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Abstract

Data stream systems execute a dynamic workload of long-running and one-time queries,
with the streaming inputs typically bounded by sliding windows. For efficiency, windows
may be advanced periodically by replacing the oldest part of the window with a batch of
newly arrived data. Existing work on stream processing assumes that a window cannot be
advanced while it is being accessed by a query. In this paper, we argue that concurrent
processing of queries (reads) and window-slides (writes) is required by data stream systems
in order to allow prioritized query scheduling and improve the freshness of answers. We prove
that the traditional notion of conflict serializability is insufficient in this context and define
stronger isolation levels that restrict the allowed serialization orders. We also design and
experimentally evaluate a transaction scheduler that efficiently enforces the new isolation
levels by taking advantage of the access patterns of sliding window queries.

1 Introduction

A Data Stream Management System (DSMS) executes two types of queries—long-running and

snapshot—whose input streams are typically bounded by sliding windows. Long-running queries
return updated answers periodically and often involve complex aggregation for monitoring pur-

poses. For instance, an Internet service provider (ISP) may issue queries over a window of
recently collected IP packet headers in order to track bandwidth usage, monitor network per-

formance, or detect malicious attacks. These queries may include complex aggregates such as
top-k lists of “heavy” users, destinations, protocol types or port numbers, quantiles over packet
round-trip times or packet lengths, and COUNT DISTINCT queries over IP addresses requesting a

connection [9, 11]. Snapshot queries are analogous to traditional database queries in that they
can be submitted to the DSMS at any time, are executed once (when posed), and return an

answer over the current state of the inputs. Snapshot queries may be used to obtain further
details in response to a change in the result of a long-running query. For example, the ISP may

ask more detailed queries about a particular host or link that appears to be malfunctioning.
Previous work on sliding window query processing [3, 8, 14, 17, 19] and stream query lan-

guages [1, 2, 6] assumes that windows slide periodically by replacing the oldest part of the
window with a batch of fresh data. A periodically-sliding window can be modeled as a circular

array of sub-windows, with each sub-window spanning an equal time interval for time-based
windows (e.g., a ten-minute window that slides every minute) or an equal number of tuples for
tuple-based windows (e.g., a 100-tuple window that slides every ten tuples). We define a win-

dow update as the process of replacing the oldest sub-window with newly arrived data, thereby
sliding the window forward by one sub-window. We will use the terms window update, window

movement, and window-slide interchangeably.
As the windows slide forward by way of periodic updates, a DSMS executes a dynamic

workload of long-running and snapshot queries. For now, suppose that query execution involves
scanning a window, one sub-window at a time (we will discuss this in more detail in Section 2).

Combined with periodic window movements, we can model DSMS data access in terms of two
atomic operations: sub-window scan (read) and replacement of the oldest sub-window with new

data (write). Thus, a window update is a single write operation, whereas a query is a sequence
of sub-window read operations such that each sub-window is read exactly once.
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Figure 1: Examples of query and window update sequences in a DSMS.

A window may be scheduled to slide while being accessed by a query, resulting in a read-write

conflict. Consider a sequence of operations illustrated in Figure 1 (a), where the processing times
of window updates (U) and queries (Q1, Q2, and Q3) are shown on a time axis. This represents
an ideal scenario, where it is possible to execute all three queries between every pair of window

updates, thereby avoiding read-write conflicts. However, the system environment, such as the
query workload, stream arrival rates, and availability of system resources, can change greatly

during the lifetime of a long-running query. Thus, a more realistic sequence is shown in Figure 1
(b), where Q2 takes longer to execute than expected. Q3 is still running when the second update

is ready to be applied, causing a delay in performing the update, and, in turn, causing another
read-write conflict when Q3 is re-executed and the third update is about to take place. A similar

problem arises if the system must process additional snapshot queries or if new long-running
queries are deployed.

It may appear that read-write conflicts can be prevented by increasing the time interval
between window updates, i.e., the sub-window size. However, all sub-windows must have the
same size so that the overall window size is fixed at all times. Therefore, either the system

must be taken off-line to re-partition the entire window, or two sets of sub-windows must be
maintained during the transition period until the window “rolls over” and all the sub-windows

have the new size. The first case is inappropriate for an on-line DSMS, whereas the second
solution does not immediately eliminate read-write conflicts as concurrent queries and updates

may still occur during the transition period.
Existing data stream solutions avoid read-write conflicts by serially executing queries and

window movements. In other words, a query locks the window that it is scanning in order
to prevent concurrent window movements. Interleaved execution of updates while a window is

being scanned by a query is advantageous, provided that the following issue is resolved. Consider
suspending the processing of Q3 in order to perform a window update, as in Figure 1 (c). Recall
that each query is assumed to perform a sequence of atomic sub-window reads, therefore it

may be interrupted after it has read one or more sub-windows. It must be ensured that when
resumed, Q3 can correctly read the updated window state. If so, then the answer of Q3 is slightly

delayed (by the time taken to perform the update), but it is more up-to-date because it reflects
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the second update as well as the first. Otherwise, we are worse off than in Figure 1 (b), because
the answer of Q3 is delayed, but it is still not up-to-date. Another example is illustrated in

Figure 1 (d), where Q3 is suspended not only to perform a window update, but also to run Q1

immediately afterwards. This is desirable if Q1 is an important query that requires an immediate
and up-to-date answer.

This paper studies concurrency control issues in a DSMS with periodic window movements,
periodic executions of long-running queries, and on-demand snapshot querying. Our goal is to

provide query scheduling flexibility and guarantee up-to-date results. The particular contribu-
tions of this paper are as follows.

• By modeling window movements and queries as transactions consisting of atomic sub-
window reads and writes, we extend traditional concurrency theory to cover queries over
periodically-advancing windows. We show that conflict serializability is not sufficient in the

presence of interleaved queries and window movements because some serialization orders
produce incorrect answers.

• We propose two isolation levels that are stronger than conflict serializability in that they

restrict the permissible serialization orders.

• We design a transaction scheduler that efficiently enforces the desired isolation levels. The

main idea is to exploit the access patterns of queries and window updates. The scheduler is
proven to be optimal in the sense that it aborts the smallest possible number of transactions

while allowing immediate (optimistic) scheduling of window updates.

