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Abstract. Coppersmith, Franklin, Patarin, and Reiter show that given
two RSA cryptograms xe mod N and (ax + b)e mod N for known
constants a, b ∈ ZN , one can compute x in O(e log2 e) ZN -operations
with some positive error probability. We show that given e cryptograms
ci ≡ (aix + bi)

e mod N, i = 0, 1, ...e − 1, for any known constants
ai, bi ∈ ZN , one can deterministically compute x in O(e) ZN -operations
that depend on the cryptograms, after a pre-processing that depends only
on the constants. The complexity of the pre-processing is O(e log2 e) ZN -
operations, and can be amortized over many instances. We also consider
a special case where the overall cost of the attack is O(e) ZN -operations.
Our tools are borrowed from numerical-analysis and adapted to handle
formal polynomials over finite-rings. To the best of our knowledge their
use in cryptanalysis is novel.

1 Introduction

Messages with known relations may occur for example if an attacker pretends
to be the recipient in a protocol that doesn’t authenticate the recipient, and in
addition the message is composed of the content concatenated with a serial num-
ber. In that case the attacker can claim that she didn’t receive the transmission
properly and ask that it be sent again. The next transmission will have the same
content as the original but an incremented serial number. If the increment is
known we have a known relation. Other examples appear in [4].

Related message attacks can be avoided all together if before RSA-encryption
the message M is transformed using e.g. the OAEP function ([3]; There are
other methods and some issues are not settled yet, see [5]). This transformation
destroys the relations between messages and increases the message length.

Nevertheless it is useful to know the ramifications in case for some reason
one chooses not to use OAEP or similar methods (even though it is highly
recommended). For example RFID tags may pose tough engineering challenges of
creating very compact cryptosystems, and the trade-off must be known precisely.

In [4] it was shown that given two RSA cryptograms xe mod N, and
(ax + b)e mod N for any known constants a, b ∈ ZN one can compute x in
O(e log2 e) ZN -operations with some small error probability.
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We show that given e cryptograms ci ≡ (aix + bi)
e mod N, i = 0, 1, ...e− 1,

for any known constants ai, bi ∈ ZN , one can deterministically compute x
in O(e) ZN -operations, after doing O(e log2 e) pre-computations that depend
only on the known constants. The descriptions of the protocol and the attack
determine the values of these constants. For example the attack described at
the beginning of this section has for all i ai = bi = 1. The cost of the pre-
computations can be amortized over many instances of the problem.

Our problem could be solved by using the Newton expansion of
ci ≡ (aix + bi)

e mod N, renaming zj = xj and using linear algebra to find z1.
However, our method is more efficient.

We also show that in the special case where ci ≡ (ax + b · i)e mod N,
i = 0, 1, ...e − 1, for any known constants a, b ∈ ZN , where gcd(a, N) =
gcd(b, N) = gcd(e!, N) = 1, one can deterministically compute x in overall
O(e) ZN -operations using

x ≡ a−1b[(bee!)−1
e−1
∑

i=0

(

e − 1

i

)

· ci · (−1)e−1+i −
e − 1

2
] mod N

If any of the above gcd conditions do not hold then the system is already
broken.

It remains an open problem whether the new approach can improve the
general case of implicit linear dependence, i.e., suppose for known constants
ai, i = 0, 1, 2, ...k, there is a known relation

∑k
i=1 aixi = a0 among messages

x1, x2, ...xk . The current complexity of attacking this problem is O(ek/2k2) [4].
Our major attack-tools are divided-differences and finite-differences. These

tools are borrowed from numerical-analysis, and adapted to handle formal poly-
nomials over finite-rings. To the best of our knowledge their use in cryptanalysis
is novel.

For a survey of the work on breaking RSA see [2].

2 Main Result

2.1 Divided Differences

We borrow the concept of divided-differences from numerical analysis and adapt
it to handle formal polynomials over finite rings. This will allow us to extract the
message from a string of e cryptograms whose underlying messages are linearly
related. We specialize our definitions to the ring of integers modulo N, a product
of two primes (the “RSA ring”). All the congruences in this paper are taken
mudulo N.
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Definition 1. Let h be a polynomial defined over the ring of integers modulo N ,
and let x0, x1, ...xn be distinct elements of the ring such that (x0 −xi)

−1 mod N
exist for i = 0, 1, ...n. The nth divided-difference of h relative to these elements
is defined as follows:

[xi] ≡ h(xi),

[x0, x1] ≡
[x0]−[x1]
x0−x1

,

[x0, x1, ....xn] ≡ [x0,x1,...xn−1]−[x1,x2,...xn]
x0−xn

.

Let x be an indeterminate variable, and for i = 0, 1, ...n, let xi ≡ x + bi

for some known constants bi (these are the general explicit linear relations that
we assume later). We can now view the above divided differences as univariate
polynomials in x defined over ZN .

