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Abstract. In this paper, we propose a new tableau-based model check-
ing technique for verifying dialogue game protocols for agent communi-
cation. These protocols are defined using our social commitment-based
framework for agent communication called Commitment and Argument
Network (CAN). We use a variant of CTL* (ACTL*) for specifying these
protocols and the properties to be verified. This logic extends CTL* by
allowing formulae to constrain actions as well as states. The verification
method is based on the translation of formulae into a variant of alternat-
ing tree automata called Alternating Büchi Tableau Automata (ABTA).
We propose a set of tableau rules (inference rules) for specifying this
translation procedure. Unlike the model checking algorithms proposed
in the literature, the algorithm that we propose in this paper allows us
not only to verify if the dialogue game protocol (the model) satisfies a
given property, but also if this protocol respects the tableau rules-based
decomposition of the action formulae. This algorithm is an on-the-fly
efficient algorithm.

1 Introduction

The success of Multi-Agent Systems (MAS) is primarily based on the ability of
agents to communicate. Research in this domain has received much attention
during the past years. Particularly, several dialogue game protocols have been
proposed for specifying agent communication interactions [5, 21, 22, 27]. These
games aim at offering more flexibility by combining different small games to
construct complete and more complex protocols. Dialogue games can be thought
of as interaction games in which each agent plays a move in turn by performing
utterances according to a pre-defined set of rules.

From another point of view, formal verification methods became usable by
industry quite recently and there is a growing demand for professionals able to
apply them. In this domain, model-based techniques are verification approaches
of system properties. In these approaches, the system is represented by a finite
model M using an appropriate logic. The specification is again represented by a
formula φ and the verification method consists of computing whether the model
M satisfies φ or not.
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Recently, the verification of MAS has become an attractive field of research [3,
9, 10, 19, 20, 24, 26, 25, 30, 33]. However, in the domain of agent communication,
only few research work tried to address the verification of agent communication
protocols [1, 2, 15, 17, 18, 32].

In this paper, we propose a model checking-based verification of dialogue
game protocols for agent communication using an action and temporal logic
(ACTL*). Using a model checking technique for this verification is motivated by
the fact that model-checking is a successful technique for automatically and com-
putationally verifying protocol specifications using a suitable logic. This tech-
nique can be used to verify the protocol correctness in the sense that the protocol
satisfies the expected properties. In our work, this technique allows us to verify
agent communication properties specified using our ACTL* logic. Therefore, we
can specify the protocol in a logical way and verify its correctness in terms of the
satisfaction of the expected properties. The definition of a new logic is motivated
by the fact that our dialogue game protocols should be specified using not only
temporal properties, but also action properties. In addition, in these protocols,
actions that agents perform by communicating are expressed in terms of ”Social
Commitments” (SC) and arguments. These protocols are specified as transition
systems (TS) using ACTL* logic and our Commitment and Argument Network
(CAN) [6]. These TS are labeled with actions that agents apply to SC and to
SC contents [13, 16, 28].

The model checking technique that we propose is based on the translation of
the formula expressing the property to be verified into a variant of alternating
tree automata called Alternating Büchi Tableau Automata (ABTA). This tech-
nique is an extension of the ABTA-based algorithm for CTL* proposed in [7].
The choice of this technique is motivated by the fact that unlike other model
checking techniques, this technique allows us to check temporal and action for-
mulas. In addition, this technique is one of the most efficient techniques proposed
in the literature. The translation procedure uses a set of inference rules called
tableau rules. Like automata-based model checking of PLTL, our technique is
based on the product graph of the model and the automata representing the
formula to be verified (Fig. 1). This technique allows us to verify not only that
the dialogue game protocol satisfies a given property, but also that this proto-
col respects the decomposition rules of the communicative acts. Consequently, if
agents respect these protocols, then they also respect the decomposition seman-
tics of the communicative acts. Thus, we have only one procedure to verify:

1. the correctness of the protocols relative to the properties that the protocols
should satisfy;

2. the conformance of agents to the decomposition semantics of the commu-
nicative acts.