• We perform an experimental evaluation of the transaction scheduler under various query
workloads and system parameters, showing improved query freshness and response times

with a minimal drop in throughput.

The remainder of this paper is organized as follows. Section 2 motivates and explains our
system model and assumptions. Section 3 defines new isolation levels for DSMS transactions, and

Section 4 presents a transaction scheduler for enforcing them. Section 5 presents experimental
results, Section 6 compares the contributions of this paper to previous work, and Section 7

concludes the paper with suggestions for future work.

2 Motivation and Assumptions

2.1 Data and Query Model

A data stream consists of relational tuples with a fixed schema. Without loss of generality, we
assume that each stream is bounded by a time-based window. A window of time-length nt is

stored as a circular array of n sub-windows, each spanning a time-length of t (each window may
have different values for n and t). Every t time units, the oldest sub-window is replaced with

a buffer containing incoming tuples that have arrived in the last t time units. Additionally,
the DSMS may materialize intermediate results of selected queries or sub-queries, e.g., sliding

window joins [8], which may also be stored as arrays of sub-windows [16]. We assume that t
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is significantly larger than the time taken to perform a window update (otherwise, the system
would spend all of its time advancing the windows rather than executing queries).

Given that long-running queries are used for monitoring purposes, they typically compute
aggregates over a single window or a join of several windows; a selection predicate may precede
the aggregate and a group-by condition may follow it. Each long-running query Q also specifies

its desired re-execution frequency. The frequency must be a multiple of t, i.e., Q will be scheduled
for re-execution every m window updates, where 1 ≤ m < n. The DSMS attempts to execute

all the queries with the desired frequencies, but it cannot guarantee that this will be the case at
all times due to unpredictable system conditions.

We classify DSMS query execution strategies into four general types: window scan (WS),
incremental scan (IS), summary scan (SS), and incremental summary scan (ISS). To illustrate

them, suppose that two sums over the same attribute (and stream) are being computed, sum1
over a window of size 6t (six sub-windows) and sum2 over a window of size 10t (ten sub-windows).

WS is a default access path that scans the entire window (or windows), one sub-window at
a time, and computes a query from scratch. As shown in Figure 2 (a), if sub-windows are read
from youngest to oldest, then the sum over the shorter window may be re-used when computing

the sum over the longer window.
One way to speed up the execution of some types of queries is to store permanent state that

allows answers to be refreshed incrementally. IS, shown in Figure 2 (b), stores the previously
calculated answer of each query and a pair of pointers denoting the window over which the

answer was computed (indicated by the dotted arrows). Upon re-evaluation, we scan (all the
tuples in) only those sub-windows which have been added or expired since the last re-execution.

To compute new sums, we add the sum of the tuples in the new sub-window (lightly shaded) and
subtract the sum of expired tuples (darkly shaded). This strategy applies to subtractable queries

such as SUM and COUNT [3], where the contribution of expired tuples may be subtracted from the
stored answer (MIN and MAX are two examples of aggregates that are not subtractable). Fur-
thermore, incremental computation of complex aggregates, such as median or COUNT DISTINCT,

requires that each query store a list of distinct values occurring in its window and their multi-
plicities (it is not sufficient to store the previous answer). Observe that expired tuples are found

in different sub-windows, depending on the window size of the query. Therefore, if the workload
includes many sum queries over windows of different sizes, then the entire window may need to

be scanned in order to re-compute all the answers, as in WS.
Rather than storing separate state per query, SS maintains shared window summaries. For

associative aggregates, such as SUM, COUNT, MAX, or MIN, we pre-aggregate each sub-window [3, 19].
An example is shown in Figure 2 (c), illustrating shared processing of two sums over different win-

dow sizes. To handle non-associative aggregates, such as median, top-k, and COUNT DISTINCT,
each sub-window summary stores counts of all the distinct values occurring within [13, 14].
Alternatively, approximate answers of complex aggregates may be computed by storing sum-

maries that contain estimates of the distribution of values in each sub-window. Examples include
Count-Min sketch [10] and Flajolet-Martin sketch [12]. Note that separate pre-aggregated val-

ues, sketches, or counters need to be store for each group if a query contains a group-by clause.
In all cases, query evaluation involves merging sub-window summaries, from youngest to oldest.

Finally, ISS is a combination of IS and SS. As illustrated in Figure 2 (d), it stores window
summaries as well as individual query state. To refresh the answer, we only need to look up the
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Figure 2: Four techniques for computing sliding window sums.

(pre-aggregated) sums of new and expired tuples. That is, only the summaries of new or expired

sub-windows need to be accessed. As in IS, ISS is suitable only for subtractable queries.

2.2 Motivation for Study of Concurrency Control

In the remainder of this paper, we assume that WS and SS are used for query evaluation. First,

WS is the default access plan for snapshot queries, which are not known ahead of time and
therefore may not find any applicable summaries. Moreover, WS may be the only option for

initial evaluation of a new long-running query; again, none of the stored answers or summaries
may apply. In this case, the window may be scanned to produce the initial answer and optionally,

to build a summary that the query can use for future re-executions (if the system has sufficient
memory to store the summary).

Next, observe that SS and IS have comparable space usage, provided that the system work-
load includes similar queries over various window sizes. To see this, note that IS requires each
query to store permanent state, even if many queries are identical except for their window sizes.

For example, in Figure 2 (b), we cannot use sum2 to help compute sum1. On the other hand, SS
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stores one summary per sub-window, whose size is at most as large as the state of an individual
query. In addition, IS must retain some expired sub-windows until each query has subtracted

the contribution of expired tuples from its stored answer. In contrast, SS simply overwrites
the oldest sub-window summary with a new summary. Moreover, SS yields faster processing
times (IS must read all the sub-windows containing new or expired tuples) and may be used by

non-subtractable queries.
Finally, note that the space usage of ISS (window summaries and query state) may be

prohibitive. First, the number of summaries stored by the DSMS may be large. For example, if
a query computes an average packet length with a group-by on protocol type, then we require

separate sub-window sums and counts for each protocol type. Moreover, snapshot queries may
need to suspend any long-running queries currently running, as in Figure 1 (d). In this case,

we need to set aside state space for the suspended queries so that they can resume later, and
reserve state space for any potential snapshot queries.