The following lemma is true for the divided difference of any polynomial
mod N , but for our purposes it is enough to prove it for the RSA polynomial
xe mod N . Related results are stated in [8]. Before beginning the proof we

introduce some notation borrowed from [7]. Let πk(y) ≡
k
∏

i=0

(y − xi). Then

taking the derivative of πk with respect to y we have for i ≤ k

π′
k(xi) ≡

∏

0≤j≤k
j 6=i

(xi − xj)

By induction on k the following equality easily follows

[x0, ..., xk ] ≡
k
∑

i=0

h(xi)

π′
k(xi)

(1)

Let Ct(p) denote the tth coefficient of the polynomial p, starting from the
leading coefficients (the coefficients of the highest powers). We use Ct[x0, ..xk]
as a shorthand for Ct([x0, ..xk]).

Lemma 1. Let [x0, ..., xn] be the nth divided difference relative to the RSA poly-
nomial h(x) ≡ xe mod N, and let x0, x1, ...xn be distinct elements of the ring
such that (x0 −xi)

−1 mod N exist for i = 0, 1, ...n. Then (i) for 0 ≤ n ≤ e, if
(

e
e−n

)

6= 0 modN then deg[x0, ..., xn] = e − n. (ii) Ce−n[x0, x1, .., xn] ≡
(

e
e−n

)

(an important special case is C1[x0, x1, .., xe−1] ≡ e modN).

Comment: In practice the condition in claim (i) always holds, since e << N.

Proof. The claim is trivial for n = 0. For n ≥ 1 we prove the equivalent
proposition that Ct [x0, ..., xn] = 0 for t = e, e−1, ..., e−n+1 and Ce−n[x0, ..., xn]
is independent of the bi and is not congruent to 0. We use the notations 1/b
and b−1 interchangeably. We induct on n. When n = 1

[x0, x1] ≡
(x + b0)

e − (x + b1)
e

b0 − b1
≡

∑e
i=0

(

e
i

)

xi[be−i
0 − be−i

1 ]

b0 − b1

Note that by our assumption (b0 − b1)
−1 modN exist. So Ce[x0, x1] ≡ 0

and Ce−1[x0, x1] ≡ e and indeed our claim is true for n = 1. For the inductive
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hypothesis let n = k − 1 and assume that Ct [x0, ..., xk−1] ≡ 0 for t = e, e −

1, ..., e− (k−1)+1 and Ce−(k−1)[x0, ..., xk−1] is independent of the bi and is not
congruent to 0. We want to show that when n = k, Ct[x0, ..., xk] ≡ 0 for
t = e, e − 1, ..., e − k + 1 and Ce−k [x0, ..., xk] is independent of the bi and is not
congruent to 0.

The fact that Ct [x0, ..., xk ] ≡ 0 for t = e, e−1, ..., e−k+1 follows immediately
from the inductive hypothesis and Definition 1. It takes a little more work to
show that Ce−k[x0, ..., xk] is independent of the bi.

Using (1):

[x0, x1, ..., xk] ≡

k
∑

i=0

(x + bi)
e

π′
k(xi)

≡

e
∑

j=0

(

e

j

)

xj [
be−j
0

π′
k(x0)

+
be−j
1

π′
k(x1)

+ ... +
be−j
k

π′
k(xk)

]

We want to show that Ce−k[x0, x1, ..., xk ] is independent of the bi.

Ce−k [x0, x1, .., xk] ≡

(

e

e − k

)

[
bk
0

π′
k(x0)

+
bk
1

π′
k(x1)

+ ... +
bk
k

π′
k(xk)

] (2)

So now it is sufficient to show that

(−1)0
bk
0

(b0 − b1) · · · (b0 − bk)
+... + (−1)

k bk
k

(b0 − bk) · · · (bk−1 − bk)
(3)

is independent of the bi.
We first multiply (3) by the necessary terms to get a common denominator.

We introduce some compact notation that will simplify the process. For a given
set of constants b0, b1, ...bk define

δ(h, i) ≡ (bh − bi)

δ(h, i, j) ≡ (bh − bi)(bh − bj)δ(i, j)

...

δ(i0, ..., ik) ≡ (bi0 − bi1)(bi0 − bi2) · · · (bi0 − bik
)δ(i1, ..., ik)

Similarly we can also define δj ≡ δ(0, 1, ..., j, ..., k) where the bar denotes that
the index is missing (so if k = 4 then δ3 = δ(0, 1, 2, 4, )). Then (3) becomes:

bk
0δ0 − bk

1δ1 + · · · + (−1)kbk
kδk

δ(0, 1, ..., k)
(4)

We want to show that (4) is independent of the bi. In fact it equals 1. To
see this consider the Vandermonde matrix:

V ≡











1 b0 b2
0 · · · bk

0

1 b1 b2
1 · · · bk

1
...

