
A Chaos-Based Robust Software Watermarking

Fenlin Liu, Bin Lu, and Xiangyang Luo

Information Engineering Institute, Information Engineering Univercity,
Zhengzhou Henan Province, 450002, China

liufenlin@sina.vip.com, stoneclever@gmail.com, xiangyangluo@126.com

Abstract. In this paper we propose a robust software watermarking
based on chaos against several limitations of existing software water-
marking. The algorithm combines the anti-reverse engineering technique,
chaotic system and the idea of Easter Egg software watermarks. The
global protection for the program is provided by dispersing watermark
over the whole code of the program with chaotic dispersion coding; the re-
sistance against reverse engineering is improved by using the anti-reverse
engineering technique. In the paper, we implement the scheme in the In-
tel i386 architecture and the Windows operating system, and analyze the
robustness and the performance degradation of watermarked program.
Analysis indicates that the algorithm resists various types of semantics-
preserving transformation attacks and is good tolerance for reverse en-
gineering attacks.

1 Introduction

Software piracy has received an increasing amount of interest from the research
community [1, 2, 3]. Nowadays, software developers are mainly responsible for
the copyright protection with encryption, license number, key file, dongle etc.
[1, 4]. These techniques are vulnerable suffered from crack attacks and hard to
carry out pirate tracing. Moreover, software developers have to spend much
time, resources and efforts for copyright protection. If there is a reliable system
of software protection as the cryptosystem, the software based on the system can
be protected to a certain extent. And software developers could devote most of
their resources and efforts to developing the software without spending resource
and efforts on intellectual property protection. Software watermarking is just an
aspiring attempt in the aspect [5].

There are several published techniques for software watermarking. However,
no single watermarking algorithm has emerged that is effective against all ex-
isting and known attacks. Davidson et al. [6] involved statically encoding the
watermark in the ordering of basic blocks that constitute program. It is easily
subverted by permuting the order of the blocks. A comparable spread spec-
trum technique was introduced by Stern et al. [7] for embedding a watermark
by modifying the frequencies of instructions in the program. This scheme is ro-
bust to various types of signal processing. However, the data-rate is low and
the scheme is easily subverted by inserting redundant instructions, code opti-
mization, etc. With the pointer aliasing effects, Collberg et al. [8] first proposed

K. Chen et al. (Eds.): ISPEC 2006, LNCS 3903, pp. 355–366, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

356 F. Liu, B. Lu, and X. Luo

dynamic software watermarking, which embeds the watermark in the topology
of a data structure that is built on the heap at runtime given some secret input
sequence to the program. This scheme is vulnerable to any attack that is able to
modify the pointer topology of the program’s fundamental data types. Cousot
et al. [9] embed watermark in the local variable, and the watermark could be
detected even if only part of the watermarked program is present. This scheme
can be attacked by obfuscating the program such that the local variables repre-
senting the watermark cannot be located or such that the abstract interpreter
cannot determine what values are assigned to those local variables. Nagara et al.
[5] proposed thread-based watermarking with the premise that multithreaded
programs are inherently more difficult to analyze and the difficulty of analy-
sis increases with the number of threads that are ”live” concurrently. But the
scheme need introducing a number of threads, and degradation of the perfor-
mance could not be ignorable. In general, there are such limitations as follows:
(A) the assumed threat-model is almost based on automated attacks (i.e. code
optimization, obfuscation, reconstructed data and so on), but hardly on manual
attacks (such as reverse engineering attacks). (B) Watermark is just embedded
in a certain module of the program so that not all modules can be protected, and
it can’t resist cropping attacks. (C) Watermark is embedded in the source code;
because of its recompiling, the efficiency of embedding is rather low, especially
fingerprint. (D) In the embedding procedure, programmers have to take on all
the work, especially the complex watermark constructing and embedding, such
that the watermark is not always feasible.