To our knowledge, until now there is no work that addressed the verification
problem of dialogue game protocols. Indeed, the contributions of this paper are:
(1) a specification of these protocols using TS and the CAN framework; (2)
an automata and tableau-based technique to check if a dialogue game protocol
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Fig. 1. Our model checking approach

satisfies the specifications and their semantics. These two verifications are done
at the same time.

The rest of this paper is organized as follows. Section 2 introduces tableau-
based algorithms for model checking, which we use in our verification procedure.
Section 3 presents our ACTL* logic. In Section 4, we use this logic to define
the TS that we use to specify dialogue game protocols. The problem of verifying
these protocols is addressed in Section 5. The tableau rules associated to ACTL*
logic, the ABTA’s definition that we use in our verification technique, and some
running examples of the model checking steps are presented in this section.
Section 6 presents related work and concludes the paper by identifying some
directions for future work.

2 Tableau-based Algorithms for Model Checking

Unlike traditional proof systems which are bottom-up approaches, tableau-based
algorithms used for model checking work in a top-down or goal-oriented fashion
[11]. In the tableau-based approach, tableau rules are used in order to prove a
certain formula by inferring when a state in a Kripke structure satisfies such a
formula. According to this approach, we start from a goal (a formula), and we
apply a tableau rule and determine the sub-goals (sub-formulae) to be proven.
The tableau rules are designed so that the goal is true if all the sub-goals are
true. The advantage of this method is that the state space to be checked is
explored in a need-driven fashion [7]. The model checking algorithm searches
only the part of the state space that needs to be explored to prove or disprove
a certain formula. The state space is constructed while the algorithm runs. This
kind of model checking algorithms is referred to as on-the-fly or local algorithms
[7, 8, 11, 29].

The tableau decision algorithm that we use in our verification technique
provides a systematic search for a model which satisfies a particular formula
expressed using ACTL* logic. It is a graph construction algorithm. Nodes of the
graph are sets of ACTL* formulae and tableau rule names. The interpretation
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of vertex labeling is that for the vertex to be satisfied, it must be possible to
satisfy all the formulae in the set together. Each edge in the graph represents a
satisfaction step of the formula contained in the starting vertex. These steps cor-
respond to the application of a set of tableau rules. These rules express how the
satisfaction of a particular formula (the goal) can be obtained by the satisfaction
of its constituent formulae (sub-goals).

3 ACTL* Logic

In this section, we present ACTL* logic that we use to specify dialogue game
protocols and to express the properties to be verified (See Fig. 1). This specifi-
cation will be addressed in Section 4. ACTL* is a simplification of our logic for
agent communication [6]. ACTL* extends CTL* by allowing formulae to con-
strain actions as well as propositions. The difference between ACTL* and CTL*
is that the former contains action formulae and two new operators: SC for social
commitments and ∴ for arguments. The set of atomic propositions is denoted
Γp. The set of action labels is denoted Γa. In what follows we use p, p1, p2, . . .
to range over the set of atomic propositions and θ, θ1, θ2, . . . to range over action
labels. The syntax of this logic is as follows:

S ::= p|¬p|S ∧ S|S ∨ S|AP|EP|SC(Ag1, Ag2,P)
P ::= θ|¬θ|S|P ∧ P|P ∨ P|XP|PUP|P ∴ P

The formulae generated by S are called state formulae, while those generated
by P are called path formulae. We use ψ, ψ1, ψ2, . . . to range over state formu-
lae and φ, φ1, φ2, . . . to range over path formulae. The meaning of most of the
constructs is straightforward (from CTL*). The formula SC(Ag1, Ag2, φ) means
that agent Ag1 commits towards agent Ag2 that the path formula φ is true. We
notice here that agents can commit about path formulae, which is expressive
enough. Ag1 and Ag2 are respectively called the debtor and the creditor of the
commitment. The formula φ1 ∴ φ2 means that φ1 is an argument for φ2. We
can read this formula: φ1, so φ2. This operator introduces argumentation as a
logical relation between path formulae.

