
HAL Id: hal-00351181
https://hal.science/hal-00351181

Submitted on 8 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Branch-width of Circular-arc Graphs
Frédéric Mazoit

To cite this version:
Frédéric Mazoit. The Branch-width of Circular-arc Graphs. Latin American Theoretical Informatics
Symposium, Mar 2006, Valdivia, Chile, France. pp.727-736, �10.1007/11682462�. �hal-00351181�

https://hal.science/hal-00351181
https://hal.archives-ouvertes.fr

The Branch-width of Circular-arc Graphs

F. Mazoit

LIF, Université de Provence
13453 Marseille Cedex 13, France

Abstract. We prove that the branch-width of circular-arc graphs can
be computed in polynomial time.
Key words: Branch-width, circular-arc graphs, algorithm.

1 Introduction

The notions of tree-width and tree-decomposition of a graph have been
introduced by Robertson and Seymour [1] for their graph minor project.
These notions have been intensively investigated for algorithmic purposes
and it is well known that many intractable problems can be solved in
polynomial (and very often in linear) time when the input is restricted
to graphs with bounded tree-width (see [2] for a comprehensive survey).
While working on their graph minor project, Robertson and Seymour
defined, in connection with tree-width, the notion of branch-width [3].
They proved that for any graph G, bw(G) ≤ tw(G)+1 ≤ 1.5 ˙bw(G). Both
bounds are tight and achievable on trees and complete graphs. Branch-
width appeared to be an even more appropriate tool than tree-width
for the graph minor theory. Since both parameters are so close, one can
expect the algorithmic behaviour of these problems to be quite similar.
However, this is not true. For example, on planar graphs branch-width
can be computed in polynomial time [4] while computing the tree-width
of a planar graph in polynomial time is a long standing open problem. An
even more striking example was observed by Kloks et al. [5]: deciding the
branch-width of a split-graph is NP-hard while deciding the tree-width
of a split-graph can be done in linear time.
In [6], the author studied the relation between both tree-decompositions
and branch-decompositions and, in particular, how they can be associ-
ated to triangulations in a similar way. Using his techniques, Fomin et
al. [7] describe the analogue of minimal triangulations and potential max-
imal cliques for branch-width: efficient triangulations and blocks. They
also note that, using a large enough family of blocks together with their
block branch-width, it is possible to compute the branch-width of any
graph in exponential time. The algorithm is essentially the same as the
one Fomin et al. use [8] to compute the tree-width.
In this article, we use the same framework to show that it is possible
to compute the branch-width of circular-arc graphs in polynomial time.
Section 3 is devoted to a proof of the efficient triangulation theorem
which is simpler than the original one [6]. Section 4 presents some results
of [7] and Sect. 5 shows how to use these tools to compute the branch-
width of circular-arc graphs.

2 Preliminaries

Throughout this paper, G is a graph with vertex set V and edge set E,
n = |V | and m = |E|. The neighbourhood N(x) of a vertex x is the set
of vertices adjacent to x. The neighbourhood of a set of vertices C is the
set of vertices not in C that are adjacent to at least one vertex of C.
A set of vertices S is a separator if G \ S has at least two connected
components, an a, b-separator if a and b are in different connected com-
ponents of G \ S, an a, b-minimal separator if no proper subset of S is
an a, b-separator. The connected component of a in G \ S is Ca(S). The
component Ca(S) is a full connected component if S is the neighbour-
hood of Ca(S). For an a, b-minimal separator S, both Ca(S) and Cb(S)
are full. A set S is a minimal separator if there exist a and b such that S
is an a, b-minimal separator or, which is equivalent, if G \ S has at least
two full connected components.
A clique of a graph G is a set of vertices of G that are pairwise adjacent in
G. The maximum clique size of G is denoted by ω(G). A graph is chordal
(or triangulated) if every cycle of length at least four has a chord, that
is an edge between two non-consecutive vertices of the cycle.

Theorem 1 ([9]). A graph is chordal if and only if it is the intersection
graph of a family of sub-trees of a tree.