...
...

. . .
...

1 bk b2
k · · · bk

k










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We conclude from (2) that Ce−k[x0, x1, .., xk ] ≡
(

e
e−k

)

, which is certainly
independent of the bi. This also implies that Ce−k[x0, x1, .., xk] is not congruent
to 0 when k ≤ e. By induction we are done.

2.2 Related-Messages Attack

Here we consider the general case where for i = 0, 1, ...e−1, xi ≡ aix+bi mod N .
N = pq is an RSA composite (p and q are large primes, with some additional
restrictions which are irrelevant in the current discussion), and the constants
ai, bi are known. Of course it is sufficient to consider just the case where
xi ≡ x + bi. We now show how to deterministically compute x in O(e) ZN -
operations after some pre-computation that depends only on the known con-
stants. If the constants bi hold for many unknown values of cryptograms xe

then the cost of pre-computations can be amortized and discarded. We show
that the cost of the additional computations that depend on the value of x is
O(e).

Specifically, π′
n(xk) is independent of y and of x, hence for all k these

coefficients can be computed in advance. In that case the cost of computing
[x0, x1, ...xe−1] ≡ ux + v ≡ w(x) is O(e).

For each particular value x we know how to compute the value w(x) without
knowing x using Lemma 1 and Formula (1). More explicitly, Let
ci ≡ (x + bi)

e mod N, i = 0, 1, 2, ...e − 1, be the given cryptograms, whose

underlying messages are linearly related, and let π′
e−1(xk) ≡

e−1
∏

i=0
i6=k

(bk − bi). We

use pk as a shorthand for π′
e−1(xk). Then

w(x) ≡

e−1
∑

k=0

[xk ]

π′
e−1(xk)

≡

e−1
∑

k=0

ck

pk
.

Here we assume that the inverses (bk − bi)
−1 modN exist. Note that if for

some k, i this isn’t true then we can factor the RSA-modulus N, by computing
gcd(N, (bk − bi)).

From Lemma 1 (ii) we know that u = e. Note also that w(0) ≡ v ≡
∑e−1

k=0 be
k · p−1

k mod N, and we can compute it in the pre-computation phase
(before intercepting the cryptograms). So we can find x ≡ (w(x)−v)e−1 mod N.

The following algorithm summarizes the above discussion:
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Algorithm 1:

Given cryptograms ci ≡ (x + bi)
e mod N, i = 0, 1, 2, ...e − 1, with known

constants bi, find x.
Method:

1. Pre computation:

For k = 0, ...e−1, compute p−1
k ≡

e−1
∏

i=0
i6=k

(bk−bi)
−1; (If for some k, i, (bk−bi)

−1

does not exist then factor N using gcd(bk − bi, N) and halt);

v ≡
∑e−1

k=0 be
k · p−1

k mod N ;

2. Real-time computation: x ≡ e−1 · ((
∑e−1

k=0 ckp−1
k ) − v) mod N.

The complexity of the pre-computation is O(e log2(e)) (see Appendix), and
the complexity of the real time computations is O(e).

3 Special Case

3.1 Finite Differences

We now consider the special case where the e cryptograms are of the form ci ≡

(ax + b · i)e mod N, i = 0, 1, ...e− 1, for any known constants a, b ∈ ZN , where
gcd(a, N) = gcd(b, N) = gcd(e!, N) = 1. The special linear relations among
these cryptograms allows us to deterministically compute x in overall O(e)
ZN -operations. As before x denotes an indeterminate variable.

Definition 2. For h a polynomial over any ring let ∆(0)(x) ≡ h(x), and let

∆(i)(x) ≡ ∆(i−1)(x + 1) − ∆(i−1)(x), i = 1, 2, ...

It is easy to see that the degree of the polynomials resulting from this simpler
process keep decreasing as in the case of divided-differences. More precisely:

Lemma 2. In the special case where xi ≡ x + i, and gcd(n!, N) = 1,
[x0, x1, ....xn] ≡ ∆(n)(x)/n!

A similar relation can be derived when xi ≡ ax + ib, for known constants
a, b. The next two lemmas are stated for general polynomials h(x), although
eventually we use them for h(x) ≡ xe mod N. Let m = deg(h), and 0 ≤ k ≤ m.
By induction on k:

Lemma 3. ∆(k)(x) ≡
∑k

i=0

(

k
i

)

· h(x + i) · (−1)k−i mod N.

For the algorithm we will need explicit formulas for the two leading terms

of ∆(k)(x). Let h(x) =
∑m

i=0 aix
i and let T

(k)
am,am−1

(x) denote the two leading
terms of ∆(k)(x).
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Lemma 4. T
(k)
am,am−1

(x) ≡ (m−1)!
(m−k)!x

m−k−1(amm(x+k(m−k)/2)+am−1(m−k)).

