mark m′r of edge f ′, and at the
end, it returns the left mark m∗` and the right mark m∗r of the found edge e.

Theorem 7. There exists an O(n)-space constant-in-degree pointer-machine data structure that
maintains a forest of grappa trees and supports each operation in O(log n) worst-case time per
operation, where n is the total size of the trees affected by the operation. (In fact, for the time
bound, n can be just the total size of the trees involved in the operation.)

Proof. Our grappa-tree data structure is based on the worst-case version of the link-cut tree data
structure of Sleator and Tarjan [ST83, Section 5]. This data structure maintains a forest of specified-
topology trees subject to Make-Tree, Link, Cut, and several other operations, each in O(log n)
worst-case time per operation, and using O(n) space. The data structure represents each tree in
the forest by decomposing it into a set of maximal vertex-disjoint downward paths, connected by
tree edges called nonpath edges. Each path is in turn represented by a biased binary tree whose leaf
nodes represent the vertices of the path, and whose nonleaf nodes represent the edges of the path,
ordered in the biased tree according to the depth along the path. Thus, vertices of larger height in
the path correspond to leaf nodes farther left in the biased tree. For each leaf node v of a biased
tree representing an internal vertex u in T , u has a unique nonpath child edge (because paths are
maximal and T is an expanded rooted binary tree), which we can associate with v. The link-cut

3This convention is arbitrary, but it allows first setting the marks of (w,w′) via Left-Mark and Right-Mark to
effectively set the marks of (v′, w′).

4Given the number of arguments, it is tempting to refer to the oracle as OA(B,D,G, I, L, S), but we will resist
that temptation.
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tree structure for an expanded rooted binary tree T can therefore be seen as a rooted tree R, the
representation tree, in which every node corresponds to an edge of T . A node that is a nonleaf of
its biased tree represents a path edge and has exactly two children, while a node that is a leaf of
its biased tree represents a nonpath edge and has at most one child. Thus we call these two types
of nodes path nodes and nonpath nodes, respectively. For the subtree Rv of R rooted at a node v,
the nodes of Rv correspond to edges in T that form a connected subtree Tv (namely, an interval
of the path containing the edge of T represented by v, plus the nonpath children edges and their
rooted subtrees in T ). By a suitable choice of paths and biasing, as described in [ST83], R has
height O(log n).

We augment the representation tree R to enable marking as follows. Because our tree T has
bounded degree (an assumption not made in [ST83]), we can also explicitly store T (the parent, left
child, and right child of each vertex) and cross-link corresponding nodes/vertices and corresponding
edges in the two structures. To each edge of T we add a left-mark field and a right-mark field.
These fields contain the last explicitly stored marks for the edge, and for nonpath edges, they are
accurate, while for path edges, the mark fields may become out-of-date. To each path node in R,
we also add a left-mark field and a right-mark field, which may be blank. When nonblank, each
field represents bulk markings that should be (but have not yet been) applied to the descendant
path nodes within the same biased tree. Thus, the actual left mark of an edge e on a path in T
is implicitly the first nonblank left-mark field of a node along the path from the root of the biased
tree representing the path containing e, if there is such a nonblank field, or else the left-mark field
of the edge e itself; and symmetrically for right marks.

We can maintain this augmentation as the representation tree R changes. Because the definition
of the augmented values is relative to individual biased trees, we care only about modifications to
biased trees themselves, not about the modifications to the edges between different biased trees that
form the entire representation tree R. The link-cut data structure modifies biased trees according to
rotations, splits, and concatenations. We can modify the implementation of all of these operations
to propagate the mark fields, at the cost of an extra constant factor, in such a way that preserves the
implicit marks of all edges in T . The idea is to push down node marks judiciously: whenever any
operation visits a path node v of R with a nonblank mark field, copy that value to the corresponding
mark field of the edge of T represented by v, as well as to the mark field of any child of v that is a
path node in R (overwriting any previous value), and finally blank out the field in the node v itself.
Because operations on link-cut trees always start at the root of R and traverse along paths down
from there, any nodes involved in the operation will have already cleared their mark fields before
they actually get used, so the marks on the corresponding edges in T will be up-to-date.