This paper designs a new scheme that integrates chaotic system, anti-reverse
engineering technology, and the idea of Easter Egg software watermarks-Chaos-
based Robust Software Watermarking (CRSW) which holds the facility and fea-
sibility of Easter Egg software watermarks, meanwhile resists various types of
semantics-preserving code transformation attacks. When chaotic system is in-
volved, dispersing watermark over the whole code provides global protection
for the program. Furthermore, by involving anti-reverse engineering techniques,
the resistance against anti-reverse engineering attacks is improved. In addition,
CRSW embeds watermark into the executable code directly. The watermarked
program need not recompile, and the efficiency is improved. The analysis of the
proposed algorithm shows that CRSW resists various types of semantics trans-
formation, is good tolerance against anti-reverse engineering technology attacks,
and has modest performance degradation.

2 The Structure of CRSW

Easter Egg watermarks, a kind of dynamic software watermarks, is one of the most
widely used watermarking [1, 8]. This watermarking, in essence, directly embeds
a watermarking detector (or extractor) into the program. When the special input
sequence is received, detector (or extractor) is activated, and then the watermark
which is extracted from the watermarked program is displayed in a way of visu-
alization. Thus, the semantics of detecting procedure (or extracting procedure) is
included in the semantics of the watermarked program, so that Easter Egg water-

A Chaos-Based Robust Software Watermarking 357

marks resist various semantics-preserving transformation attacks [10]. The main
problem with Easter Egg watermarks is that once the right input sequence has
been discovered, standard debugging techniques will allow the adversary to lo-
cate the watermark in the executable code and then remove or disable it [8]. And
then, the watermark is just embedded in one piece of the program typically, hence,
cropping a particularly valuable module from the program for illegal reuse is likely
to be a successful attack [10].

In this paper, basing on the idea of Easter Egg software watermarks, we
attempt to propose a more robust and feasible software watermark—CRSW.
The watermark is consisted with 4 essential parts: watermark W ,Input Monitor-
ing Module Cm, Watermark Decoding Module Cd, and Anti-reverse Engineering
Module Ca.Unlike the other watermarking, CRSW not only embeds watermark
W into the program, but also embeds Cm, Cd, Ca in the form of executable code
into the program. In this section, we expatiate the structure and the interrela-
tions of CRSW embedding code which includes Cm, Cd, Ca(see Fig. 1).

Formally, let P be the considered program, {α1, α2, · · ·}be the set of ac-
ceptable input of the program,P ′ = T (P,W,Cm, Cd, Ca) is the watermarked
program (T is the watermarking transformation), the extracting procedure is
˜W = D(Γ (P ′)), where D is the extracting transformation, Γ is the code transfor-
mation. If the watermarked program has been attacked, Γ represents the attack-
ing transformation. Otherwise, Γ is identical transformation.If D(Γ (P ′)) ≡cp W
holds,T resist Γ , where equivcp is user-defined equal relationship.

Input Monitoring Module realizes the mapping, Ψ : {α1, α2, · · ·} �−→ {0, 1}.
If Ψ(αi) = 1 holds, Cd is activated. α ∈ Σ = {αi | Ψ(αi) = 1} is defined as
activation key.

To describe the Watermark Decoding Module clearly, we briefly describe the
watermark embedding procedure. Firstly, preprocess W : W ′ = E(W,G), where
G is digital chaotic system; then embed W ′ into the code of program with chaotic
dispersion coding and get the code Iew = Ω(W ′, I, G), where I is the code of pro-
gram (we will discuss chaotic dispersion coding in the next section).Watermark
Decoding Module extracts the watermark ˜W from watermarked program and
performs it in the form of visual action. The module consists of Watermark
Output Module(Cdo) and Chaotic system Module (Cdc). In the extracting pro-

Fig. 1. The structure and interrelations of CRSW embedding code

358 F. Liu, B. Lu, and X. Luo

cedure, firstly, the module extracts ˜W ′ with reverse chaotic dispersion cod-
ing(˜W ′ = Ω−1(Iew, G)); then gets the watermark ˜W by ˜W = E−1(˜W ′, G);
at last Cdo transform ˜W into the visual action, V

˜W
, and display V

˜W
to users.