Proof. We induct on k. The basis step is trivial. We verify one more step that
is needed later.

T (1)
am,am−1

(x) ≡ xm−2(amm(x +
m − 1

2
) + am−1(m − 1)) (5)

∆(1)(x) ≡ h(x + 1) − h(x), whose two leading terms are indeed equal to

T
(1)
am,am−1

(x) above. Now assume that the two leading terms of ∆(k−1)(x) are

T
(k−1)
am,am−1

(x) ≡ αxm−k+1 + βxm−k, where α ≡
(m−1)!
(m−k)!amm, and

β ≡
(m−1)!
(m−k)! [ammk(m−k)/2+am−1(m−k)]. The proof can be completed by

showing that T
(1)
α,β(x) ≡ T

(k)
am,am−1

(x). This can be done by computing the first

difference of T
(k−1)
am,am−1

(x), substituting α for am and β for am−1 in equation
(5) to get the claim.

3.2 Related-messages attack with lowered complexity

Using the results of section 3.1 we consider the special case where xi ≡ x + i
(or likewise xi ≡ ax + bi, for known a, b) and use the simpler finite-differences
to yield overall complexity O(e).

In lemmas 3 and 4 let h(x) ≡ xe mod N, where e ≥ 3. Thus an ≡ 1, an−1 ≡ 0,

and T
(e−1)
1,0 ≡ e!(x + (e − 1)/2)(mod N). Lemmas 1 and 2 imply that after the

e − 1 finite difference we have a linear congruence ux + v ≡ w. Then lemma 4
gives us the values of u and v, and lemma 3 tells us how to compute w given
the e cryptograms.

Specifically u ≡ e!, v = e!(e − 1)/2 and w ≡
∑e−1

i=0

(

e−1
i

)

· ci · (−1)e−1+i

where ci ≡ (x + i)e (all the congruences are taken mod N). This equation is
solvable iff e!−1 mod N exists, which holds for practical (small) values of e. The
computation of w dominates, and takes O(e) operations in ZN (since

(

e−1
i

)

can be computed from
(

e−1
i−1

)

using one multiplication and one division).
If xi ≡ ax+ bi mod N, i = 0, 1, 2...e−1, for known a and b, with gcd(a, N) =

gcd(b, N) = 1, we can likewise compute x. Given cryptogram
ci ≡ (ax+b·i )e mod N we can transform it into c′i ≡ ci ·b

−e ≡ (z+i)e mod N,
where z ≡ xab−1 mod N. So

x ≡ a−1b[bee!)−1
e−1
∑

i=0

(

e − 1

i

)

· ci · (−1)e−1+i −
e − 1

2
] mod N.

which is computable in O(e) ZN operations.

4 Conclusions

We have shown new attacks on RSA-encryption assuming known explicit linear
relations between the messages. Our attacks require more information (i.e.,
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intercepting more cryptograms), but they run faster than previously published
attacks. In some practical cases they run three orders of magnitudes faster than
previous attacks. This should be taken into consideration when designing very
compact cryptosystems (e.g., for RFID tags), although the default should be
using some form of protection like OAEP+ to destroy such known relations.
Our attack tools are borrowed from numerical analysis and adapted to handle
formal polynomials defined over finite rings.

Open problems: Can these or similar tools be used to attack other cases of
known relations, such as implicit linear relations or explicit non-linear relations?
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Appendix: The Complexity of the Pre-Processing

The following algorithm, due to Peter Montgomery, computes the pre-processing
phase of Algorithm 1 in O(e log2 e) time. We currently do not know of a better
algorithm for the general case.
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For k = 0, ...e − 1, we need to compute pk = π′
k(y) ≡

e−1
∏

i=0
i6=k

(bk − bi). We use

the observation stated before Formula (1). The algorithm proceeds as follows
(time complexity for each step is included in the brackets):

1. Expand the formal polynomial π(y) ≡
e−1
∏

i=0

(y − xi) in indeterminate variable

y (O(e log2 e),as explained below).
2. Compute the formal derivative of π(y) (O(e)).
3. Simultaneously evaluate the value of the derivative in the given points bi, i =

0, 1, ...e− 1 (O(e log2 e), see [1] pp. 294, Corollary 2).

Expanding step (1) above:
Suppose we have a polynomial multiplication algorithm that works in time

O(n log n), where n is the degree of the polynomials. Multiply pairs (there are
n/2 many pairs). Then multiply the resulting n/4 pairs at cost O(2 log 2) each.
And so on. There are log e many levels. Let e = 2k. The total cost is
e
∑k

i=0 i = O(e log2 e).
Note that if the bi happen to be some powers of one primitive nth root of

unity, w ∈ ZN , then we can use DFT in O(n log n). However, for arbitrary b′is
chances to have this condition with n = O(e) are negligible.