To implement Left-Mark(T, u,m) or Right-Mark(T, u,m), we visit all biased trees that represent
paths containing edges along the superroot-to-u path in T . We start with the bottommost edge
from u to its parent in T , and its corresponding node v in R. Then we walk up R from v. Whenever
we walk from a right child v to its parent w that is a path node in R, we set the appropriate (left-
or right-) mark field of w’s left child in R to m (because all descendant leaf nodes in the biased tree
are left of w so correspond to edges of the T path above v); we also set the appropriate mark field
of the edge of T represented by w to m. Whenever we walk through a nonpath node w of R, we
set the appropriate mark field of the edge of T represented by w. Because R has height O(log n),
the entire length of the walk and thus the total number of markings is O(log n).

Given a query oracle Oe and a tree T , we can perform Oracle-Search by a tree walk in R
starting at the root. Upon visiting a path node v of R representing a path edge f = (u,w) of
T , we find the nonpath child edges f ′ of u and f ′′ of w (both incident to f). Because f was just
visited, its mark fields m` and mr will be up-to-date, and because f ′ and f ′′ are nonpath edges of
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T , their mark fields m′`,m
′′
` and m′r,m

′′
r are accurate. Thus we can make two calls to the oracle—

Oe(f, f
′,m`,mr,m

′
`,m

′
r) and Oe(f, f

′′,m`,mr,m
′′
` ,m

′′
r)—to determine whether f is the edge e we

are looking for, or else which of the two child subtrees of v in R contains the node representing e.
In the special cases when u or w is an external node or the superroot of T , f ′ or f ′′ does not exist,
and we only need to perform one of the tests: if the oracle points to the side containing f , then
f = e. Upon visiting a nonpath node v of R representing a nonpath edge (u,w) in T , where w
is the parent of u, we find the nonpath child edge f ′ of u, and call Oe(f, f

′,m`,mr,m
′
`,m

′
r), to

determine whether f = e or e is in the subtree Rw. In the special case when u is an external node
of T , f ′ does not exist, but then we know that f = e without any oracle calls. Because R has
height O(log n), Oracle-Search queries run in O(log n) worst-case time.

4 Rightification of a Tree: Flarbs

The specified-topology binary tree maintained by our faster data structure for halfplane proximity
queries changes in a particular way as we add sites to a Voronoi diagram. We delay the specific
connection for now, and instead define the way in which the tree changes: a tree restructuring
operation called a “flarb”. Then we bound the work required to implement a sequence of n flarbs
by showing that the total number of pointers changes (i.e., the total number of parent/left-child and
parent/right-child relationships that change) is O(n log n). Thus, for the remainder of this section,
we use the term cost to refer to (a constant factor times) the number of pointer changes required
to implement a tree-restructuring operation, not the actual running time of the implementation.
This bound on cost will enable us to implement a sequence of n flarbs via O(n log n) link and cut
operations, for a total of O(n log2 n) time.

The flarb operation is parameterized by an “anchored subtree” which it transforms into a
“rightmost path”. An anchored subtree S of a nonempty rooted binary tree T is any connected
subgraph S of T that includes the root of T ; in the special case of an empty tree T , we define an
anchored subtree S of T to be the empty subgraph. A right-leaning path in a rooted binary tree T
is a path monotonically descending through the tree levels, always proceeding from a node to its
right child. A rightmost path in T is a right-leaning path that starts at the root of T .