Anti-reverse Engineering Module, which consists of Anti-static Analyzing Mod-
ule(Cas) and Anti-dynamic Debugging Module(Cad), offers the protection from
reverse engineering attacks for Cm, Cd. Cas applies the anti-static analyzing tech-
niques, and Cad applies the anti-dynamic debugging techniques.

3 Embedding and Extraction of the CRSW

In this section, we discuss how to embed W , Cm, Cd and Ca into P , the construc-
tion of Cm, Cd and Ca will be described in the next section. We present chaotic
substitution and chaotic dispersion coding before describing the embedding and
extraction.

3.1 Chaotic Substitution ∂

Chaotic substitution is replacing i with c (c,i are two 8-bit binary integers), the
result is that the value of i equates c, and we get s. With c and s, the original
value of i is recovered by reverse chaotic substitution. Let G is digital chaotic
system, without loss of generality, let the state space of G be [a, b). Thus Chaotic
substitution can be expressed by

s = ∂(i, c,G) = �28 × G(x,m) − a

b − a
� ⊕ i, x =

c(b − a)
28 + a,m = � c

λ
� + 1 (1)

where ⊕ is XOR. G(x,m) is the state of G which has been iterated m times with
the initial value x. λ is the parameter which can adjust iterated times. Reverse
chaotic substitution is given by:

i = ∂−1(s, c,G) = ∂(s, c,G) (2)

Generally, the set A = {α1, α2, · · · , αk} replaces B = {b1, b2, · · · , bk} with chaotic
substitution, and get the result:

R = {rj} = ∂(B,A,G) = {∂(bj , aj , G)}, j = 1, 2, · · · , k (3)

The reverse procedure is given by

B = ∂−1(R,A,G) = ∂(R,A,G) (4)

3.2 Chaotic Dispersion Coding ξ

Let X = {x1, x2, · · · , xn} be a chaotic sequence, without loss of generality, sup-
posing xj ∈ [a, b), j = 1, 2, · · · , n. Chaotic dispersion coding is that dispersing
W over I (the code of program), which is given by

[I ′, S′] = ξ(W, I,X) (5)

where I ′ is the resulting code, S′ is the save code.

A Chaos-Based Robust Software Watermarking 359

Let the length of W be n bytes and the length of I be l bytes. Thus, W =
{w1, w2, · · · , wn}, I = {i1, i2, · · · , il}, S′ = {s′1, s

′
2, · · · , s′n}. The steps of ξ are as

follows:

1) Initialization: L ← l, N ← n, m ← �L/N�, j ← i, d ← 0, let I ′ =
{i′1, i

′
2, · · · , i′l} = I

2) Let r = �m × xj−a
b−a �, d = d + r, s′j = ∂(id, wj , G), i′d = wj

3) Algorithm is done, if j = n is satisfied. Otherwise go to 4)
4) Let L = L − r, N = N − 1, m = �L/N�, j = j + 1, go to 2).

When algorithm is done, S′ = {s′1, s
′
2, · · · , s′n}, I ′ = {i′1, i

′
2, · · · , i′l}. The reverse

chaotic dispersion coding, recovering W and I with S′ and I ′, can be expressed
as: [I,W] = ξ−1(S′, I ′,X).

3.3 Embedding

In CBSW, all of W , Cm, Cd, Ca are embedded into the executable code directly,
the procedure is described below(Fig. 2 shows the change of executable code
after embedding):

Fig. 2. The drawing of embedding watermark

360 F. Liu, B. Lu, and X. Luo

1) Give Key < K1,K2 >, where K1 is activation key, K2 is the key of producing
chaotic sequence. Supposing that length of watermark is n bytes, W can be
expressed as {w1, w2, · · · , wn}.

2) Construct Watermark Decoding Module Cd, and Anti-reverse Engineering
Module Ca; Construct Input Monitoring Module Cm with K1(the details of
constructions are discussed in the next section)

3) Produce the chaotic sequence X = {x1, x2, · · ·}
4) Apply chaotic substitution to embed Cm, Cd, Ca into the code of P . Let the

code blocks which are replaced with Cm, Cd, Ca be Im, Id, Ia respectively.
We can get Sm = ∂(Im, Cm, G), Sd = ∂(Id, Cd, G), Sa = ∂(Ia, Ca, G), where
G is the digital chaotic system.

