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Outline

e Review of previous work on the 2D and 3D diameter
problems.

e Q(nlogn) lower bound for computing the diameter of a
3D convex polytope.

e Reduction from Hopcroft’s problem to the diameter
problem for point sets in R”.
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Previous work
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The diameter problem

e INPUT: a set P of n points in R¢.
e OUTPUT: diam(P) := max{d(z,y) | z,y € P}.
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The diameter problem
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Decision problem

e We will give lower bounds for the decision problem
associated with the diameter problem.

e INPUT: a set P of n points in R¢.
e OUTPUT:

o YES if diam(P) < 1

. NO if diam(P) > 1
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Observation

e P lies In the intersection of the two balls with radius
d(p,p’) centered at p and p’.

Lower Bounds for Geometric Diameter Problems — p.7/40



The diameter problem

e P lies between two parallel hyperplanes through p and
p’. We say that (p, p’) is an antipodal pair.
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The diameter problem

g/

4
P
P
\5 p/

e Any antipodal pair (and therefore any diametral pair)
lies on the convex hull CH(P) of P.
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Finding the antipodal pairs

e The rotating calipers technique.

g/
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Finding the antipodal pairs

e The rotating calipers technique.
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Computing the diameter of a 2D-point set

e Compute the convex hull CH(P) of P.
o O(nlogn) time.
e Find all the antipodal pairs on CH(P).

« There are at most n such pairs in non—degenerate
cases.

» O(n) time using the rotating calipers technique.
e Find the diametral pairs among the antipodal pairs.
« O(n) time by brute force.
e Conclusion:

o The diameter of a 2D-point set can be found in
O(nlogn) time

« The diameter of a convex polygon can be found in
O(n) time.

Lower Bounds for Geometric Diameter Problems — p.15/40



3D-diameter problem

Randomized O(nlogn) time algorithm (Clarkson and
Shor, 1988).

o Randomized incremental construction of an
Intersection of balls and decimation.

Deterministic O(nlogn) time algorithm (E. Ramos,
2000).

These two algorithms compute the diameter of an
n-point set in R3.

Can we compute the diameter of a convex 3D-polytope
In linear time?

« NoO, we give an (nlogn) lower bound.
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Model of computation
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Real-RAM

Real Random Access Machine.

Each registers stores a real number.
Access to registers in unit time.

Arithmetic operation (+, —, x, /) In unit time.
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Algebraic computation tree: definition

e INput: z = (x1,x2,...,x,) € R™.
e Output: YES or NO

e Itis a binary tree with 3 types of nodes
o Leaves: YES or NO

o Degree-1 nodes: computation nodes. Perform
{+,—, %x,/,+/-} on two operands. An operand is
o a real constant,
e SOMe input number z;, or
« the value obtained by computation nodes that
are ancestors of the current node.

o Degree-2 nodes: . Compares with
0 the value obtained at a computation node that is
an ancestor of the current node.
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Algebraic computation tree (ACT)

e We say that an ACT decides S C R” if

o Y(z1,...,2,) € S, Itreaches a leaf labeled YES, and
o V(x1,...,2,) ¢ S, It reaches a leaf labeled NO.

e The ACT model is stronger than the real-RAM model.

e To get a lower bound on the worst-case running time of
a real-RAM that decides S, it suffices to have a lower
bound on the depth of all the ACTs that decide S

Theorem 1 (Ben-Or) Any ACT that decides S has depth

()(log(number of connected components of 5)).
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_ower bound for 3D convex
polytopes
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Problem statement

We are given a convex 3-polytope P with n vertices.

P Is given by the coordinates of its vertices and its

combinatorial structure:

o All the Inclusion relations between its vertices,

edges and faces.

« The cyclic ordering of the edges of each face.
Example: P iIs given in a doubly-connected edge list.
Problem: we want to decide whether diam(P) < 1.

We show an 2(nlogn) lower bound. Our approach:
o We define a family of convex polytopes.
« We show that the sub-family with diameter < 1 has

nf¥") connected components.
« We apply Ben-Or’s bound.
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Polytopes P (/)

e The family of polytopes is parametrized by 3 € R?"~1.

e When n is fixed, only the 2n — 1 blue points change
with 3.
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Polytopes P (/)

e The family of polytopes is parametrized by 3 € R?"~1.
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Notation

Example where n = 3.

| ba(fB2)
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Notation

a:= (A_pn,U_pt1...,0pn).
A:={a_pn,0_p11,...,ap}

3= (B—nt1s---sBn=1).