The flarb operation5 of an anchored subtree S of a rooted binary tree T is a transformation
of T defined as follows; refer to Figure 2. First, we create a new root node r with no right child
and whose left child subtree is the previous instance of T ; call the resulting rooted binary tree T ′.
We extend the anchored subtree S of T to an anchored subtree S′ of T ′ by adding r to S. Now
we re-arrange S′ into a rightmost path on the same set of nodes, while maintaining the in-order
traversal (binary search tree order) of all nodes. The resulting rooted binary tree T ′′ is the result
of flarbing S in T .

Now we consider a sequence of flarb operations f1, f2, . . . , where f1 applies to an empty tree
T0, and each flarb operation fi transforms each successive tree Ti−1 into Ti. Note that each flarb
can choose a different anchored subtree Si. Although the size of the anchored subtrees may be very
large, we show that the number of actual pointer changes is small:

Theorem 8. A sequence of n flarb operations, starting from an empty tree, can be implemented at
a cost of O(log n) amortized pointer changes per flarb.

Proof. We use the potential method of amortized analysis, with a potential function inspired by the
analysis of splay trees [ST85]. For any node x in a tree T , let w(x) be the expanded weight of the

5Note that this notion of flarb is different from that of [fla04].
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Figure 2: An example of a flarb. The anchored subtree is highlighted.

subtree rooted at x, which is the number of nodes in the subtree plus the number of null pointers in
the tree. In other words, as in expanded trees, we add external nodes in place of each null pointer
in T , but here just for the purpose of computing subtree size. Define ϕ(x) = lg w(left(x))

w(right(x)) . Clearly

|ϕ(x)| ≤ lg(2n− 1), because the smallest possible subtree contains no real nodes and one external
node, and the largest possible subtree contains n−1 real nodes and n external nodes. The potential
of a tree T with n nodes is Φ(T ) =

∑
x ϕ(x), with the sum taken over the (real) nodes x in T .

Therefore, |Φ(T )| = O(n log n) for any tree T .
For the purposes of the analysis, we use the following heavy-path decomposition of the tree.

The heavy path from a node continues recursively to its child with the larger subtree (breaking ties
arbitrarily), and the heavy-path decomposition is the natural decomposition of the tree into maximal
heavy paths. Edges on heavy paths are called heavy edges, while all other edges (connecting two
heavy paths) are called light edges.

Outline. To analyze a flarb in a rooted binary tree T , we decompose the transformation into a
sequence of several steps, and analyze each step separately.

First, the addition of the new root node r can be performed by changing a constant number
of pointers in the tree. Because ϕ(r) = lg(2n− 1), the amortized cost of this operation is trivially
O(log n). Thus, in the remainder of the proof, we focus on the actual restructuring of the resulting
anchored subtree S′ into a rightmost path, a process we call rightification.

At all times during rightification, the nodes constituting the original anchored subtree S′ con-
tinue to form an anchored subtree of the current rooted binary tree, and for simplicity of notation
we continue to denote the current such anchored subtree as S′.

To implement rightification, we first execute several simplifying steps of two types, called “zig”
and “zag”,6 in no particular order. Each such step has zero amortized cost. Any number of such
operations might need to be performed and we stop when neither can be applied. At this point, the
anchored subtree S′ has a particular form and we perform a final operation, called a “stretch”, at
the cost of O(log n) amortized pointer changes. This bound, together with the observation that the
potential drop over any sequence of operations is O(n log n), gives the theorem. We now describe
the details of zig-zagging and stretching.

The zig. A zig is executed whenever a light left edge is part of the anchored subtree S′; see
Figure 3. The zig operation simply involves a right rotation on the edge in question. The actual
cost of a zig is O(1), which we set to be 1 to ease the analysis.

6Unlike most terminology in this paper, these terms are used for no particular reason. Cf. footnote 5.
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Figure 4: A zag.