Recall Figure 1 (c) and (d). We need to allow a window to slide while being accessed by a
query and ensure that the query reads the new window state correctly. In terms of concurrency
control, we must not allow a query to have seen old tuples that have subsequently been expired.

This problem does not exist in IS and ISS because a window update does not actually replace
expired data. As discussed, expired sub-windows are retained until each query has subtracted

the contribution of expired tuples from its stored answer. However, WS and SS both scan the
window (or its summary), one sub-window at a time. Queries may see and old copy of the

window if they have read an old sub-window that is about to be overwritten. We could retain
expired sub-windows, but this requires more space and processing time (old sub-windows may

need to be re-scanned by queries in order to remove the contribution of expired tuples from
the answer currently being computed). Even then, it is desirable to prevent double-scanning

whenever possible.

2.3 System Model

The assumed system architecture is illustrated in Figure 3. Let w[i] denote the replacement of

the ith sub-window with newly arrived data, for 0 ≤ i ≤ n − 1. Each data stream generates
periodic write-only transactions Tj in subscript order, defined as Tj = {wj[j mod n]}. They
are processed by the transaction manager, which immediately propagates updates to all the

summaries and materialized results that reference this window (e.g., new tuples are passed to
the join operator, which probes the other window and generates new join results). For each

stream, the transaction manager initially executes T0 through Tn−1 to fill up the windows.
Thereafter, each Tj has the effect of moving the window forward by one sub-window. In order

to ensure that queries have access to the latest data, the transaction scheduler executes each Tj

as soon as a buffer is full, thereby interrupting any concurrent queries.

Snapshot queries are executed by scanning a suitable summary, if available, or accessing the
underlying window(s). Answers are returned in the form of a table. Long-running queries are

re-executed periodically throughout their lifetimes and generate a stream of updated answers.
A new long-running query is inserted into the query manager, or may be rejected if the system
is overloaded. The query manager then determines an appropriate execution strategy for the

new query, e.g., whether an existing summary may be used or a new summary should be built,
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Figure 3: Assumed system architecture.

and whether the new query may be merged into a group of similar queries (possibly referenc-

ing windows of different lengths) for shared processing. The design of the query manager is
an orthogonal topic, which we pursue in separate work. In this paper, we define an interface

between the query manager and the transaction scheduler, which consists of read-only transac-
tions corresponding to re-execution of one or several similar queries. We define r[i] be a scan

(read) of the ith sub-window, or its summary, for 0 ≤ i ≤ n − 1 (without loss of generality,
in the rest of the paper, we will refer to either of these as a sub-window). A snapshot query

or a particular re-execution of one or more long-running queries is a read-only transaction TQk,
defined as TQk = {rQk[0], rQk[1], . . . , rQk[n−1]}. That is, each TQk performs a scan of a window,
sub-result, or summary, by reading each sub-window exactly once (queries over windows shorter

than nt may be defined similarly). We assume that sub-windows may be read in arbitrary order.

3 Conflict Serializability in the Context of Sliding Window Queries

3.1 Serializability and Serialization Orders

We begin by analyzing the isolation level requirements of queries over periodically-sliding win-

dows. For clarity, we assume that queries access a single window and discuss queries accessing
materialized sub-results in Section 4.3. First, we define the possible types of conflicts arising
from concurrent execution of transactions. A conflict occurs when two interleaved transactions

operate on the same sub-window and at least one of the operations is a write. Clearly, a read-
write conflict occurs whenever Tj interrupts TQk, as in Figure1 (c) and (d). This is because each

TQk reads every sub-window, including the sub-window overwritten by Tj. Technically, write-
write conflicts may occur if two write-only transactions that access the same sub-window are

executed concurrently (i.e., Tj and Tj+in, for i = 0, 1, . . .). However, we can ignore write-write
conflicts due to our assumption of immediate execution of window movements. The traditional

method for dealing with conflicts requires an execution history H to be serializable. We show
that serializability is insufficient in our context using the following example.

Assume a sliding window partitioned into five sub-windows, numbered zero through four,
with sub-window zero being the oldest at the current time. Consider the following four histories—
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Figure 4: Serialization graphs for Ha, Hb, Hc, and Hd.

Ha, Hb, Hc, and Hd—with cj or cQk denoting that transaction Tj or TQk, respectively, has
committed (for brevity, we omit the initial transactions T0 through T4 that fill up the window).

Ha = rQ1[0] w5[0] c5 w6[1] c6 rQ1[1] rQ1[2] rQ1[3] rQ1[4] cQ1

Hb = rQ1[0] w5[0] c5 rQ1[1] w6[1] c6 rQ1[2] rQ1[3] rQ1[4] cQ1

Hc = rQ1[4] w5[0] c5 rQ1[3] rQ1[2] rQ1[1] w6[1] c6 rQ1[0] cQ1

Hd = rQ1[4] w5[0] c5 rQ1[0] rQ1[3] rQ1[2] w6[1] c6 rQ1[1] cQ1

Each history represents interleaved execution of a read-only transaction TQ1 and two window
movements, T5 and T6. Note that Hc and Hd reorder the read operations within TQ1; we will
say more about ordering atomic operations in Section 4. The associated serialization graphs

are drawn in Figure 4. The direction of the edges corresponds to the order in which conflicting
operations are serialized. In particular, there are two pairs of conflicting operations in each

schedule: rQ1[0] and w5[0], and rQ1[1] and w6[1]. Note that all four graphs are acyclic, therefore
all four histories are serializable, but their serialization orders are different.