B(3) = {b-ns1(B-nt1):- - bn-1(Bn-1)}-

B(ﬁ) F= (b—n+1<ﬁ—n—|—1)a SRR bn—l(ﬁn—l))-

~._ (.—1 -1 —1 1 1 1
C:=(CpCpitr 2 Cp1> Copy Coptts - 5 Cp1)-

. -1 —1 —1 1 1 1
C={c ,,C hit1r - Cn1rCons Copglr -3 Cy—1 }-

P(3) := CH(AU B(3) U O).
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Point sets A and C
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AZ

e The blue region is parallel to Ozz.

e J€|—a,q]
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Coordinates of pointsin A, B(3) and C

( 5(1 — cos(i7)) )
a; =1 0
3 sin(iv)
rcos (i + %) )
= | i ((+3) )
55Q



©=1/4n

o 1S small.

Y =gp/n
v =a/n

Parameters
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Proof

e Notation: diam(F, F) := max{d(e, f) | (e, f) € E x F}.
Lemmal The set

10(8) | B € [=a, o] and diam(A, 10;(5)}) < 1}

has at least 2n connected components.
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Proof

e Proof of Lemma 1: Calculations, until the second-order
terms.

Lemma 2 The combinatorial structure of CH(A U B(3) U C)
is independent of 3.

e We denote P(3) = CH(AU B(G) U ().

Lemma 3 diam(A U B(G) UC) = diam(A, B(j3)).
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Definitions:
Sn — {(5’76(6)75) ‘ B S [_&7a]2n—1}
E, = {(ab(B),¢) |5 e[-a,a* 1 and diam(P(3)) < 1}

Notice that &, C S,, C R?*.

Lemma 4 The set S,, can be decided by an ACT with
depth O(n).

Lemma5 Any ACT that decides &,, has depth
Q(nlogn).

Proof: By lemmas 1 and 3, &, has at least (2n)**~1

connected components. Apply Ben-Or’s bound
(Theorem 1).
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End of the proof

Theorem 2 Assume that an algebraic computation tree 7,
decides whether the diameter of a 3-polytope is smaller
than 1. Then 7;, has depth Q2(nlogn).

e Proof: Take as input graph of 7,, the the graph of P(73).
Denote by U,, the ACT of Lemma 4. Plug U,, into the
accepting leaves of Tg,. It gives an ACT with depth the
depth of Ty, + O(n) that decides &,. Apply Lemma 5.
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Related work

e (Chazelle) The convex hull of two 3-polytopes can be
computed in linear time.

e (Chazelle et al.) It is not known whether the convex
hull of a subset of the vertices of a 3-polytope can be
computed in linear time.

e (Chazelle et al.) However, we can compute Iin linear
time the Delaunay triangulation of a subset of the
vertices of a Delaunay triangulation.
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Diameter Is harder than Hopcroft’s
problem
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Hopcroft’s problem

P is a set of n points in R?.

L is a set of n lines in R2.
Problem: decide whether

Ap,l) e Px L:pel.

An o(n*3logn) algorithm is known. (Matousek).
No o(n*/3) algorithm is known.

We give a linear-time reduction from Hopcroft's
problem to the diameter problem in R”.

We first give a reduction to the red-blue diameter
problem in R%: compute diam(E, F) when E and F are
n-point sets in RY.
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Proof

1
332 4 y2 + 22 (127 y27 y27 \/Qxy, \/§y2«', \/§Z£U>
e Note that ||0(x,y, 2)|| = 1.
e Fori<i<n

o pi = (w;,y:,1)
o U; = (ui,vi,wi) Isthe line ¢; : u;x + v;y + w; = 0.

o Letp;:=0(p;) and £; = 0(¢;).

e O(x,y,2):=

e We get
2 2 2
lp; = GIIF = 1lpill” + 11617 — 2 < p;, €5 >
< pi, b; >2
— 9= th
Ipill =145
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Proof

Note that p; € ¢; Iff < p;,¢; >= 0.

Thus, there exists 7, j such that p; € ¢; if and only If
diam(0(P),0(L)) = 2.

9(P) and §(L) are n-point sets in RS,

Similarly, we can get a reduction from Hopcroft's

problem to the diameter problem in R7, using this
linearization:

1
0w.y,2) = 5o (2%, 9%, %, V2zy, V2yz, V2z1)
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Related work

e The red-blue diameter in R* can be computed in

O(n*3polylog n) (Matoudek and Scharzkopf). It would

be interesting to get a reduction from Hopcroft's
problem.

e Erickson gave reduction from Hopfcroft problem to
other computational geometry problems.
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