To analyze the change in potential, let A and B denote the two children subtrees of the lower
endpoint of the edge, and let C denote the right child subtree of the upper endpoint of the edge. In
all formulas below, we use the same letters to denote the expanded weight of the subtree. Because
the edge is light, A + B + 1 ≤ C. Then the potential change is

∆Φ = lg
A

B + C + 1
+ lg

B

C︸ ︷︷ ︸
new potential

−
(

lg
A

B
+ lg

A + B + 1

C

)
︸ ︷︷ ︸

old potential

= lg
B

A + B + 1︸ ︷︷ ︸
<1

+ lg
B

B + C + 1︸ ︷︷ ︸
< 1

2
because C>B

< −1.

Therefore, the amortized cost of a zig is (at most) zero, as claimed.

The zag. A zag is performed whenever there exists, within the anchored subtree S′, a path that
goes left one edge, right zero or more edges, and then left again one edge; see Figure 4. The zag
operation performs a constant number of pointer changes to re-arrange the path in question into a
right-leaning path. The actual cost of a zag is O(1), which we again set to be 1 to ease the analysis.

We now argue that a zag reduces the potential by at least 1. First, notice that the contribution
to the potential of parent nodes of the trees B1, B2, . . . , Bk decreases after the execution of the zag
because, in each case, the left subtree remains the same while the right subtree grows. We will
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Figure 5: The form of the anchored subtree S′ before the final stretch. The thick light edges are
light, and the thick black edges are heavy.

argue that the contribution of the remaining nodes decreases by at least 1. Indeed,

∆Φ ≤ lg
C

D + E + F + 2
+ lg

D

E + F + 1
+ lg

E

F︸ ︷︷ ︸
new potential

−
(

lg

∑
iBi + C + D + E + k + 2

F
+ lg

C + D + 1

E
+ lg

C

D

)
︸ ︷︷ ︸

old potential

= lg
D2E2

(D + E + F + 2)︸ ︷︷ ︸
>D+E

(E + F + 1) (ΣiBi + C + D + E + k + 2)︸ ︷︷ ︸
>D+E

(C + D + 1)

< lg
(1

2
· 2DE

(D + E)2︸ ︷︷ ︸
<1

· D

C + D + 1︸ ︷︷ ︸
<1

· E

E + F + 1︸ ︷︷ ︸
<1

)
< −1,

as claimed.

The final stretch. After all possible zigs and zags have been exhausted, we claim that the
anchored subtree S′ must have the form shown in Figure 5. Indeed, any tree that has no light
left edge and no right-leaning path delimited by two left edges must have this form. In particular,
because the rightmost path in this tree must be light, its length is at most lg(2n + 1).

The final stretch operation, which completes the flarb, simply converts this tree into a rightmost
path by effectively concatenating the subsidiary right-leaning paths, incorporating them into the
main path. Only O(log n) actual pointer changes are required. The potential does not increase
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because left subtrees of every node shrink and right subtrees grow, if they change at all. Therefore,
the amortized cost of the stretch is indeed O(log n).

This concludes the proof of the theorem.

5 Transformations

In this section we show how flarbs and grappa trees come together with a little work to give us the
main result. In the next two transformations, we focus on the farthest-point case, but the proofs
apply equally well to the nearest-point version.

Transform 9. Given a grappa tree data structure supporting each operation in O(log n) amortized
time, and given a data structure to incrementally maintain a tree created by n flarbs with O(log n)
amortized pointer changes per flarb, we can construct an O(n log2 n)-space data structure that
supports O(log n)-time farthest-point queries on any prefix of a sequence of points in convex position
in counterclockwise order.

Proof. We construct an incremental data structure that supports O(log n)-time farthest-point
queries on the current sequence of points, 〈p1, p2, . . . , pn〉, and supports appending a new point
pn+1 to the sequence provided that this change maintains the invariant that the vertices remain
in convex position and in counterclockwise order. Thus the insertion order equals the index order
and equals the counterclockwise traversal order of a convex polygon. The data structure runs on
a pointer machine in which each node has bounded in-degree. Thus we can apply the partial-
persistence transform of [DSST89] and obtain the ability to support farthest-point queries on any
prefix of the inserted points in O(log n) time. The space usage becomes proportional to the number
of pointer changes during the insertions.