Semantically, this logic is interpreted with respect to the model M defined as
follows: M = 〈Sm, Labm, Actm,

Actm−→ , Agt, Rsc, sm0〉 where: Sm is a set of states;
Labm : Sm → 2Γp is the labeling state function; Actm is a set of actions; Actm−→⊆
Sm×Actm×Sm is the transition relation; Agt is a set of communicating agents;
Rsc : Sm×Agt×Agt → 2σ with σ is the set of all paths in M is an accessibility
modal relation that associates to a state sm the set of paths along which an
agent can commit towards another agent; sm0 is the start state. The paths that
path formulae are interpreted over have the form x = sm0

α1−→ sm1

α2−→ sm2 . . .
where x ∈ σ, sm0 , sm1 , . . . are states and α1, α2, . . . are actions. We write θ D αi

where i ≥ 1 to indicate that the action label θ is a part of the action αi (the
action αi is composed of several action labels). If not, we write θ 4 αi.
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A state satisfies Aφ (Eφ) if every path (some path) emanating from this
state satisfies φ. The semantics of ACTL* state formulae is as usual (semantics
of CTL*). A state sm satisfies SC(Ag1, Ag2, φ) if every accessible path to Ag1

towards Ag2 from this state using Rsc satisfies φ. Formally:
sm |=M SC(Ag1, Ag2, φ) iff ∀x ∈ σ, x ∈ Rsc(sm, Ag1, Ag2) ⇒ x |=M φ.

A path satisfies a state formula if the initial state in the path does. A path
x satisfies an action label θ if θ is in the label of the first transition on this
path and this path is not a deadlocked path. A path is deadlocked if it has no
transitions. A path satisfies ¬θ if either θ is not in the label of the first transition
on this path or this path is a deadlocked path. Formally:
x |=M θ iff θ D α1 and x is not a deadlocked path
x |=M ¬θ iff θ 4 α1 or x is a deadlocked path
where the action α1 is the label of the first transition on the path x.

X represents the next time operator and has the usual semantics when the
path is not deadlocked. On a deadlocked path, Xφ holds if the current state
satisfies φ.

Along a path x, φ1Uφ2 holds if φ1 remains true along this path until φ2

becomes true (strong until). Formally:
x |=M φ1Uφ2 iff ∃i ≥ 0 : xi |=M φ2 and ∀j < i, xj |=M φ1

where xi = smi

αi+1−→ smi+1 . . . is the suffix of the path x starting from the ith
state.

Along a path x, φ1 ∴ φ2 holds if φ1 is true and at next time if φ1 is true then
φ2 is true. Formally:
x |=M φ1 ∴ φ2 iff x |=M φ1 and x1 |=M φ1 ⇒ φ2.

To specify dialogue game protocols in this logic according to the CAN frame-
work, we use the set Act (Act ⊆ Γa) of the actions performed by the agents
on social commitments (SC) and on SC contents. The idea behind the CAN
framework is that agents communicate by performing actions on SC (for exam-
ple creating, accepting and challenging SC) and by supporting these actions by
argumentation relations (attack, defense, and justification). Such an approach,
also called the social approach [23] is considered as an alternative to the private
approach based on the agents’ mental states like beliefs, desires, and intentions
[12]. In our dialogue game protocols, we consider the following CAN-based ac-
tion formulae that constitutes the set Act:

Cr(Ag1, SC(Ag1, Ag2, φ)) (creation of the commitment by the debtor Ag1)
Wit(Ag1, SC(Ag1, Ag2, φ)) (withdrawal of the commitment by Ag1)
Sat(Ag1, SC(Ag1, Ag2, φ)) (satisfaction of the commitment by Ag1)
V io(Ag1, SC(Ag1, Ag2, φ)) (violation of the commitment by Ag1)
Ac(Ag2, SC(Ag1, Ag2, φ)) (acceptance by the creditor Ag2 of the content φ)
Ref(Ag2, SC(Ag1, Ag2, φ)) (refusal by Ag2 of the content φ)
Ch(Ag2, SC(Ag1, Ag2, φ)) (challenge by Ag2 of the content φ)
At(Ag2, SC(Ag1, Ag2, φ1), φ2) (attack by Ag2 of the content φ1 using φ2)
Def(Ag1, SC(Ag1, Ag2, φ1), φ2) (defense by Ag2 of the content φ1 using φ2)
Jus(Ag1, SC(Ag1, Ag2, φ1), φ2) (justification by Ag2 of the content φ1 using φ2)
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4 Dialogue Game Protocols as Transition Systems