5) Get the subsequence X(1) (the length is n) from X and preprocess W : W ′

= E(W,X(1)) = W ⊕ X(1) = {w′
1, w

′
2, · · · , w′

n} = {w1⊕x
(1)
1 , w2⊕x

(1)
2 , · · · , wn

⊕x
(1)
n }, where ⊕ is XOR.

6) Get the subsequence X(2) (the length is n) from X; Embed W ′ to I (I is
the code which is the whole code exclusive the code that is replaced with
Cm, Cd, Ca) with chaotic dispersion coding and get the result [I ′, SW] =
ξ(W ′, I,X(2)) (Fig. 2 shows the distribution of W ′ in the watermarked pro-
gram).

7) Save Sm, Sd, Sa and SW to the end of the executable code, and adjust the
header of the executable code.

3.4 Extraction

Because the watermark extractor is embedded into the program, the extrac-
tion of the watermark is included in the execution of the watermarked program.
We describe the execution of the watermarked program to illustrate the extrac-
tion.

1) The watermarked program runs.
2) The code of Anti-reverse Engineering Module runs.
3) The code of Input Monitoring Module runs, which monitor the input of the

program.
4) Produce the chaotic sequence Y
5) Get the subsequence Y 2 (the length is n, Y (2) is the same as X(2) in the

embedding algorithm) from Y , recover the code which is replaced with W ′,
the procedure can be expressed by [I ′, ˜W ′] = ξ−1(SW , I ′, Y (2)).

6) Recover the code which is replaced with Cm, Cd, Ca, the procedure can be ex-
pressed by Im = ∂−1(Sm, Cm, G), Id = ∂−1(Sd, Cd, G), Ia = ∂−1(Sa, Ca, G).

7) The watermarked program keeps on running.
8) If the input matches with K1 (activation key). Get the subsequence Y (1) (the

length is n, Y (1) is the same as X(1) in the embedding algorithm) form Y ,
and put ˜W ′ into ˜W with inverse preprocess, which is ˜W = E−1(˜W ′, Y (1)) =
E(˜W ′, Y (1)).

9) Transform ˜W into V
˜W

(visual action) and perform V
˜W

.

A Chaos-Based Robust Software Watermarking 361

4 The Analysis of CRSW

This section is intended to discuss the robustness of CRSW and the performance
degradation. Let the lengths of W , Cm, Ca, and Cd be n bytes, lm bytes, la bytes
and ld bytes respectively.

Firstly, we analyze the robustness. Let R�P � be the semantics of P , ω ∈
Γb = {ϕ|R�ϕ(P)�} = R�P �} is semantics-preserving transformation. In CRSW,
because of visual output V

˜W
, R�V

˜W
� ⊆ R�P ′� is hold. Then the following relation

holds according to the definition of semantics-preserving transformation:

R�V
˜W

�⊆R�P ′� = R�ω(P)� (6)

Equation (6) indicates that the semantics-preserving transformations can not
destroy the semantics of V

˜W
, and CRSW can resist various types of semantics-

preserving transformation attacks except the attacks which can distinguish
R�V

˜W
� and R�P �.

In the Anti-reverse Engineering Module, anti-static analyzing techniques and
anti-dynamic debugging techniques are introduced to thwart reverse engineering
attacks. The performance of resistance against reverse engineering depends on
anti-reverse engineer techniques applied in CRSW. As we can apply the more
effective anti-reverse engineering techniques to the module that is dynamic and
scalable, the resistance against reverse engineering will be enhanced. Moreover,
watermark is embedded into the code of program by chaotic dispersion coding.
Therefore, practicing the combination of the instructions and data, it improves
the performance of anti-static analyzing.