We consider the expanded rooted binary tree T formed by the edges of the farthest-point Voronoi
diagram, ignoring their exact geometry; see Figure 6. To define T precisely, recall that the farthest-
point Voronoi diagram [PS93, Section 6.3] divides the plane into n cells by classifying each point q
in the plane according to which of p1, p2, . . . , pn is the farthest from q. The farthest-point Delaunay
triangulation [Epp92] is the dual of the farthest-point Voronoi diagram, i.e., it triangulates the
convex polygon with vertices p1, p2, . . . , pn by connecting two vertices whenever the corresponding
Voronoi cells share an edge. (If a vertex of the Voronoi diagram has degree more than three, we
conceptually split it into a tiny, arbitrarily chosen binary tree.)

Now define T to be the expansion of the dual tree of this farthest-point Delaunay triangulation
of the convex polygon (excluding the outside region), where each internal node in the tree represents
a triangle in the farthest-point Delaunay triangulation, or equivalently, a vertex in the farthest-
point Voronoi diagram. Each edge between internal nodes in T corresponds to (a nongeometric
representation of) a finite edge of the farthest-point Voronoi diagram, which bisects two of the
points pi and pj that are adjacent in the Delaunay triangulation. Each edge to an external node
or superroot corresponds to an infinite ray of the farthest-point Voronoi diagram. Root the tree at
the node corresponding to the unique triangle in the Delaunay triangulation bounded by the edge
connecting the first inserted point p1 and the most recently inserted point pn, so that the infinite ray
emanating from this Voronoi vertex corresponds to the edge from this root node to the superroot.
Define the notions of left child versus right child of a node according to the counterclockwise order
around the Voronoi vertex.

Define the left mark of an edge to be the label of the region to the left of the edge, and
symmetrically for the right mark. Thus, the two marks of an edge define the two points pi and pj
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Figure 6: Adding point p8 in counterclockwise order. Top: Before. Bottom: After. Left: Farthest-
point Voronoi diagram and its dual, the farthest-point Delaunay triangulation. Point pi’s cell is
denoted Ci. Right: Delaunay triangulation and its dual, the tree T , with infinite rays drawn as
dashed lines, centrally reflected (rotated 180◦) to roughly match the geometry on the left. Labels
are also rotated 180◦ for emphasis. The root vertex of T and its parent edge are emboldened.

whose bisector line contains the Voronoi edge. The tree T is not balanced, so we use a grappa tree
to represent it and the left and right marks of edges.

Next we consider the effect of inserting a new point pn+1. As in the standard incremental
algorithm for Delaunay construction [dBvKOS99, Section 9.3], we view the changes to the farthest-
point Delaunay triangulation as first adding a triangle p1, pn, pn+1 and then flipping a sequence
of edges to restore the farthest-point Delaunay property. The key property of the edge-flipping
process is that all flipped edges end up incident to the newly inserted point pn+1. Therefore these
changes can be interpreted in the tree as adding a new root node, whose left child is the previous
root, and then choosing a collection of internal nodes to move to the right path of the new root.
This collection of nodes induces a connected subtree because the triangles involved in the flips
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form a connected set. (In particular, the flipping algorithm considers the neighbors of a triangle
for flipping only if the triangle was already involved in a flip.) Thus, the changes correspond
exactly to a flarb (in the unexpanded tree), with the flexibility of the flarb operation (choice of
anchored subtree) encompassing the various possibilities of which edges get flipped to maintain
the farthest-point Delaunay property. Another way to view the addition of pn+1 is directly in
the Voronoi diagram. The point pn+1 will capture the convex region Rn+1 for which pn+1 is the
farthest neighbor. Outside Rn+1, the Voronoi diagram is unchanged, so all edges of the new Voronoi
diagram are either bisectors of the same two points as before, or are edges of Rn+1. In T after the
flarb, Rn+1 corresponds to the right spine.