If H is the intersection graph of a family {Tx | x ∈ V (H)} of sub-trees of
a tree T , every maximal clique Ω of H can be associated to a vertex vΩ

of T such that the set of vertices whose sub-tree contains vΩ is exactly
Ω. The minimal separators of H can be associated to edges of T in a
similar way.
A graph H is a super-graph of a graph G if H and G have the same
vertices and every edge of G is an edge of H. A triangulation of a graph
G is a chordal super-graph of G. A triangulation H of G is minimal if
no strict sub-graph of H is a triangulation of G.

Definition 1 (Efficient triangulation). A triangulation H of G is
efficient if
1. each minimal separator of H is also a minimal separator of G;
2. for each minimal separator S of H, the connected components of

H \ S are exactly the connected components of G \ S.

Note that according to a result of Parra and Scheffler [10], minimal tri-
angulations are efficient.
If X is a set of edges, V (X) (the vertices of X) denotes the set of vertices
incident to X. The border of X, δ(X), is the set of vertices V (X)∩V (E \
X). A pack of a set of vertices S is either an edge whose ends belong
to S or the set of edges incident to a connected component of G \ S.
Note that if X is a set of edges, a pack of δ(X) is either a subset of X
or disjoint from X. We can thus define the packs of a set of edges X as
being the packs of δ(X) that are subsets of X.
The notion of branch-width is due to Robertson and Seymour [3]. A
branch-decomposition T of a graph G is a pair (T, τ) with T a ternary

tree and τ a bijective mapping from the leaves of T to the edges of G.
The vertices of T are its nodes. For any edge e of T , the two connected
components T ∗

1 (e) and T ∗
2 (e) of T \ e are the e-branches of T . A branch

of T is a e-branch for some edge e. The set of edges of G mapped on the
leaves of a branch T ∗ is its ground. By using the ground, we can define the
packs, the border and the set V (T ∗) of a branch T ∗. We also extend the
definition of packs and border to the edges of a branch-decomposition.
A branch-decomposition T is compatible with a set of vertices S if S is
a subset of at least one border of T . The maximum size of the border
of an edge of T denoted by bw(T) is called the width of the branch-
decomposition. The branch-width (bw(G)) of a graph G is the minimum
width of one of its branch-decompositions. Note that the definitions of
branch-decomposition and branch-width also apply to hyper-graphs.
The notion of branch-width is closely related to the well-known notion
of tree-width. The tree-width of a graph G (tw(G)) is the minimum of
ω(H) over the triangulations H of G. In particular, Robertson and Sey-
mour [3] showed that bw(G) ≤ tw(G) + 1 ≤ b2 bw(G)/3c. The branch-
decompositions of a graph can also be associated to triangulations. In-
deed, given a branch-decomposition T of a graph G, we can associate
to each vertex x of G the subtree Tx of T covering all the leaves of T
containing edges incident to x. The border of a branch e of T is exactly
the set of vertices x of G such that e belongs to Tx. The intersection
graph of the subtrees Tx is the triangulation HT of G associated with T .

Proposition 1. Let G be a graph, T be any branch-decomposition of G
of optimal width and HT be the triangulation of G associated with T .

bw(G) = bw(HT).

Proof. By induction on the number p of edges in HT \G. If G and HT
are equal, the result is obvious.
Otherwise, let (x, y) be an edge of HT \ G and G′ be the graph G ∪˘
(x, y)

¯
. Since (x, y) is an edge of HT , Tx and Ty have a non empty

intersection and since (x, y) does not belong to G, this intersection con-
tains an edge e of T . Add to T a new vertex in the middle of e and a new
leaf u attached to that vertex and map the edge (x, y) to u. The branch-
decomposition T ′ obtained is a branch-decomposition of G′ such that
bw(T) = bw(T ′). Since T is optimal for G, we have bw(G) ≥ bw(G′)
and since G is a sub-graph of G′, bw(G) = bw(G′). By construction, the
triangulation HT ′ of G′ associated to T ′ is equal to HT . By induction,
bw(HT) = bw(G′) which finishes the proof. ut

3 Tight branch-decompositions

Proposition 1 implies that the branch-width of G is the minimal branch-
width of a triangulation of G. This latter result is also true for tree-width.
It is also known that while dealing with tree-width, we can only con-
sider minimal triangulations but the same restriction is not possible for
branch-width for there are examples of chordal graphs H such that H is

never the triangulation associated to an optimal branch-decomposition
of H. However we show that we can restrict ourselves to efficient trian-
gulations. To prove this, we order the branch-decompositions of a given
graph and then show that the triangulations arising from the minimal
branch-decompositions are efficient.