In Section 3, we presented ACTL* logic and CAN-based actions. In this section,
we specify the dialogue game protocols to be checked as models for this logic
(see Fig. 1). This specification uses CAN-based actions and the labels of our
tableau rules that we will present in Section 5.1. Dialogue game protocols are
specified as a set of rules describing the entry condition, the dynamics and the
exit condition [5]. These rules can be specified as CAN-based actions.

We propose to define dialogue game protocols as TS. The purpose of these
TS is to describe not only the sequence of the allowed actions (classical TS),
but also the tableau rules-based decomposition of these actions (Section 5.1).
The states of these systems are sub-TS (that we call decomposition TS) de-
scribing the tableau rules-based decomposition of the actions labeling the entry
transitions. Defining TS in such a way allows us to verify: (1) The correctness
of the protocol (if the model of the protocol satisfies the properties that the
protocol should specify); (2) The compliance to the decomposition semantics
of the communicative actions (if the specification of the protocol respects the
decomposition semantics). In Section 5 we propose a model checking procedure
in order to verify both (1) and (2) at the same time. The definition of the TS of
dialogue game protocols is given by the following definitions:

Definition 1 (Decomposition TS). A decomposition TS T ’ describing the
tableau-rules-based decomposition semantics of a CAN based-action formula is a
7-tuple 〈S′, Lab′, F, L′, R,

R−→, s′0〉 where: S′ is a set of states; Lab′ : S′ → 2Γp

is the labeling state function; F is a set of ACTL* formulae; L′ : S′ → 2F is a
function associating a set of formulae to a state; R ∈ {∧,∨,¬, <≡>,X, SCAg}
is a tableau rule label (without the rules for CAN-based action formulae) (see
Section 5.1); R−→⊆ S′ ×R× S′ is the transition relation; s′0 is the start state.

Intuitively, states S’ contain the sub-formulae of the CAN-based action for-
mulae, and the transitions are labeled by operators associated with the formula
of the starting state. Decomposition TS enable us to describe the decomposition
semantics of formulae by sub-formulae connected by logical operators. Thus,
there is a transition between states S′i and S′j iff L′(S′j) is a sub-formula of
L′(S′i).

Definition 2 (TS for Dialogue Game Protocols). A TS T for a dialogue
game protocol is a 7-tuple 〈S,Lab, ℘, L,Act,

Act−→, s0〉 where: S is a set of states;
Lab : S → 2Γp is the labeling state function; ℘ is a set of decomposition TS with
ε ∈ ℘ is the empty decomposition TS; L : S → ℘ is the function associating to
a state s ∈ S a decomposition TS T ′ ∈ ℘ describing the tableau-based decom-
position of the CAN-based action labeling the entry transition; Act is the set of
CAN-based actions; Act−→⊆ S × Act× S is the transition relation; s0 is the start
state with L(s0) = ε.

We write s
•−→ s′ instead of <s, •, s′>∈Act−→ where • ∈ Act. Fig. 2 illustrates

a part of a TS for a dialogue game protocol. According to this protocol, if Ag1
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plays a creation game (a1), Ag2 can, for instance, play a challenge game (a2).
Thereafter, Ag1 must plays a justification game (a3), etc.

Fig. 2. A part of a transition system for a dialogue game protocol

States S1, S2, and S3 are decomposition TS associated respectively with
creation, challenge, and justification actions. For example, for the creation action
(S1), the first state (s1.0) is associated with the SC formula according to the
rule R6 (Table 1, Section 5.1). The next state is associated with the SC content
according to the rule R16 (Table 1). The transition is labeled with the label of
this rule. An example of the properties to be verified in this protocol is:

AG(Ch(Ag2, SC(Ag1, Ag2, φ1)) ⇒ F (Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (1)

This property says that in all paths (A) globally (G), if an agent Ag2 challenges
(Ch) the content of a SC made by an agent Ag1, then in the future (F ), Ag1

justifies (Jus) the content of its SC. In the rest of this paper, we refer to this
formula as Formula 1.