Let us analyze the data read by TQ1. For each history, consider the state of the sliding
window shown in Figure 5, where the first sub-windows on the left (s0 through s4) correspond to

the initial state of the window after T0 through T4 were executed. Next, T5 advances the window
forward by one sub-window, which may be thought of as overwriting the old copy of sub-window

s0 (on the far left) with a new copy, appended after s4. Thus, the state of the window after
T5 commits is represented by the contiguous sequence of sub-windows {s1, s2, s3, s4, s0}. Then,
T6 advances the window again by appending a new copy of s1 on the far right and implicitly

deleting the old copy of s1 on the left. Hence, the state of the window after T6 commits is
equivalent to the contiguous sequence of sub-windows {s2, s3, s4, s0, s1}. Shaded sub-windows

represent those which were read by TQ1 in each of the four histories, as explained next.
First, consider SG(Ha) in Figure 4 and note that Ha serializes T6 before TQ1, meaning that

the window movement caused by T6 (creation of a new version of sub-window s1) is reflected
in the query. However, Ha serializes an earlier window update T5 after TQ1, therefore the prior

window movement caused by T5 (creation of a new version of s0) is hidden from the query.
Hence, Ha causes TQ1 to read an old copy of s0 and a new copy of s1, as illustrated in Figure 5

(a), which does not correspond to a window state at any point in time. This is because the
shaded rectangles do not form a contiguous sequence of five sub-windows. Next, recall that Hb

serializes both window movements after TQ1, therefore the query reads old versions of s0 and

s1, as illustrated in Figure 5 (b). This corresponds to the state of the window after T4 commits.
By similar reasoning, Hc allows TQ1 to read the state of the window after T5 commits (recall

Figure 5 (c)), and only Hd ensures that TQ1 reads the most up-to-date state of the window that
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Figure 5: Differences in the results returned by TQ1 in Ha, Hb, Hc, and Hd.

reflects both T5 and T6 (recall Figure 5 (d)). Again, this is because only SG(Hd) serializes both

window movements before TQk, meaning that TQk sees both updates.

3.2 Isolation Levels for Concurrent Execution of Queries and Window Move-

ments

Having shown that the serialization order affects the semantics of read-only transactions, we

propose two stronger isolation levels that restrict the allowed serialization orders.
Definition 1. A serializable history H is said to be window-serializable (WS) if all of its

committed TQk transactions read a true state of the sliding window as of some point in the past
or present (i.e., a contiguous sequence of sub-windows is read, as in Figure 5 (b), (c), and (d)).

Definition 2. A window-serializable history H is said to be latest-window-serializable (LWS)
if all of its committed TQk transactions read the state of the sliding window that reflects all the

window update transactions that have committed before TQk commits.
Note that Ha is neither WS nor LWS, Hb and Hc are WS but not LWS, and Hd is (WS

and) LWS. Note that only LWS guarantees that queries read the most up-to-date state of the
window Motivated by Fig.4, we prove the following equivalences between the above definitions

and the resulting serialization graphs
Theorem 1. A history H is window-serializable iff SG(H) has the following property: for

any TQk, if any Ti is serialized before TQk, then for all Tj serialized after TQk, i < j.

Proof. Suppose that H is WS. If all transactions TQk contained in H incur at most one
concurrent window movement, then clearly, SG(H) satisfies the desired property. Otherwise,

note that for TQk to read a sliding window state from some point in the past or present, it must
be the case that either TQk is isolated from all the concurrent window updates, or it only reads

the least recent update, or it only reads the two oldest updates, and so on. In all cases, SG(H)
contains less recent updates serialized before the query and more recent updates serialized after

the query, as wanted. Now suppose that SG(H) satisfies the property that all Tj serialized
after any TQk have higher subscripts than those Ti which are serialized before TQk. Let m be

the maximum subscript of any transaction Ti serialized before TQk. It follows that TQk reads a
sliding window state that resulted from applying all the updates up to Tm and therefore H is
WS. 2

Theorem 2. A history H is latest-window-serializable iff SG(H) has the following property:
for any TQk, all concurrent Ti transactions must be serialized before TQk.
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Proof. Suppose that H is LWS and let TQk be any query that incurs at least one concurrent
window movement. It follows that TQk reads a state of the window that results from applying all

the concurrent updates. Hence, concurrent window updates must be serialized before queries,
as wanted. Now suppose that SG(H) does not contain any links pointing from any TQk to any
Ti. This means that there are no queries that have been interrupted by window updates which

the queries then did not see. Hence, H is LWS. 2

4 Transaction Scheduler Design

4.1 Producing LWS Histories

We now present the design of a DSMS transaction scheduler that produces LWS histories. Recall

from Section 2 that write-only transactions Tj must be executed with highest priority (possibly
by interrupting concurrently running read-only transactions) so that queries have access to
an up-to-date version of the window. Given this assumption, our scheduler executes window

movements optimistically and uses serialization graph testing (SGT) to abort any read-only
transaction that causes a read-write conflict. In general, SGT may suffer from high space usage

and long running time if many conflicts among many transactions must be tracked over time [5].
Fortunately, in our context, the serialization graph is simple and can be pruned dynamically. In

particular, for each currently running TQk, it suffices to monitor concurrent window movements
Tj and ensure that all interleaved Tj are serialized before TQk (recall Figure 4). Once TQk

commits, it is guaranteed not to cause LWS violations at any point in the future, and therefore
its node can be safely deleted from the serialization graph.

The scheduler is summarized as Algorithm1. Lines 3 and 4 serially execute window move-
ments immediately (technically, line 4 must wait for an acknowledgement that the write opera-
tion has been performed). Lines 8 through 11 initialize a bit array BQk for each newly arrived

TQk, where bit i is set if TQk has already read sub-window i. Lines 12 through 18 execute
read-only transactions, one sub-window scan at a time, and set the corresponding bit in BQk to

true. Again, before committing TQl in line 17, the algorithm must wait for an acknowledgement
of performing the read operation from line 14. Note that Algorithm1 allows multiple read-only

transactions to be executed at the same time in any order (line 13) because they do not conflict
with one another. Lines 5 through 7 resolve LWS conflicts, as proven below.

Theorem 3. Algorithm 1 produces LWS histories.
Proof. As per Definition 2, we need to show that all committed read-only transactions TQk

have the property that any window movements Tj that were executed at the same time as TQk

are serialized before TQk. First, note that the only time that a new LWS violation may possibly
appear is after a window update Tj commits while one or more TQk transactions are still running.