Definition 2. A branch-decomposition T of a graph G is tighter than
T ′ if bw(T) is at most bw(T ′) and HT is a subgraph of HT ′ .

The following theorem defines a “cleaning” process that does not increase
the tightness and that we can use to perform local optimisations to a
branch-decomposition. Figure 1 gives an idea of how the proof works.

Theorem 2. Let T be a branch-decomposition of a graph G and T ∗ a
branch of T .
There exists a branch-decomposition T ′ obtained from T by replacing T ∗

with another branch such that T ′ is tighter than T and such that every
pack of T ′∗ is the ground of a sub-branch of T ′∗.
Moreover, if a border S of T ∗ is neither a subset of δ(T ∗), nor a subset
of V (X) with X a pack of T ∗, then T ′ is strictly tighter than T .

Proof. For every pack Xi of T ∗, consider the rooted sub-tree of T ∗ cov-
ering the leaves containing an edge of Xi. By contracting edges, we can
“remove” the nodes of degree 2 and thus obtain a branch T ′∗

i of ground
Xi. By linking these branches by there root, we can obtain a branch T ′∗

of ground X.

X

Y

X

Y1
Y2

On the left, we consider a branch T ∗
X of a decomposition T

with a ground X that has two packs and
a sub-branch T ∗

Y of ground Y that “crosses” the two packs.

If we prune T ∗
X to each pack and rearrange the new branches,

the sub-branch T ∗
Y and δ(Y) will be split in two.

The new decomposition is strictly tighter than T .

Fig. 1. A trimmed branch.

We claim that the branch-decomposition T ′ obtained by replacing T ∗ by
T ′∗ in T is tighter than T . Indeed, by construction, every sub-branch B′

i

of T ′∗
i is a pruned sub-branch B of T ∗. Since Xi is a pack of T ∗, δ(B′

i) is

a subset of δ(B). Finally, since the border of all the edges added to link
the branches T ′∗

i is a subset of δ(T ∗), every border of T ′ is a subset of a
border of T . This proves that T ′ is tighter than T .

Now suppose that S is a border of T ∗ which is not a subset of δ(T ∗) and
not a subset of any V (Xi). Let T ∗

S be a sub-branch of T ∗ of border S. Let
u be a vertex of S \ δ(T ∗) (such a vertex exists by hypothesis) and Xu

be the pack of T ∗ such that V (Xu) contains u. Since S is not a subset
of V (Xu), there exists a vertex v of S in S \V (Xu). By construction, T ′

u

and T ′
v do not meet and T ′ is strictly tighter than T . ut

The branch-decomposition built in Th. 2 is trimmed along T ∗. We can
now easily prove Th. 3.

Theorem 3. The triangulation associated to a tightest branch-decom-
position of a graph G is an efficient triangulation of G.

Proof. Let T be a tightest branch-decomposition of G and HT the tri-
angulation associated to T . Let S be a minimal separator of HT and Ω1

and Ω2 be two maximal cliques of HT contaning S.

The triangulation HT is the intersection graph of the sub-trees Tx, thus
Ω1 and Ω2 correspond to vertices vΩ1 and vΩ2 of T and there is an edge
eS on the path from vΩ1 to vΩ2 that corresponds to S. Let T ∗

1 and T ∗
2

be the two eS-branches with vΩ1 in T ∗
1 and vΩ2 in T ∗

2 .

Suppose now that S is not a minimal separator of G, it has at most one
full connected component. We can thus suppose that S is the border of
no pack of T ∗

1 . By Th. 2, we can trim T along T ∗
1 and suppose that

all the packs of S in G are the grounds of some sub-branches of the
two e-branches. In the resulting decomposition T ′, no border of a sub-
branch of T ′∗

1 contains S which proves that Ω1 is not a maximal clique
of HT ′ . Thus T ′ is strictly tighter than T which is absurd. The minimal
separator S of HT is also a minimal separator of G.

