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Abstract. As genomic research advances, the knowledge discovery from
a large collection of scientific papers becomes more important for efficient
biological and biomedical research. Even though current databases con-
tinue to update new protein-protein interactions, valuable information
still remains in biomedical literature. Thus data mining techniques are
required to extract the information. In this paper, we present a tree
kernel-based method to mine protein-protein interactions from biomedi-
cal literature. The tree kernel is designed to consider grammatical struc-
tures for given sentences. A support vector machine classifier is combined
with the tree kernel and trained on predefined interaction corpus and set
of interaction patterns. Experimental results show that the proposed
method gives promising results by utilizing the structure patterns.

1 Introduction

Since protein-protein interactions play key roles in various biological processes
[1], detail analysis of these interactions would significantly contribute to the
understanding of the biological phenomena. As genomic research advances, the
knowledge discovery from a large collection of scientific papers becomes more
important to support biological and biomedical research. Thus, how to extract
protein interactions from biomedical literature has been an active research sub-
ject over recent years.

There are many accomplishments in literature data mining for biological data
analysis and in most cases they focus on protein interaction extraction. But, the
protein interaction data is still accumulated manually in biological databases.
Furthermore, scientists sometime continue to publish their discoveries on new
protein interactions and modifying previous results in scientific papers without
submitting to the public databases [2]. Therefore, a lot of interaction data still
exist only in text materials.

Protein interaction extraction systems widely adopt natural language process-
ing (NLP) techniques. The NLP approaches can be regarded as parsing-based
methods and both full and shallow parsing strategies have been performed in

E.G. Bremer et al. (Eds.): KDLL 2006, LNBI 3886, pp. 42–52, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Tree Kernel-Based Method for Protein-Protein Interaction Mining 43

previous studies. Yakushiji et al. [3] used a general full parser with grammars
for biomedical domain to extract interaction events by filling sentences into aug-
mented structures. Park et al. [4] proposed bidirectional incremental full parsing
with combinatory categorical grammar (CCG) which localizes target verbs and
then scans the left and right neighborhood of the verb respectively to find inter-
action events in the sentences. Temkin et al. [5] also utilized a lexical analyzer
and context-free grammar (CFG) to extract gene, protein, and small molecule
interactions with recall rate of 63.9% and precision rate of 70.2%. Similarly,
preposition-based parsing to generate templates also proposed by Leroy et al.
[6] and they achieved precision of 70% for biomedical literature abstract pro-
cessing. For a partial parsing method, Pustejovsky et al. [7] used the relational
parsing for the inhibition relation with recall rate of 57%. But, these methods
are inherently complicated, requiring many resources, and the performance is
not satisfactory as yet.

In this paper, we extract protein-protein interactions from biomedical litera-
ture using a tree kernel-based method, which utilizes grammatical structure of
sentences directly. A support vector machine (SVM) with the tree kernel is used
to discriminate interaction and non-interaction data from predefined interaction
corpus and set of interaction patterns. The proposed approach exploits part-of-
speech (POS) tags and text structures to improve extraction performance.

Here, we address how the tree kernel can be used to extract protein inter-
actions and how to the extraction performance can be further improved. This
paper is organized as follows. In Section 2, the basic concept of kernel method
and its types are described. The tree kernel for protein-protein interaction ex-
traction is explained in Section 3. In Section 4, we show the experimental results
of protein interaction extraction. Finally, in Section 5, we present concluding
remarks and draw future directions.

2 Kernel Method

An object can be transformed into a collection of features f1, . . . , fN , which
produce N -dimensional feature vectors. However, it is difficult to express data via
features. For example, feature-based representations in NLP problems produce
inherently local representations of objects and it is computationally infeasible to
generate features involving long-range dependencies.

Kernel methods are an attractive alternative of feature-based approaches.
Kernel methods retain the original representation of objects and use the object
in algorithms only via computing a kernel function between a pair of objects.
A kernel function is a similarity function which has certain properties. That is,
kernel function K over the object space X is binary function K : X×X → [0, ∞]
mapping a pair of objects x, y ∈ X to their similarity score K(x, y). This is
embedding procedure of data items (e.g. genes, proteins, molecular compounds,
etc.) into a vector space F , called feature space, and searching for linear relation
in the feature space. This embedding is defined implicitly, by specifying an inner
product for the feature space via a symmetric and positive semidefinite kernel
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function: K(x, y) = 〈Φ(x), Φ(y)〉, where Φ(x) and Φ(y) are the embeddings of
data items, x and y [8].