5 Verification of Dialogue Game Protocols

In previous sections, we presented the elements needed for the verification of
dialogue game protocols: the logic, the CAN-based actions, and the specification
of dialogue game protocols. In this section, we present the verification technique.
This technique is based upon (1) the tableau rules associated with ACTL* logic
(Section 5.1); (2) the ABTA for ACTL* logic (Section 5.2); and (3) the transla-
tion of the property to be verified to an ABTA (Section 5.3) (see Fig. 1). This
translation is the step 1 of Fig. 1. The step 2 which is the construct of the prod-
uct graph of the model and the ABTA is addressed in Section 5.4. Finally, the
model checking algorithm acting on the product graph (step 3) is presented in
Section 5.5. Examples illustrating each step are also presented.
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5.1 Tableau Rules for ACTL* and CAN-based Action Formulae

In this section, we present the tableau rules that we use to translate the ACTL*
property to be verified to an ABTA (see Fig. 1). The definition of ABTA and the
translation procedure will be presented in Section 5.2 and 5.3. The tableau rules
allow us to build the ABTA representing the formula to be verified. These rules
[11] are specified in terms of the decomposition of formulae to sub-formulae. They
enable us to define top-down proof systems. The idea is: given a formula (the top
part of the rule), we apply a tableau rule and determine the sub-formulae (the
down part of the rule) to be proven (see Section 2). Tableau rules are inference
rules used in order to prove a formula by proving all the sub-formulae. The labels
of these rules are the labels of states in the ABTA constructed from the given
formula (Section 5.2). These rules are presented in Table 1. In these rules, Φ is
any set of path formulae. The symbol ”, ” indicates a conjunction. For example,
E(Φ,ψ) means that, there is a path along which the set of path formulae Φ and
the state formula ψ are true. Adding the set Φ to these rules allows us to deal
with any form of formulae written under the form of any set of path formulae
and a formula of our logic. We also recall that we use ψ,ψ1, ψ2, . . . to range over
state formulae and φ, φ1, φ2, . . . to range over path formulae.

Table 1. Tableau rules

R1 ∧ : ψ1∧ψ2
ψ1ψ2

R2 ∨ : ψ1∨ψ2
ψ1ψ2

R3 ∨ : E(ψ)
ψ

R4 ¬ : ¬ψ
ψ

R5 ¬ : A(Φ)
E(¬Φ)

R6 <Cr> : E(Φ,Cr(Ag1,SC(Ag1,Ag2,φ)))
E(Φ,SC(Ag1,Ag2,φ))

R11 < Ac > : E(Φ,Ac(Ag2,SC(Ag1,Ag2,φ)))
E(Φ,SC(Ag2,Ag1,φ))

R7 <Wit> : E(Φ,Wit(Ag1,SC(Ag1,Ag2,φ)))
E(Φ,¬SC(Ag1,Ag2,φ))

R12 < Ref > : E(Φ,Ref(Ag2,SC(Ag1,Ag2,φ)))
E(Φ,SC(Ag2,Ag1,¬φ))

R8 <SatAg1> : E(Φ,Sat(Ag1,SC(Ag1,Ag2,φ)))
E(Φ,φ)

R13 <Jus> : E(Φ,Jus(Ag1,SC(Ag1,Ag2,φ1),φ2))
E(Φ,SC(Ag1,Ag2,φ2∴φ1))

R9 <V ioAg1> : E(Φ,V io(Ag1,SC(Ag1,Ag2,φ)))
E(Φ,¬φ)

R14 <At> : E(Φ,At(Ag2,SC(Ag1,Ag2,φ1),φ2))
E(Φ,SC(Ag2,Ag1,φ2∴¬φ1))

R10 <Ch> : E(Φ,Ch(Ag2,SC(Ag1,Ag2,φ)))
E(Φ,SC(Ag2,Ag1,?φ))

R15 <Def > : E(Φ,Def(Ag1,SC(Ag1,Ag2,φ1),φ2))
E(Φ,SC(Ag1,Ag2,φ2∴φ1))