Using the same techniques, we can also deduce the fact that the con-
nected components of G \ S and HT \ S are the same. ut

4 Block branch-width

Suppose that bw(G) = bw(HT). We can see the maximal cliques of HT
as pieces of a puzzle that match along minimal separators. Since we can
suppose that HT is efficient, we can characterize its maximal cliques as
blocks.

Definition 3 (Block). A set of vertices B of G is called a block if, for
each connected component Ci of G \B,

– its neighbourhood Si = N(Ci) is a minimal separator;

– B\Si is non empty and contained in a connected component of G\Si.

We say that the minimal separators Si border the block B and we denote
by s(B) the number of these separators.

Let Ω be a maximal clique of HT . The branch-decomposition T induces
a branch-decomposition TΩ of the complete graph K(Ω) on Ω. This
branch-decomposition respects K(Ω) in that TΩ is compatible with the
minimal separators of HT included in Ω. The branch-width of HT is the
maximum width of the branch-decompositions TΩ .

Definition 4 (Block branch-width). The block branch-width of a
block Ω (bbw(Ω)) is the minimal width of a branch-decomposition of
K(Ω) respecting Ω.

Conversely, if we have optimal respectful branch-decompositions of the
maximal cliques of HT , we can construct an optimal branch-decomposition
of HT which leads to the following theorem.

Theorem 4 ([7]).

bw(G) = min
H efficient triangulation of G

max{bbw(Ω) | Ω maximal clique of H}.

If we have “enough” blocks of a graph G and if we know their block
branch-width, computing the branch-width of G is indeed a large puzzle
in which we try to match blocks of low block branch-width along minimal
separators bordering them to construct a chordal graph. This puzzle can
be solved in linear time in the number of blocks.

Theorem 5 ([7]). Given a graph G and a complete list BG of blocks
together with their block branch-widths, the branch-width of G can be
computed in O(nm|BG|) time.

The last tool we need to be able to compute the branch-width of a graph
is to be able to compute the block branch-width of a block. Unfortu-
nately, deciding the block branch-width of a block is strictly equivalent
to deciding the branch-width of a split-graph which is NP-complete [5]
as already stated. Fortunately, if a block Ω is bordered by “few” minimal
separators, we can still compute bbw(Ω).

Theorem 6 ([7]). The block branch-width of any block B can be com-
puted in O(3s(B)) time.

We can sketch the proof as follows. In a decomposition T of Ω, there is
a node vΩ corresponding to Ω and three branches T ∗

i attached to vΩ . If
T respects Ω, then the minimal separators bordering Ω are partitioned
in three according to the branch in which they appear as a border. If
we choose a 3-partition of the minimal separators, we can compute the
optimal width of a decomposition leading to this 3-partition in constant
time. To compute the block branch-width, we only have to try all the
possible 3-partitions.

5 Circular-arc graphs

In this section, we apply Th. 5 to circular-arc graphs to prove that their
branch-width can be computed in polynomial time.
A circular-arc graph is the intersection graph of the arcs of a circle.
The tree-width of circular-arc graphs can be computed in polynomial
time as it is shown in [11]. To prove this, the authors use a circular
interpretation of the graph (which can be obtained in linear time [12])
and give a geometrical interpretation of maximal potential cliques which
allows them to prove that a tree-decomposition corresponds to a planar
triangulation of some polygon. We will follow exactly the same path to
prove that the branch-width of circular-arc graphs can be computed in
polynomial time.
From now on, G is a circular-arc graph. By shifting them a little, we
can suppose that ends of two distinct arcs of an intersection model I of
G are also distinct. We will only consider such representations. Between
two such ends, we put a scan-point. A scan-line is a chord of the disk
Σ between two distinct scan-points; these chords are different from the
chords of a chordal graph. It is easy to see that there are 2n scan-points
and n(2n− 1) scan-lines. The arcs inside of which lie the ends of a scan-
line are cut by the scan-line. A scan-line λ or a family of scan-lines Λ
realises the set V (λ) or V (Λ) of vertices whose arcs they cut.
Let S be a minimal separator of G and C a full component of S. The
union of the arcs of the connected component C is also an arc µC which is
bordered by two scan-points. The scan-line defined by these scan-points
is close to C. It is easy to see that the scan-line close to C realises
S. Since blocks of a graph are characterised by the minimal separators
that border them, we can realise blocks with scan-lines. More precisely,
a block Ω is characterised by the connected components of G \ Ω. The
scan-lines close to these connected components define a block-realiser of
Ω:

Definition 5 (Block-realiser). A realiser of a block Ω is a family of
scan-lines Λ such that:
1. Λ realises the minimal separators bordering Ω;
2. no two scan-lines of Λ cross;
3. there is a connected component Σ \ Λ which is incident to all the

scan-lines of Λ (the domain of Λ);
4. every minimal separator bordering Ω is realised by at least one scan-

line of Λ.

Figure 2 shows two realisers. The block-realiser we have just described is
the loose realiser. In this realiser, distinct minimal separators correspond
to distinct scan-lines. It may be possible to use less scan-lines. For exam-
ple, if S is a subset of S′, we only need to realise S′. By grouping some
minimal separators under a common scan-line, we can hope to bound
the number of scan-lines of a realiser. This would prove that there is a
polynomial number of blocks.
More precisely, let T be a branch-decomposition of G and Ω a block of
G associated with T . Let vΩ be a vertex of T corresponding to Ω and
T ∗

1 , T ∗
2 and T ∗

3 be the three connected components of T \ {vΩ}.

Definition 6 (Respectful realiser). A scan-line λ respects a branch
T ∗ if V (λ) is a subset of V (T ∗).

A realiser Λ of Ω respects the three branches T ∗
i if it is a realiser and if

all its scan-lines respect one of the branches.

By construction, the loose realiser is respectful.

Proposition 2. Let Ω be a block of a tightest branch-decomposition T
of G and vΩ and T ∗

i be defined as above.

A realiser Λ of Ω using as few scan-points as possible respecting T ∗
i has

at most three scan-lines.

Proof. Suppose for a contradiction that Λ has at least four scan-lines.
At least two scan-lines λ1 and λ2 of Λ respect the same branch T ∗

i0 . The
ends of λ1 and λ2 define a chord λ3 of the domain of Λ which respects T ∗

i0

(see Fig. 2). This chord partitions Λ in Λ1 and Λ2. If V (Λ1) is a subset of
V (λ3), then Λ2∪{λ3} is a realiser of Ω respecting T ∗

i which uses strictly
less scan-points than Λ which is absurd. For the same reason, V (Λ2) is
not a subset of V (λ3).

λ3

λ1

λ2 λ3

λ1

λ2

Two chords of a same branch have the same symbol on them.

In the first case, we can either reduce the size of the realiser or
produce a strictly tighter decomposition than T .

In the second case, we produce a strictly tighter decomposition than T .

Fig. 2. Two realisers of a block and two scan-lines λ3.

Let T ′ be the decomposition T trimmed along T ∗
1 , T ∗

2 and T ∗
3 .

By rearranging the sub-branches of T ′∗
i corresponding the packs of T ∗

i ,
we can build two branches T ′∗

i 1 and T ′∗
i 2 such that V (T ′∗

i 1) contains V (Λ1)
and V (T ′∗

i 2) contains V (Λ2). By rearranging the three branches T ′∗
i 1 and

the three branches T ′∗
i 2 in two branches T ′′∗

1 and T ′′∗
2 that we link, we can

define a new branch-decomposition T ′′ which is tighter than T . More-
over, by construction V (λ1) and V (Λ2) are cliques of HT ′′ but Ω is
not one because λ3 separates two vertices of Ω. This implies that T ′′ is
strictly tighter than T which is absurd and finishes the proof. ut

Since there are O(n2) scan-lines, Prop. 2 implies that there are at most
O(n6) blocks that can appear in a tightest branch-decomposition of G.
Moreover, since the realiser of Ω gives the “good” three-partition of the
minimal separators bordering Ω, we can compute bbw(Ω) in constant
time using Th. 6. These last two results show that we can use Th. 5 to
prove:

Theorem 7. There is a polynomial time algorithm to compute the branch-
width of a circular-arc graph.