Kernel functions implicitly calculate the inner product of feature vectors in
high-dimensional feature spaces by projecting all objects from their original
low-dimensional spaces. That is, there exist features f(·) = (f1(·), f2(·), . . .),
fi : X → R, so that K(x, y) = 〈f(x), f(y)〉. Conversely, given features f(·) =
(f1(·), f2(·), . . .), a function defined as a dot product of the corresponding feature
vectors is necessarily a kernel function [8].

In many cases, it is possible to compute the dot product of certain features
without enumerating all the features. One good example is the subsequence
kernels. In the subsequence kernels, the inputs are strings of characters, and
the kernel function computes the number of common subsequences between two
strings, where each subsequence match is additionally decreased by the factor
reflecting how spread out the matched subsequence in the original sequences
[9]. Despite of an exponential increase in number of features (subsequences),
it is possible to compute kernel matrix in polynomial time. Therefore, one can
exploit long-range features without enumerating the features explicitly.

There are a number of learning algorithms that operate only by using the dot
product of examples. The models produced by the learning algorithms are also
expressed by dot product of examples. Substituting a particular kernel functions
in place of dot product defines a specific instantiation of such learning algorithms.
The algorithms which process examples only via computing their dot products
are sometimes called dual learning algorithms. The SVM [10] is known as the
learning method that not only allows for a dual formulation, but also provides
a rigorous rationale for resisting over-fitting. For the kernel-based algorithms
working in extremely rich feature spaces, it is crucial to deal with the problem
of over-fitting problems. Many experimental results indicate that the SVM is
able to generalize classification boundary very well and avoid over-fitting in high
dimensional feature spaces. Thus, we use the SVM method with the tree kernel
to extract protein interactions.

3 Tree Kernel for Protein-Protein Interaction Extraction

3.1 Tree Kernel

There have been many approaches for text classification using kernel methods.
The BOW (bag-of-word) kernel, which uses word frequency vectors as features
and calculates inner products to get their similarities, is a typical form of kernel
classification methods [11].

Kernel-based approaches using simple word distribution of documents can-
not make use of the grammatical structure, however, new kernel method which
utilizes the structural information have been proposed in Collins [12]. The se-
quence kernel considers the data as a sequence of characters and the common
subsequences as attributes. It calculates kernel value by counting these common
subsequences. The kernels which calculate structural similarity in a recursive
manner are called ‘convolution kernel’ [13].
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Fig. 1. An example of parsing tree

The tree kernel is a convolution kernel and naturally uses the grammatical
structure. The tree kernel represents a structure with a tree form and numbers
the child nodes of parent node by its order. A parsing tree represents the text
and the structural information. Figure 1 shows the parsing tree of “protein1
binds to protein2.” In the tree kernel, kernel value is evaluated by summing up
the number of common subtrees between two trees. Consequently, the tree kernel
can be used to calculate the structural similarity effectively.

A tree represents as a vector of subtree consisting of corresponding tree itself
through high dimensional feature mapping:

Φ(Tree T ) = (subT ree(type 1), . . . , subT tree(type n)), (1)

where subT ree(type n) is the number of subtree of node type n.
The kernel function is defined as follows:

K(T1, T2) = 〈Φ(T1) · Φ(T2)〉 =
∑

l

Φ(T1)[i] × Φ(T2)[i] (2)

=
∑

n1∈N1

∑

n2∈N2

∑

i

Ii(n1) × Ii(n2), (3)

where N1 and N2 represent the set of all possible nodes of tree T1 and T2, and
Ii(n) is an indicator function which has 1 if subtree of type i is started from root
node n, 0 otherwise.

The number of subtrees with type i in T is calculated by Φ(T )[i]=
∑

n∈N Ii(n).
It means that the total number of nodes in tree T which have subtrees with type
i. The inner product between two trees, having its features as the all possible
sub-trees, is computed by the following recursive way and it is known to be
calculated in polynomial time.

1. If the form of the children nodes of n1 and n2 are different,

NumComSubt(n1, n2) = 0 (4)

2. If the form of the children nodes of n1 and n2 are identical (including their
order) and they are leaf nodes (POS tag),

NumComSubt(n1, n2) = λ (5)



46 J.-H. Eom et al.

3. For all other cases,

NumComSubt(n1, n2) =
∏

j
(1 + NumComSubt(ch(n1)j , ch(n2)j)), (6)

where ch(n1)j is the j-th child of node n1, ch(n2)j is the j-th child of node n2, and
NumComSubt(n1, n2) = λ

∑
i Ii(n1) × Ii(n2). The parameter λ, 0 < λ ≤ 1, is

used to consider the relative importance of tree fragment according to its length
and is set to ‘1’ when the size of tree fragments is not considered.