Furthermore, a LWS conflict appears only if any Tj has updated a sub-window (an older copy
of) which has already been read by any of the currently running TQk transactions, in which case

Tj would be serialized before TQk. This occurs if BQk [j mod n] is set for any currently running
TQk. In this case, Algorithm 1 aborts TQk (line 7), ensuring that all TQk committed in line 17

satisfy Definition 2. 2

To see an example of aborting a transaction, recall history Hc from the previous section and

suppose that Algorithm 1 has processed the following prefix of it:
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Algorithm 1 DSMS Transaction Scheduler

1 let L be the list of currently running TQk transactions

2 loop

3 if new transaction Tj arrives for scheduling then

4 execute wj [j mod n], cj

5 for each TQk in L

6 if BQk[j mod n] = true then

7 execute aQk (abort TQk)

8 elseif new transaction TQk arrives for scheduling then

9 add TQk to L

10 for i = 0 to n− 1

11 set BQk [i] = false
12 if L is not empty then

13 choose any TQl from L

14 execute next operation of TQl, call it rQl[m]

15 set BQl[m] = true
16 if no more read operations left in TQl then

17 execute cQl

18 remove TQl and BQl from L

H ′
c = rQ1[4] w5[0] c5 rQ1[3] rQ1[2] rQ1[1] w6[1] c6.

When T6 commits, BQ1[4], BQ1[3], BQ1[2], and BQ1[1] are set because these sub-windows have
already been read. Executing line 6, we discover that BQ1[6 mod 5] = BQ1[1] is true and there-

fore we abort TQ1 in line 7. Similarly, in Ha and Hb, TQ1 must be aborted immediately after T5

commits.

Note that Algorithm1 supports read-only transactions with different priorities, such as snap-
shot queries or “important” long-running queries (as in Q1 from Figure 1 (d)). To do this, we

assume that the query manager embeds a priority p within each TQk and we change line 13 in
Algorithm1 to read: “let TQl be the transaction in L with the highest value of p”. Consequently,
if a low-priority TQk is currently being executed, then a higher-priority TQm transaction has the

effect of suspending TQk. This extension does not impact the correctness of Algorithm1 as it
does not introduce any new LWS conflicts.

4.2 Optimal Ordering of Read Operations

Given that Algorithm1 may abort read-only transactions in order to guarantee LWS, we want
to minimize the required number of aborts. The idea is to shuffle the read operations within

TQk given the following insight. Since aborts occur when a sub-window is being updated but
an older version of it has already been read by a concurrent TQk transaction, we should execute

TQk by first reading the sub-window which is scheduled to be updated the farthest out into the
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Algorithm 2 DSMS Transaction Scheduler with TTU

1 let L be the list of currently running TQk transactions

2 let TTU [n] be an array of sub-window TTU values
3 loop

4 if new transaction Tj arrives for scheduling then

5 execute wj [j mod n], cj

6 for i = 0 to n− 1
7 set TTU [i] = TTU [i]− 1

8 set TTU [j mod n] = n

9 for each TQk in L

10 if BQk[j mod n] = true then

11 execute aQk (abort TQk)
12 elseif new transaction TQk arrives for scheduling then

13 add TQk to L

14 for i = 0 to n− 1

15 set BQk [i] = false
16 if L is not empty then

17 choose any TQl from L

18 let m =argmax
BQl[i]=falseTTU [i]

19 execute rQl[m]

20 set BQl[m] = true
21 if no more read operations left in TQl then

22 execute cQl

23 remove TQl and BQl from L

future. More precisely, we define the time-to-update (TTU) of a sub-window as the number of

window-movement transactions Tj that must be applied until this sub-window is updated. When
the scheduler chooses a read-only transaction TQk to process, it always executes the remaining

read operation of TQk whose sub-window has the highest TTU value at the given time.
The revised scheduler is shown below as Algorithm2 (again, adding support for multiple

priority levels can be done by changing line 17 to process the highest-priority transaction).
There are two main changes. First, lines 6 through 8 update the TTU values of each sub-

window after every window movement. The newly updated sub-window receives a value of n (it
will take n write-only transaction until this sub-window is updated again), whereas the TTU
values of the remaining sub-windows are decremented. Furthermore, line 18 selects m to be the

index of the sub-window which has the highest TTU value and has not been read by TQl.
The idea in Algorithm 2 is similar to the Longest Forward Distance (LFD) cache replacement

algorithm [4], which always evicts the page whose next access is latest. LFD is optimal in the
off-line case in terms of the number of page faults, given that the system knows the entire page

request sequence and that all page faults have the same cost.
Theorem 4. Algorithm 2 is optimal for ensuring LWS in the sense that it performs the

fewest possible aborts for any history H .
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Proof. Let A be the transaction scheduler in Algorithm 2 and let S be any other transaction
scheduler that serializes transactions in exactly the same way as A, but only differs in the

ordering of read operations inside one or more read-only transactions. That is, S corresponds
to Algorithm 1 with some arbitrary implementation of the meaning of “next operation” in line
14. We need to prove that S performs no fewer aborts than A for any history H . Let Hi be the

prefix of H containing the first i read operations (interleaved with zero or more write operations,
and zero or more commit or abort operations). The proof proceeds by inductively transforming

the sequence of read operations produced by S into that produced by A, one read operation at
a time. To accomplish this, we let S0 = S and define a transaction scheduler Si+1 that, given

Si, has the following two properties.

1. Both Si and Si+1 order all the read operations in Hi in the same way as A.

2. Si+1 orders all the read operations in Hi+1 in the same way as A and performs no more

aborts than Si in Hi+1.

Let rk[y] be the (i + 1)st read operation executed by Si and rk[z] be the (i + 1)st read
operation executed by Si+1. Due to our assumption that A and S only differ in the ordering
of read operations inside read-only transactions, the (i + 1)st read operations done by Si and

Si+1 both belong to the same transaction, call it TQk. Thus, sub-window z (mod n) has the
highest TTU value at this time. Now, if z = y then Si+1 = Si and we are done (property 2

holds). Otherwise, Si+1 and Si differ in the (i + 1)st read operation. First, suppose that TQk

is not interrupted by any write-only transactions before the next read operation. Then, TQk

is not aborted by Si or by Si+1 in Hi+1 and we are done (property 2 holds). Next, suppose
that TQk is interrupted by at least one write-only transaction before the next read operation.