6 Conclusion and open problems

Theorem 5 can be used for any class of graphs. If we can bound the num-
ber of “interesting” blocks in a class of graphs C and if we can compute
the block branch-width of these blocks, it shows that we can compute
the branch-width of the graphs in C efficiently. This can easily be done
with graphs of bounded asteroidal number with a polynomial number of
minimal separators for which we can also compute the tree-width in poly-
nomial time. The specific ideas used for the circular-arc graph rely on the
existence of scan-lines that can realise minimal separators. A scan-line
λ3 using the ends points of two other scan-lines λ1 and λ2 must realise
a subset of V (λ1)∪ V (λ2). Such a notion exists for circular permutation
graphs and more generally for d-trapezoid circular graphs.
The work we have conducted seems to show that the branch-width prob-
lem is more difficult that the tree-width problem. The only class we know
for which this might not be the case is the class of planar graph. Oth-
erwise, if we can compute the branch-width of a class of graphs, then
we can compute the tree-width for this same class and with a more effi-
cient algorithm. We feel that this is because tree-decompositions cannot
decompose cliques whereas branch-decompositions can. Indeed, in our
Th. 5, we not only need to be able to compute the blocks but we need
to compute their block branch-width. This second point has no equiva-
lent in the tree-width version of the algorithm. We feel that there could
be some theorem stating that if we only use minimal separators, trian-
gulations and blocks it is more difficult to compute branch-width than
tree-width.

References

1. Robertson, N., Seymour, P.: Graphs minors. III. Planar tree-width.
Journal of Combinatorial Theory Series B 36 (1984) 49–64

2. Bodlaender, H.: A partial k-arboretum of graphs with bounded
treewidth. Theoretical computer science 209 (1998) 1–45

3. Robertson, N., Seymour, P.: Graphs minors. X. Obstruction to tree-
decomposition. Journal of Combinatorial Theory Series B 52 (1991)
153–190

4. Seymour, P., Thomas, R.: Call routing and the ratcatcher. Combi-
natorica 14(2) (1994) 217–241

5. Kloks, T., Kratochv́ıl, J., Müller, H.: New branchwidth territories.
In: Proceedings 16th Annual Symposium on Theoretical Aspects of
Computer Science (STACS’99). Volume 1563 of Lecture Notes in
Computer Science., Springer-Verlag (1999) 173–183

6. Mazoit, F.: Décomposition algorithmique des graphes. PhD thesis,
École Normale Supérieure de Lyon (2004)

7. Fomin, F., Mazoit, F., Todinca, I.: Computing branchwidth via effi-
cient triangulations and blocks. In: Proceedings 31th International
Workshop on Graphs, WG 2005. Volume 3787 of Lecture Notes in
Computer Science., Springer-Verlag (2005) 374 – 384

8. Fomin, F., Kratsch, D., Todinca, I.: Exact (exponential) algorithms
for treewidth and minimum fill-in. In: Proceedings 31th Inter-
national Colloquium on Automata, Languages, and Programming
(ICALP’04). Volume 3142 of Lecture Notes in Computer Science.,
Springer-Verlag (2004) 568–580

9. Gavril, F.: The intersection graphs of a path in a tree are exactly the
chordal graphs. Journal of Combinatorial Theory 16 (1974) 47–56

10. Parra, A., Scheffler, P.: Characterizations and algorithmic applica-
tions of chordal graph embeddings. Discrete Applied Mathematics
79(1-3) (1997) 171–188

11. Sundaram, R., Sher Singh, K., Pandu Rangan, C.: Treewidth of
circular-arc graphs. SIAM Journal Discrete Mathematics 7 (1994)
647–655

12. McConnell, R.M.: Linear-time recognition of circular-arc graphs.
Algorithmica 37 (2003) 93–147