3.2 Applying Tree Kernel

We can improve some degree of extraction performance simply by using a set
of patterns or rules because the protein interactions are represented by typical
forms in many cases [2][14]. Generally, text sentences are generated from specific
rules such as grammar, then they form grammatical structures. Thus we can
utilize the structural properties from texts.

In this paper, we use a tree kernel which calculates tree similarity implicitly
without explicit rules or templates. By using the tree kernel we can compute the
similarity between two parse trees without modifying their structures. On the
other hand, it does not necessarily need to analyze full tree to extract protein-
protein interactions because the result can be decided by only sub-structure
including the interactions. Therefore, we only use the minimum subtrees that
have two proteins from full trees. This work helps to improve computational
efficiency and accurate extraction.

3.3 Adding Semantic Information by Tag-Transformation

In the parsing tree, the tag information at leaf nodes plays an important role to
identify structure patterns, then we can add simple semantic information for
protein or interaction by modifying their POS tags. Possible two candidates
are ‘NN’ tag for protein and ‘VB’ tag for interaction. Firstly, we can mod-
ify ‘NN’ tag of protein to ‘PTN’ to represent explicitly which is a protein in
tree structure level. This tag modification would not have any advantage when
the structure of positive sentence (which contains valid protein interaction) and
negative sentence (which does not contain any protein interaction) are totally
different. But, if both sentences from positive and negative examples have sim-
ilar structure and the modified POS tags are used, we could discriminate pro-
tein interactions more easily.

Secondly, we can modify interaction-related verbs and nouns. A list of in-
teraction verbs representing protein interactions are well studied in many re-
searches. We have chosen interaction-related verbs determined by referencing
these resources and by human experts. A POS tag for interaction-related verbs
is transformed by adding ‘-I’ (from ‘VB’ to ‘VB-I’) to differentiate protein in-
teraction verbs from general verbs. A POS tag for interaction-related nouns is
also transformed in the same way, from ‘NN’ to ‘NN-I’, to distinguish deverbal
nouns (e.g., a noun ‘regulation’ formed from a verb ‘regulate’) from other normal
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nouns. These modified tags are used to give rich information when we calculate
kernel value to compare similarity of subtree structures. In the experiments, we
examine the impact of using the semantic information.

4 Experimental Results

4.1 Data Set

In order to generate the data set, we have first found the abstracts with the key-
word, ‘protein interaction’ or ‘protein-protein interaction’ in PubMed. Next, five
proteins (TRPC, CREB, ERK, FOS, and EGR) have been selected as queries
among proteins that have over 2,000 relevant abstracts. More than 10,000 ab-
stracts were retrieved by the five queries, and segmented into sentences, where
the number of sentences was about 100,000. To make the problem more diffi-
cult, we discarded any sentence which contains less than two protein names or
no interaction-related word. Note that the sentences which contain at least two
protein names and one interaction-related word may not include protein-protein
interactions at all. Finally, the sentences which include protein-protein inter-
actions were labeled as ‘positive’, otherwise labeled as ‘negative’. The protein
names and interaction-related words were predetermined by human experts and
all sentences are manually classified. Consequently, we have got total 1,135 sen-
tences of ‘positive’ and 569 sentences of ‘negative’. Figure 2 shows the examples
from positive and negative sentences.

Positive examples

We show that overexpression of PTN-hsTAF12-PTN potentiates 
ATF7-induced transcriptional activation through direct interaction with 
PTN-ATF7-PTN, suggesting that protein is a functional partner of 
protein.

We report here that PTN-p21WAF1/CIP1-PTN, a cyclin-dependent 
kinase (protein) inhibitor, cooperates with PTN-CBP-PTN to regulate 
the ERalpha-mediated transcription of endogenous target genes in a 
promoter-specific manner.

Negative examples

The significance of PTN-HSP27-PTN and PTN-CREB-PTN activation 
as triggers of cardioprotection was demonstrated using appropriate 
inhibitors.

Transcriptional coactivators, CREB-binding protein PTN-CBP-PTN 
and PTN-p300-PTN, exhibit high homology in structure and similar 
functions.

Sentence contains two proteins (hsTAF12 
and ATF7) and two possible interactions
(potentiate , direct interaction with ).

Sentence contains two proteins
(p21WAF1/CIP1 and CBP) and one 
possible interaction (cooperate ).

Sentence contains two proteins (HSP27 
and CREB ) but no interactions .

Sentence contains two proteins (CEB and 
p300) but no interactions .

Fig. 2. The examples of ‘positive’ and ‘negative’ sentences

4.2 Evaluation Measure

Table 1 presents the labels given as a result of the relationship between a system’s
output and an answer. Based on the table, the system performance measured as
follows:
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accuracy =
TP + TN

TP + FP + FN + TN
· 100%

precision =
TP

TP + FP
· 100%

recall =
TP

TP + FN
· 100%

F1 − score =
2 · precision · recall

precision + recall
.