The remainder of the proof is broken into the following three cases, which collectively prove
property 2.

In the first case, suppose that the set of interrupting transactions contains Ty , but not Tz.
Given that sub-window z (mod n) has the highest TTU value at this time, and that write-only
transactions are generated and serially executed in increasing order of their subscripts, the most

recent write-only transaction can have a subscript no higher than z − 1. Then, Si aborts TQk

in Hi+1. This is because TQk has already read an old version of sub-window y (mod n) and

therefore Ty would have been serialized after TQk. However, Si+1 does not abort TQk in Hi+1.
To see this, observe that TQk could not have possibly read any of the sub-windows that have

just been updated. This is due to the fact that those sub-windows must have lower TTU values
than sub-window z (mod n) and must necessarily be scheduled after sub-window z (mod n) by

Si+1.
In the second case, suppose that the set of interrupting transactions does not contain Ty

or Tz. By the same reasoning as above, the most recent write-only transaction can have a
subscript no higher than y − 1. Again, Si+1 does not abort TQk in Hi+1 because TQk could not
have possibly read any of the sub-windows updated by or before Ty−1 (they all have lower TTU

values than sub-window z (mod n). In terms of satisfying property 2, it does not matter what
Si does in this case.

Finally, in the third case, suppose that the set of interrupting transactions contains both Ty

and Tz. Then, both Si and Si+1 abort TQk in Hi+1 because both schedulers have allowed TQk
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to read a sub-window that has now been updated. 2

Algorithm 2 takes advantage of the semantics of DSMS transactions in order to anticipate

possible LWS violations and prevent them to the greatest possible extent. As an example, we
trace the scheduling of the read operations of TQ1 in history Hd defined in Section 3. At the
beginning, sub-window zero is the oldest and has a TTU of one (it will be updated after the

next write transaction, namely T5). Sub-window one is next with a TTU of two, and so on until
sub-window four, which has a TTU of five. Thus, the first read operation to be scheduled reads

the sub-window with the highest TTU value, namely sub-window four. Next, sub-window zero
is updated and therefore its TTU changes to five; the TTU values of all the other sub-windows

are decremented. Thus, sub-window zero is the next one to be read by TQ1 because its TTU
value of five is the highest. Sub-windows three and two are next (with TTU values of three and

two, respectively). At this point, only sub-window one remains to be read, which is done after
it is updated by T6.

Thus far, we implicitly assumed that newly arrived data overwrite the oldest sub-window,
meaning that a query which has read an old copy of a freshly updated sub-window must be
aborted to guarantee LWS. Recall our discussion in Sect 2.2, mentioning the possibility of tem-

porarily keeping expired sub-windows and allowing queries to re-read them in order to “undo”
the contribution of expired tuples from the query state. Algorithm2 still applies in this case.

The difference is that when a LWS conflict is discovered, the transaction re-scans the old copy
of the newly updated sub-window, followed by reading the new copy. Therefore, no aborts are

necessary. In this context, Algorithm2 is optimal in the sense of minimizing the number of
required re-scans.

4.3 Note on Queries Accessing a Materialized Sub-Result

Up to now, we assumed that queries access individual windows or their summaries. However,
as discussed in [16], all but the simplest sliding window queries may re-order tuples during

processing, meaning that the order in which tuples are inserted into a materialized sub-result
may be different than the expiration order. As a consequence, it is no longer the case that the

oldest sub-window may be dropped and the newest sub-window inserted in its place. Consider
a join of two windows, each having five sub-windows. The result of the join may also be
maintained using five sub-windows partitioned on expiration time. As illustrated in Figure 6,

when the underlying windows slide, the oldest sub-window expires, as before. However, each
sub-window may incur insertions because the new tuples may have various expiration times.

To deal with this issue, we make a small modification to our scheduling algorithms: when a
materialized sub-result is updated while a query is scanning it (or a summary over it), the

tuples inserted into sub-windows which have already been read are copied and passed to the
query prior to being inserted into their sub-windows (and summaries). This way, the query is

guaranteed to see all the updates and LWS is preserved. Note that the query need not read new
tuples that were inserted into sub-windows which it has not read yet (they will be read when

the query finally scans these sub-windows).
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Figure 6: Update of a materialized sub-result.

5 Experiments

5.1 Implementation Details and Experimental Procedure

We implemented a simple DSMS query manager and the following four transaction sched-

ulers: Algorithm2 (abbreviated TTU ), Algorithm1 (which does not re-order the read operations
within transactions, abbreviated LWS), a scheduler similar to Algorithm2 that only enforces

window-serializability (abbreviated WS), and a scheduler that executes transactions serially (as
in current DSMSs, abbreviated Serial). The implementation was done in Java (Blackdown

JavaTM , J2SE 1.4.2), while the experiments were performed on a Pentium-IV PC with a 3
GHz CPU and 1 Gb of RAM, running Linux. The input stream is a sequence of simulated IP

header packets, with the expected fields such as timestamp, protocol, source and destination
IP addresses, header size, data size, TCP flags, time-to-live, and checksum. For simplicity, the

values of all fields are generated randomly. For example, the source and destination IP addresses
have one of one thousand random values, whereas the data size is a random integer between
one and 100. The steady-state stream arrival rate is one packet per millisecond, but the specific

arrival rate over a particular sub-window is allowed to deviate from the steady-state rate by a
factor of up to ten.