Because of the application of the chaotic dispersion coding, the watermark
will cause the program to fail if the adversary wants to reuse any part of code
solely. Since W ′ is distributed uniformly over the code which is the whole code
exclusive the code that is replaced with Cm, Cd and Ca, there is a byte of
watermark per l−lm−ld−la

n bytes code averagely. Thus:

lv =
l − lm − ld − la

n
(7)

where lv is the average length of the reused code. If lv ≤ lT are ensured, n, the
length of watermark, must satisfy the inequation n≥� l−lm−ld−la

lT
�.

It is difficult to locate the watermark because the position of W ′ is generated
by chaotic sequence. In addition, s = ∂(i, c,G) (chaotic substitution) can be con-
sidered that i is encrypted with G and c. If c is tampered, i could not be decoded
correctly when i = ∂−1(s, c,G). In CRSW, if W ′ is tampered, it is impossible to
recover the code which is replaced with W ′ correctly in the extracting procedure;
if Cm, Ca and Cd is tampered, it is also impossible to get back the code which is
replaced with Cm, Ca and Cd correctly, which could cause the program to fail.
As for the given G, c is assumed the secret key, thus the key space should be 2lc

(lc is the length of c); the key space is 28(n+lm+ld+la) in CRSW.
We analyze the performance degradation of watermarked program below.

From the point of space, embedding watermark increases the size of the program.

362 F. Liu, B. Lu, and X. Luo

In the embedding procedure, the size of the program increases n + lm + ld + la
bytes because of chaotic substitution which is applied to our algorithm. From
the point of runtime, embedding watermark brings the increasing runtime of the
program. The reason is that before the execution of the watermarked program,
the original code should be recovered from Sm, Sd, Sa and SW , of which the
recovering time not only depends on the iterative efficiency of digital chaotic
system, but also the contents of W ′, Cm, Ca and Cd. Let t be the time of iterat-
ing once, and T1, the time of recovering code from Sm, Sd and Sa, satisfies the
following inequation:

(lm + ld + la)t≤T1≤
1
λ

(lm + ld + la)t × 28 (8)

With recovering code from SW , chaotic sequence of n bytes should be generated
for ξ−1 at first. Thus T2, the time of recovering code from SW , satisfies:

nt + nt≤T2≤nt +
28

λ
nt (9)

T1 + T2, the time of recovering all code, satisfies

2nt + (lm + ld + la)t≤T1 + T2≤nt +
28

λ
(n + lm + ld + la)t (10)

If W ′, Cm, Ca and Cd is bit-balance (Bits 0 and 1 occur at the same frequency),
the average time of the procedure is

T = nt +
27 + 0.5

λ
(n + lm + ld + la)t (11)

In general, Cm, Ca and Cd are fixed, that is to say, lm + ld + la is constant, and
t is also a constant for a given digital chaotic system, the equation (11) can be
rewrite as follow:

T = nt(1 +
27 + 0.5

λ
) +

27 + 0.5
λ

(lm + ld + la)t = β1n + β2 (12)

where β1, β2 are constants. Equation (7) shows that the larger n is, the smaller
la is, and the more intensive the protection is. Equation (12) shows that T is
linearly increased in a manner that involves n. The users who are intent to
apply CRSW should exhibit a trade-off between intensity of protection and the
performance degradation.

5 Implementation of CRSW

The algorithm’s implementation is in the Intel i386 architecture and the Win-
dows operating system. This section is to expatiate on the implementation of
Input Monitoring Module, Anti-reverse Engineering Module, and Watermark De-
coding Module. There are several problems that arise when implementing these
modules, and the corresponding solutions are given at the end of this section.

A Chaos-Based Robust Software Watermarking 363

5.1 Input Monitoring Module Cm

The purpose of Cm is to monitor the input of the program. When implementing
Cm, we put activation key K1 (or µ(K1), µ is a one-way function) into this
module. When the input α is a match for K1 (or µ(K1)), Watermark Decoding
Module is activated.