Each pointer change during a flarb operation can be implemented with one cut and one link
operation. Therefore the grappa tree implements the O(n log n) total pointer updates from flarb
operations in O(n log2 n) total pointer updates. It remains to update the marks on the edges. By
the incremental Voronoi/Delaunay view above, the only edges for which these marks might change
are the edges incident to the new region Rn+1, i.e., the edges on the right spine. We update the
right marks on all of these edges by calling Right-Mark(T, x, n+ 1) where x is the rightmost vertex
in T , thus marking the entire right spine of T . During the execution of the flarb, various right
paths were cut and pasted together with cuts and links to form the final right spine. The edges on
the final right spine that were originally part of a right path in T already had their left mark set
correctly. Any other edges on the final right spine were just added via links, so their left marks can
be set by calling Left-Mark on the linked root just before calling Link. Thus, the total number of
mark updates is also O(n log n), each costing O(log n) amortized. This concludes the space bound
of the data structure.

To support farthest-point queries, it suffices to build an oracle for the grappa tree’s Oracle-
Search. Specifically, given two incident edges (u, v) and (v, w), the oracle must determine which
side of (u, v) has the answer to the farthest-point query. Let pi and pj be the points defined by
the two marks of the edge (u, v); the two marks of edge (v, w) define one of pi or pj and a third
point pk. Points pi, pj , and pk are the vertices of the Delaunay triangle corresponding to vertex v
in T . The vertex of the Voronoi diagram corresponding to v can be computed as the intersection of
the three perpendicular bisectors between these three points. We draw two rays from this Voronoi
vertex in the direction opposite the two vertices pi and pj . (For a nearest-point Voronoi diagram,
we draw rays perpendicular and toward supporting lines of the convex hull at pi and pj .) These
two rays divide the plane into two sectors, and in constant time, we can decide which of the two
sectors contains the query point q. If the query point is in the sector containing the Voronoi edge
corresponding to (u, v), then the oracle returns the side of T containing (u, v), and vice versa.
These rays, for every edge (u, v) of T , subdivide the Voronoi cells into regions; the Oracle-Search
will return the edge corresponding to the region containing the query point q. In constant time,
using the two labels on that edge of the tree, we can determine which side of the bisector contains q,
and therefore which farthest-point Voronoi region contains q, i.e., which point pi is farthest from q.

This concludes the proof of the theorem.

Transform 10. Given an O(n log2 n)-space data structure that supports O(log n)-time farthest-
point queries on any prefix of a sequence of n points ordered in convex position in counterclockwise
order, we can construct an O(n log3 n)-space data structure that supports O(log n)-time farthest-
point-left-of-line queries on n points in convex position.

Proof. Let p1, p2, . . . , pn denote the n points in counterclockwise order.
First we observe that, using the given prefix structure, we can also build an O(n log2 n)-space

data structure that supports O(log n)-time farthest-point queries on any suffix of a sequence of n
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points ordered in convex position in counterclockwise order. We simply reflect the points about a
fixed axis, reverse the order of the points, and build the prefix structure, and then apply the same
reflection transformation to query points before giving it to the structure.

Next we observe that, in O(log n) time, we can find the interval pi, pi+1, . . . , pj (where indices
may wrap around modulo n) of points that are to the left of the query line. This algorithm is
described in the proof of Lemma 3.

We build a collection of prefix and suffix data structures, and answer a query, via a divide-and-
conquer recursion. The top level of the recursion is special because the sequence p1, p2, . . . , pn is
cyclic. In this case we build a prefix structure and a suffix structure on this list of points. These
structures can be used to solve any query interval that contains either p1 or pn or both. Namely,
if interval contains exactly one of p1 or pn, then the interval is a prefix or suffix of p1, p2, . . . , pn.
Otherwise, the interval is the union of a prefix and a suffix, so we can query both structures and
return the farther of the two answers.