We use a long-running query workload representative of an on-line network traffic analysis
application (see, e.g., [9, 11]). There are two levels of transaction priorities: those corresponding

to re-executions of long-running queries with low-priority, and those corresponding to snapshot
queries with high-priority. We execute a total of between 40 and 100 long-running queries,

arranged into groups of five for shared processing. Long-running queries are chosen randomly
from the following set: top-k queries over the source or destination IP addresses, and percentile

queries (25th, 50th, 75th, 90th, 95th, and 99th percentiles) over the total bandwidth consumed
by (or directed to) distinct IP addresses. The window sizes referenced by queries are generated
randomly between one and n, where n is the total number of sub-windows. Queries computing

the same aggregate over different window sizes are evaluated together. For simplicity of imple-
mentation, long-running queries are executed by scanning the window and building a hash table

on the required attribute. Snapshot queries are chosen from a set of simple aggregates over
a random subset of the source and destination IP addresses. Each query references the same

time-based window, which is stored in main memory.
The experimental procedure is as follows. After initializing the sliding window using a

randomly generated input stream, we test each of the four transaction schedulers over an identical
query workload. The tests proceed for a time equal to the window length. We then repeat each

test five times using different input streams and calculate the average of each measurement being
reported. The parameters being varied in (and across) the experiments are the query workload,
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Figure 7: Freshness, response time, and inter-execution time of Q2.

the window size (controlled via the number of sub-windows), and the length of each sub-window
(which controls the frequency of window movements). The following performance metrics are

used to evaluate the four transaction schedulers, as illustrated in Figure 7 corresponding to the
execution time line from Figure 1 (d).

• Query freshness is the difference between the time that a query reports an answer and the
time of the last window update reflected in the answer.

• Response time is the difference between the query execution start time and end time. This

metric is particularly important for snapshot queries, which are usually time-sensitive.

• Inter-execution time of a long-running query is the length of the interval between its re-

executions. A DSMS is expected to tolerate slightly longer inter-execution times if the
returned answers are more up-to-date. The motivation for this is that even if we return

an older answer earlier, we would have to re-execute the query soon in order to produce
an answer that reflects the new state of the window.

5.2 Percentage of Aborted Transactions

Our first experiment illustrates Theorem 4 by comparing the percentage of aborted read-only

transactions using Algorithms 1 and 2. We test two sub-window sizes: t = 1 sec. and t = 5 sec.,
with the number of sub-windows varied from ten to 100. The number of long-running queries

is set to 40 for t = 1 sec. and 100 for t = 5 sec. The percentage of transactions aborted by
Algorithm 1 is shown in Figure 8. In comparison, Algorithm 2 did not abort any transactions in
any of the experiments. This is because during normal execution, a long-running query does not

incur more than one concurrent window update, unless suspended for a long time in order to run
a heavy workload of snapshot queries. Since Algorithm 2 ensures that read-only transactions

postpone reading the sub-window that is about to be updated until the end, aborts can be easily
avoided if the number of concurrent window updates is small.

Note that the proportion of read-only transactions aborted by Algorithm 1 is higher for
t = 1 sec. because a smaller sub-window size implies that window movements are executed more

often, thereby increasing the chances of read-write conflicts. Aborts are also more frequent as the
number of sub-windows increases (i.e., as the length of the sliding window grows) because this

causes longer query evaluation times, therefore the number of read-only transactions between
window updates decreases. In turn, this increases the proportion of read-only transactions that
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Figure 8: Percentage of read-only transactions aborted by Algorithm 1.

execute at the same time as window movements and raises the chances of read-write conflicts.

In the worst case of frequent window movement and long window size (t = 1 sec. and 100
sub-windows), Algorithm 1 aborts over half of the read-only transactions because nearly every

transaction incurs a concurrent window movement, which often ends up causing a LWS conflict.
Similar results were obtained when snapshot queries were posed at random times. In particular,

Algorithm 2 still did not abort any transactions.

5.3 Experiments with a Workload of Long-Running Queries

Next, we present results of executing Serial, WS, LWS, and TTU on a workload consisting

of long-running queries and interleaved window movements. The sub-window sizes, number of
sub-windows, and number of long-running queries are the same as in the previous experiment;

for now, we assume that no snapshot queries are posed. We measure the average freshness,
inter-execution time, and throughput.

The average query freshness, in units of seconds, is shown in Figure 9 (the lower the value,
the better). TTU and LWS clearly outperform WS and Serial because the first two guarantee
latest-window-serializable schedules, where queries have access to an up-to-date state of the

window. As expected, freshness deteriorates for all four schedulers as the sub-window size grows
to t = 5 sec. and window movements become less frequent. Moreover, increasing the number of

sub-windows (or equivalently, increasing the window length) generally has an adverse effect on
freshness because the query execution times increase. Note that Serial performs slightly better

than WS because WS adds to the query execution time by performing concurrent window
movements, yet the answer does not reflect any of the updates. Overall, TTU provides the best

query freshness in all tested scenarios.
The average query inter-execution times, in units of seconds, are graphed in Figure 10.

Each cluster of eight bars corresponds, in order, to Serial, WS, LWS, and TTU for t = 1 sec.,
followed by Serial, WS, LWS, and TTU for t = 5 sec. Serial has the best (lowest) inter-execution
times because it does not incur the overhead of serialization graph testing, therefore its total

query execution time is slightly lower. Notably, LWS (corresponding to the third and seventh
bars in each cluster) performs the worst. For instance, aborting every second re-execution of
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Figure 9: Comparison of query freshness for Serial, WS, LWS, and TTU.

Figure 10: Comparison of query inter-execution times for Serial, WS, LWS, and TTU.

a long-running query means that its inter-execution time doubles. In general, increasing the

sub-window size to t = 5 sec. (and hence, increasing the total window size) leads to longer inter-
execution times for all four schedulers as queries take longer to process. Similarly, increasing the

number of sub-windows increases the query evaluation times and therefore negatively affects the
inter-execution times. Overall, Serial yields the best query inter-execution times, with WS and

TTU following very closely behind, whereas LWS performs badly due to aborted transactions.
Figure 11 illustrates the throughput (in units of the number of read-only transactions per

second) of LWS versus the other three schedulers (namely Serial, WS, and TTU, labeled Oth-

ers), which all yield very similar results. In particular, the throughput penalty of TTU versus
Serial is very small—typically below two percent and at most four percent. This is because the

serialization graph testing done by TTU consists of simple bit operations after each window
movement and causes negligible overhead. Note the poor performance of LWS ; its throughput

is lower in all cases due to aborted transactions. As expected, the throughput of all schedulers
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Figure 11: Comparison of throughput of read-only transactions for LWS and “Others”.

decreases when transactions take longer to execute, which occurs when the sliding window is
large (i.e., the number of sub-windows increases or the sub-window size increases).