5.2 Anti-reverse Engineering Module Ca

In theory, a sufficiently determined attacker can thoroughly analyze any software
by reverse engineering. It is impossible to thwart completely reverse engineering
attacks. The goal, then, is to design watermarking techniques that are ”expensive
enough” to break-in time, effort, or resources—that for most attackers, breaking
them isn’t worth the trouble. There are two kinds of techniques-static analyzing
and dynamic debugging—in the reverse engineering techniques. Therefore, Ca

consists of Anti-Static Analyzing Module and Anti-Dynamic Debugging Module.
Decompile is the foundation of static analyzing techniques, we can disable

static analyzing by disturbing decompiler which is developed based on the hy-
pothesis that data and instructions are separated. However, data and instruc-
tions in the Von Neumann architecture are indistinguishable. Thus, we can mix
data and instructions in order to disturb decompiler by adding special data and
instructions (we call them disturbing data) between instructions. In Fig. 3, (a)
gives source code by assembly language, lines 1,5,6 are original instructions, but
lines 2,3,4 are the disturbing data. (b) shows the instructions from decompiler.
We can see that there are errors from line 4 to the end. There are a number of
disturbing data in [4]. In this paper, we insert several disturbing data into Cm,
Ca and Cd. If we can apply code encryption, compression etc. to Anti-Static
Analyzing Module, the performance will be further improved.

Dynamic debugging relies on debugging tools highly, so the general principle
of anti-virus can be introduced to detect whether program is being debugged
or not by the characters of debug tools. If debugged, the program will jump to
wrong control flow in order to prevent from debugging .We already have achieved
the algorithm based on the characters of SoftICE, Windbg, and Ollydbg. Ex-
periments demonstrate that it is available to resist these debugging tools. The
characters of other debugging tools can be introduced to the improved imple-
mentation.

Fig. 3. Example of disturbing data

364 F. Liu, B. Lu, and X. Luo

There are several registers for debugging in the processor of the i386 architec-
ture. Several debugging tools design feasible functions, such as BPM1, hardware
breakpoint, by involving the debug registers [4]. In the paper, we modify the
value of debugging register and invalidate these functions. In addition, time sen-
sitive code and breakpoint detection are introduced to the implantation.

We have involved several kinds of anti-reverse engineering techniques. It is
worthy mentioning that this module is scalable that more efficient anti-reverse
engineering techniques can be introduced. Thus, they can enhance the resistance
against reverse engineering attacks.

5.3 Watermark Decoding Module Cd

Watermark Decoding Module includes Watermark Output Module and Chaotic
System Module. Watermark Output Module transforms the watermark extracted
from watermarked program into visual output; Chaotic System Module imple-
ments digital chaotic system, which is only applied to the watermark extracting
procedure. When chaotic systems are discretely realized in finite precision, some
serious problems will arise, such as dynamical degradation, short cycle length
and non-ideal distribution. And then, we must compensate for the dynamical
degradation in the presence of chaos system. We apply 1D piecewise linear
chaotic maps, and the scheme of compensation for degradation in [11] to our
implantation.

5.4 Problems and Solutions

Because of directly embedding watermark into the executable code, when imple-
menting Cm, Ca and Cd, two problems arise as follows: (1) After every module
is embedded into various executable code, the code and data are loaded onto
different addresses of memory, and the code can’t access data in memory cor-
rectly. Therefore, it must do self-location (locate the memory address by the
code itself). (2) Since it is unnecessary to recompile after embedding, modules
can’t automatically find the address of Windows API by compiler and loader,
but get the address by themselves.

The self-location of code and data can be implemented by call/pop/sub in-
structions. Fig. 4 gives the specific codes. EBX, a register, is used to save the
difference of the loading address and the designing address. The loading address
is the sum of EBX and the designing address, which is self-location.

The procedure in getting the addresses of Windows APIs is as follows:

1) Get the loading base address of kernel32.dll. There is exception handling
in Windows—structured exception handling (SHE). All exception handling
functions are in a linked list, and the last element of the linked list is the
default exception handling function which is in the module of kernel32.dll.
We can gain the address of the default exception handling function through
traversing the linked list, from which we can get the loading base address of
kernel32.dll.