Table 1. The labels given as a result of the relationship between a system’s output
and an answer

Answer
Positive Negative

Test Positive TP FP
Results Negative FN TN

4.3 Protein Interaction Extraction

For experiments, we have used Brill tagger [15] and Collins parser [16] to construct
parsing trees. 10-fold cross-validation is performed to evaluate the system perfor-
mance because the data set is not large enough for a comparative study. We also
have generated two different data sets from the original examples. One set contains
original sentences with unchanged tags, but the other set is additionally tagged by
using new keyword ‘PTN’ and ‘-I’, which is explained in Section 3.3. The ‘PTN’
indicates ‘protein name’ and the ‘-I’ indicates ‘interaction-related word’.

We first performed the protein-protein interaction extraction using all 1,704
sentences, which unbalances positive and negative examples. Figure 3 depicts the
performance results using tree kernel methods. When λ ≤ 0.5, the tree kernel
approach gives high performance in accuracy and F1-score for both data sets.
Note that λ in tree kernels has been introduced to scale the relative importance
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Fig. 3. The performance comparison of the tree kernel methods using all examples
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Table 2. The performance comparison of the proposed approach and other methods

Method Tree Kernel BOW Kernel näıve Bayes
Accuracy 87.21 83.96 81.77
F1-score 90.58 88.61 86.71

of tree fragments with their size. Using λ, we can adjust the degree of down-
weight according to tree fragments’ size. Therefore we can conclude that it is
more important to look at the overall structure rather than the detail of the
structure, especially for long and complex sentences. However, both data sets do
not provide any difference for the tree kernel method. We infer that it occurs
from the unbalanced data. The SVM classifier is learned more focusing on posi-
tive examples because positive examples are twice more than negative ones, and
it causes relatively high recall and blurs other performance factors.

Table 2 presents the performance comparison of our approach and other meth-
ods in accuracy and F1-score. It compares with the BOW kernel and the näıve
Bayes classifier. The tree kernel performance is the results obtained from ‘PTN’
and ‘-I’ tag transformation when λ = 0.5. Our approach shows 87.21% of accu-
racy and 90.58% of F1-score, while the BOW kernel method shows 83.96% of
accuracy and 88.61% of F1-score, and the näıve Bayes classifier shows 81.77%
of accuracy and 86.71% of F1-score. Here, we find that the tree kernel methods
can provide better performance than typical approaches.

Because of the unbalance issue between the number of positive and negative
examples, we have measured the extraction performance using balanced data.
Each 569 sentences were randomly chosen from positive and negative examples.
Figure 4 presents the performance comparison of our methods using the balanced
data. It shows the data set tagged by ‘PTN’ and ‘-I’ provides better performance
than original data set over all λ. It means that the extraction system can improve
its performance by using extra tags if protein names and interaction-related
words are properly detected and tagged.
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lected data, which have similar length

Further, we analyze the number of examples for the sentence length, which
shown in Figure 5. It describes positive examples are relatively short compared
than negative examples. Under same condition of protein and interaction-related
word counts, negative examples have high possibility to be long sentences because
the protein-protein interaction is not involved in the examples. Thus we equally
selected about 440 sentences with similar length from positive and negative ex-
amples. Figure 6 presents the performance results using similar length examples.
Like previous results, the best performance is achieved when λ = 0.5. We can
also think that normalization of word length can be useful to identify protein-
protein interaction although the tree kernel already considers the sentence length
by the parameter λ. It is well known that document length incorporates into the
system performance in IR (Information Retrieval) task.

5 Conclusion

In this paper, we proposed a tree kernel-based method to mine protein-protein
interactions. Our approach transforms each sentence to a tree structure by using
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grammatical information, and a support vector machine based on the tree kernel
is used to extract the protein-protein interactions. The SVM is learned from the
given predefined interaction corpus and interaction patterns. Then it extracts
the protein-protein interactions from new sentences.

For experiments, we performed 10-fold cross-validation for 1,135 positive ex-
amples and 569 negative examples obtained from PubMed. The experimental
results show our approach provides better performance than other methods in
accuracy and F1-score. Also, the data set using ‘PTN’ and ‘-I’ tag transformation
supports more accurate extraction, which means that the detection of ‘protein
names’ or ‘interaction-related words’ is important to improve the performance. It
is interesting that the accuracy and the F1-score achieve the highest score when
λ ≤ 0.5. It suggests the overall form of tree structure is one of the key points
for the extraction performance rather than the detail of structure. However, the
tree kernel can be modified to consider sentence length or protein-protein word
distance to capture informative factors, which remains as future works.
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