5.4 Experiments with a Workload of Long-Running and Snapshot Queries

Last, we report the results of experiments with a mixed workload of long-running and snapshot
queries (and concurrent window movements). We fix the sub-window size at five seconds, the

number of long-running queries at 100, and the number of snapshot queries per sub-window
length at five. Snapshot queries are scheduled at random times with an average time between

requests set to one second. We report the average snapshot query response time, and we sepa-
rately measure the average freshness of snapshot and long-running queries.

We begin by analyzing the average snapshot query response times, in units of seconds, shown
in Figure 12. TTU and WS perform best and yield nearly identical response times. The response

times of LWS are noticeably longer because it is forced to abort and restart some snapshot
queries. Thus, LWS may not be suitable for a DSMS that executes time-sensitive queries.

Serial exhibits the worst results in this experiment because it is unable to suspend a long-
running query and execute an snapshot query immediately; in general, Serial is inappropriate
for any situation involving prioritized scheduling. As the number of sub-windows increases, the

response time achieved by each of the four schedulers worsens because it is now more costly to
execute each query.

Figure 13 plots the average snapshot query freshness, in units of seconds. As expected,
TTU outperforms the other schedulers because it guarantees latest-window-serializability and

does not abort any transactions. The performance of LWS is somewhat worse because some of
the transactions corresponding to snapshot queries are aborted and restarted at a later time.

WS and Serial do not guarantee latest-window serializability and therefore exhibit the worst
performance. Overall, TTU yields the best results in terms of snapshot query freshness and is

tied for best in terms of the response time.
Finally, we separately examine the average freshness of long-running queries in order to verify

that the performance edge of TTU in the context of snapshot query freshness does not come at
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Figure 12: Comparison of snapshot query response times for Serial, WS, LWS, and TTU.

Figure 13: Comparison of snapshot query freshness for Serial, WS, LWS, and TTU.

a cost of poor long-running query freshness. Results are shown in Figure 14. It can be seen that
TTU maintains its superiority in producing the most up-to-date results of long-running queries.

6 Comparison with Related Work

The concurrency control mechanisms presented in this paper are compatible with any DSMS
that employs periodic updates of sliding windows and query results, e.g., [1, 2, 6, 8, 14, 17, 19].

Our techniques are also applicable to a system such as PSoup [7], where mobile users connect to
a DSMS intermittently and retrieve the latest results of sliding window queries. In our context,

these asynchronous requests may be modeled as snapshot queries posed at various times. Given
that mobile users may have low connectivity with the system (e.g., via a wireless channel), it
is particularly important to guarantee low response times and up-to-date query answers. Our

transaction scheduler fulfills both of these requirements.
As discussed in Section 2, we assumed an evaluation model in which queries are re-executed

by scanning one or more windows or summaries, or a materialized sub-result. Similar techniques
were used in [3, 14, 19]. Our procedure for incremental maintenance of materialized join results—
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Figure 14: Comparison of long-running query freshness for Serial, WS, LWS, and TTU.

using a batch of newly arrived tuples from one window to probe the other window and generate
new results—is similar to the lazy multi-way join from [15]. In general, our query model of a final

aggregation function applied on a window or materialized sub-result is similar to NiagaraCQ [8],
but less expressive than, e.g., Aurora [1] and STREAM [2]. However, we believe that our model

is sufficiently expressive for many applications that require long-running queries for monitoring
purposes, while at the same time being simple enough to allow straightforward solutions of

concurrency control issues.
Our transaction model resembles multi-level concurrency control and multi-granularity lock-

ing as it considers a sub-window, rather than an entire window, to be an atomic data object.
The novelty of our solution is that the order in which read operations are performed is chosen

in such a way as to minimize the number of aborted transactions.
Our transaction scheduler employed serialization graph testing. Other scheduling techniques

include two-phase locking and timestamping [5]. However, two-phase locking may not be appro-

priate in our context because it is not clear how to force a particular serialization order using
locks. Moreover, the possible problem with using timestamping for DSMS concurrency control

is the difficulty of ensuring latest-window serializability. Suppose that each transaction receives
a timestamp when it is passed to the transaction scheduler and that serialization order is de-

termined by timestamps. In this case, any concurrent window update transaction is assigned a
higher timestamp than a read-only transaction and is therefore serialized before the read-only

transaction. Hence, Algorithm2 would be forced to abort every read-only transaction that is in-
terrupted by a window movement. A similar issue appears if we want to adapt multi-versioning

concurrency control techniques to enforce latest-window serializability, among them snapshot
isolation and commit-order preserving serializability [18].

7 Conclusions and Future Work

This paper presented DSMS concurrency control mechanisms that allow a window to slide
forward while it, or an associated summary structure, is being scanned by a query. Our solution is
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based upon a model that views DSMS data access as a mix of concurrent read-only and write-only
transactions. We proved that conflict serializability is insufficiently strong to guarantee correct

and up-to-date query results, and defined more appropriate isolation levels. We also implemented
a transaction scheduler for enforcing the new isolation levels that is provably optimal in reducing
the number of aborted transactions. Our scheduler was experimentally shown to improve query

freshness and response times while maintaining high transaction throughput.
We are interested in the following two directions for future work. First, we want to extend

our query execution model and investigate concurrency control issues in query plans containing
an arbitrary number of pipelined window operators. One issue in this context is synchronization

among the levels in the pipeline, e.g., updates to the individual windows may take some time as
they are propagated up the pipeline to the final query operator. Another problem appears when

the same sub-query occurs more than once within a query, in which case our current assumption
of queries scanning each window once may not hold (unless the sub-query can be flattened).

Second, we want to extend our treatment of DSMS concurrency control to include the semantics
of data loss and crash recovery, e.g., loss of data for a particular time interval, which might make
it impossible for queries to read a full window.
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[14] L. Golab, S. Garg, and M. T. Özsu. On indexing sliding windows over on-line data streams.
In Advances in Database Technology — EDBT’04, pages 712–729, 2004.
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