1 BPM, an instruction of SoftICE, can set a breakpoint on memory access or execution.

A Chaos-Based Robust Software Watermarking 365

Fig. 4. The code of self-location

2) Get the addresses of LoadLibrary and GetProcAddress, which are Windows
APIs, from the export table of kernel32.dll by the loading base address of
kernel32.dll.

3) Get the address of the arbitrary Windows API with LoadLibrary and GetP-
rocAddress.

6 Conclusion

A chaos-based robust software watermarking algorithm is proposed in this paper,
in which the anti-reverse engineering technique and chaotic system are combined
with the idea of the Easter Egg software watermarks. In CBSW, Anti-reverse
Engineering Module is open and scalable, and more efficient anti-reverse engi-
neering techniques can be applied. The program can be protected by embedding
the watermark into the entire codes with chaotic dispersion coding. It is difficult
for the adversary to tamper the message (includes W , Cm, Cd and Ca) embed-
ded in the program with chaotic substitution. The analysis of the CRSW shows
that the scheme can thwart various types of semantics-preserving transforma-
tion attacks, such as dead code wiping, code optimization, code obfuscation,
and variable reconstruction. Furthermore, it improves resistance against reverse
engineering attacks to a certain extent.

Acknowledgement

The work is supported partially by the National Natural Science Foundation of
China (GrantNo.60374004), partiallyby theHenanScienceFund forDistinguished
Young Scholar(Grant No.0412000200), partially by HAIPURT(Grant No.
2001KYCX008), and the Science-Technology Project of Henan Province of China.

References

1. C. Collberg, C. Thomborson. Watermarking, tamper-proofing, and obfuscation -
tools for software protection. IEEE Trans. Software Engineering. Vol.28, No.8,
pages: 735-746

2. Zhang Lihe, Yang YiXian, Niu Xinxin, Niu Shaozhang. A Survey on Software
Watermarking. Journal of Software. Vol.14, No.2, pages: 268-277, in Chinese.

3. Business Software Alliance. Eighth annual BSA global software piracy study:
Trends in software piracy1994-2002, June 2003.

366 F. Liu, B. Lu, and X. Luo

4. Kan X. Encryption and Decryption: Software Protection Technique and Complete
Resolvent. Beijing: Electronic Engineering Publishing Company, 2001, in Chinese.

5. Jasvir Nagra and Clark Thomborson. Threading software watermarks. In 6th
Workshop on Information Hiding, 2004, pages: 208-223.

6. Robert L. Davidson and Nathan Myhrvold. Method and system for generating
and auditing a signature for a computer program. US Patent 5,559,884, September
1996. Assignee: Microsoft Corporation.

7. Julien P. Stern, Gael Hachez, Franois Koeune, and Jean-Jacques Quisquater. Ro-
bust object watermarking: Application to code. In 3rd International Information
Hiding Workshop, 1999, pages: 368-378.

8. C. Collberg and C. Thomborson, Software watermarking: Models and dynamic
embeddings. Proceedings of POPL’99 of the 26th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, 1999, pages: 311-324.

9. Patric Cousot and Radhia Cousot. An abstract interpretation-based framework for
software watermarking. In ACM Principles of Programming Languages(POPL’04),
Venice, Italy, 2004, pages: 173-185.

10. Christian Collberg, Andrew Huntwork, Edward Carter, and Gregg Townsend.
Graph theoretic software watermarks: Implementation, analysis, and attacks. In
6th Workshop on Information Hiding, 2004, pages:192-207.

11. Liu Bin, Zhang Yongqiang, and Liu Fenlin. A New Scheme on Perturbing Digital
Chaotic Systems. Computer Science, Vol.32, No.4, 2005, pages: 71-74, in Chinese

	Introduction
	The Structure of CRSW
	Embedding and Extraction of the CRSW
	Chaotic Substitution ∂
	Chaotic Dispersion Coding ξ
	Embedding
	Extraction

	The Analysis of CRSW
	Implementation of CRSW
	Input Monitoring Module C_{m}
	Anti-reverse Engineering Module C_{a}
	Watermark Decoding Module C_{d}
	Problems and Solutions

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