At the general level of recursion, we have an interval pi, pi+1, . . . , pj of points, i < j, and a
guarantee that any query interval reaching this level of recursion is strictly contained within this
interval (excluding both pi and pj). At the top level of recursion, i = 1 and j = n and we know
that the interval contains neither p1 nor pn as required. Let m = b(i + j)/2c be the point midway
between i and j. We construct a suffix data structure on the left half of points, pi, pi+1, . . . , pm,
and a prefix data structure on the right half of the points, pm+1, pm+2, . . . , pj . As above, these
data structures can be used to solve any query interval that contains either pm or pm+1 or both
(and satisfies the assumption of being strictly contained within the interval pi, pi+1, . . . , pj). Then
we recursively build data structures in the left half and in the right half for query intervals that
do contain neither pm nor pm+1. In a query, we only need to recurse in one of the halves; we can
decide which half overlaps the query interval in constant time by comparing m with the indices of
the endpoints of the query interval. In the base case, j = i or j = i + 1 and there are no query
intervals because of the strict containment, so there is nothing to do.

The recurrence for query time is T (n) = T (n/2) + O(1) plus an unknown base-case cost of
O(log n), which solves to O(log n). The recurrence for space of the prefix and suffix data structures
is S(n) = 2S(n/2) + O(n log2 n) = O(n log3 n).

Combining Theorems 7 and 8 with Transforms 9 and 10, we obtain the following main result of
our paper:

Corollary 11. There is an O(n log3 n)-space data structure that supports O(log n)-time halfplane
proximity queries on n points in convex position.

We also mention the implication in the area of dynamic Voronoi diagrams, which follows from
combining Theorems 7 and 8 with Transform 9.

Corollary 12. There is an O(n)-space data structure for maintaining a nearest-point or farthest-
point Voronoi diagram of a sequence of points in convex position in counterclockwise order. The
data structure supports inserting a new point at the end of the sequence, subject to preserving the
invariants of convex position and counterclockwise order, in O(log n) amortized pointer changes per
insertion; and supports point-location queries in O(log n) worst-case time.

6 Open Problems and Conjectures

Several intriguing problems remain open. One obvious question is whether the O(n log3 n) space
of our second data structure can be improved while keeping the optimal O(log n) query time. One
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specific conjecture in this direction is the following:

Conjecture 1. A sequence of n flarb operations, starting from an empty tree, can be implemented
at a cost of O(1) amortized pointer changes per flarb.

We have no reason to believe that our O(log n) amortized bound is tight. Reducing the bound to
O(1) amortized would shave off a O(log n) factor from our space and preprocessing time. More im-
portantly, it would increase our understanding of dynamic Voronoi diagrams, reducing the O(log n)
amortized update time in Corollary 12 to O(1) amortized. The potential function we use is inher-
ently logarithmic; a completely new idea is needed here for further progress.

On the issue of improving our understanding of dynamic Voronoi diagrams, we pose the following
problem:

Open Problem 2. Is there a data structure for maintaining a Voronoi diagram of a set of points
in convex position that allows a point to be inserted in logO(1) n time while supporting O(log n)-time
point location queries?

Here we relax the condition that the points be inserted in counterclockwise order, but maintain
the restriction that they be in convex position. Although our potential function does not give the
result, it is possible that a slight variation of it does.

Finally, it would be interesting to give explicit (and good) bounds on the construction time in
our second data structure, in particular so that it completely subsumes the first data structure:

Open Problem 3. Can the pointer changes caused by a flarb be found and implemented in o(n)
time, preferably logO(1) n time?

We have not been able to fully transform our combinatorial observations about the number
of pointer changes into an efficient algorithm, because we lack efficient methods for finding which
pointers change. A solution to this problem would give us an explicit bound on the construction
time for our data structure, and would provide a reasonably efficient dynamic Voronoi data structure
for inserting points in convex position in counterclockwise order.
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