R16 [SCAg1 ] : E(Φ,SC(Ag1,Ag2,φ))
E(Φ,φ)

R17 <≡> : E(Φ,Ψ)
E(Φ)E(Ψ)

R18 ∧ : E(Φ,φ1∧φ2)
E(Φ,φ1,φ2)

R19 ∨ : E(Φ,φ1∨φ2)
E(Φ,φ1)E(Φ,φ2)

R20 X : E(Φ,Xφ1,...,Xφn)
E(Φ,φ1,...,φn)

R21 ∧ : E(Φ,φ1∴φ2)
E(Φ,φ1,X(¬φ1∨φ2))

R22 ∨ : E(Φ,φ1Uφ2)
E(Φ,φ2)E(Φ,φ1,X(φ1Uφ2))

Rule R1 labeled by ”∧” indicates that ψ1 and ψ2 are the two sub-formulae of
ψ1 ∧ψ2. This means that, in order to prove that a state labeled by ”∧” satisfies
the formula ψ1 ∧ ψ2, we have to prove that the two children of this state satisfy
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ψ1 and ψ2 respectively. According to rule R2, in order to prove that a state
labeled by ”∨” satisfies the formula ψ1 ∨ ψ2, we have to prove that one of the
two children of this state satisfies ψ1 or ψ2. R3 labeled by ”∨” indicates that ψ
is the sub-formula to be proved in order to prove that a state satisfies E(ψ). E
is the existential path-quantifier. According to R4, the formula ¬ψ is satisfied in
a state labeled by ”¬” if this state has a successor representing ψ. R5 is defined
in the usual way.

The label ”<Cr>” (R6) is the label associated with the creation action of a
social commitment. According to this rule, in order to prove that a state labeled
by ”<Cr>” satisfies Cr(Ag1, SC(Ag1, Ag2, φ)), we have to prove that the child
state satisfies the sub-formula SC(Ag1, Ag2, φ). The idea is that by creating a
social commitment, this commitment becomes true in the child state. In the
model representing the dialogue game protocol, the idea behind the creation
action is that by creating a social commitment, this commitment becomes true
in the accessible state via the transition labeled by the creation action. The label
”< Wit >” (R7) is the label associated with the withdrawal action of a social
commitment. According to this rule, in order to prove that a state labeled by
”<Wit>” satisfies Wit(Ag1, SC(Ag1, Ag2, φ)), we have to prove that the child
state satisfies the sub-formula ¬SC(Ag1, Ag2, φ). Rules R8 to R15 are defined
in the same way. For example, the idea of rule R11 is that by accepting a social
commitment whose content is φ by an agent Ag2, this agent commits about this
content in the child state. In this state, the commitment of Ag2 becomes true.
In rule R10, we introduce a syntactical construct ”?” to indicate that the debtor
Ag2 does not have in argument supporting φ or ¬φ. The idea of this rule is that
by challenging a social commitment, Ag2 commits in the child state that it does
not have an argument for or against the content φ.

Rule R16 indicates that E(φ) is the sub-formula of E(SC(Ag1, Ag2, φ)).
Thus, in order to prove that a state labeled by ”[SCAg1

]” satisfies the for-
mula E(SC(Ag1, Ag2, φ)), we have to prove that the child state satisfies the
sub-formula E(φ). According to the semantics of social commitments (Section
3), the idea of this rule is that if an agent commits about a content along a path,
this content is true along this path (we recall that the commitment content is a
path formula).

Rules R17, R18, and R19 are straightforward. According to rule R20 and
in accordance with the semantics of ”X”, in order to prove that a state labeled
with ”X” satisfies E(Xφ), we have to prove that the child state satisfies the sub-
formula E(φ). According to R21 and in accordance with the semantics of ”∴”
(Section 3), in order to prove that a state labeled with ”∧” satisfies E(φ1 ∴ φ2),
we have to prove that the child state satisfies the sub-formula E(φ1 ∧X(¬φ1 ∨
φ2)). This mean that the support is true and next if the support is true then
the conclusion is true. Finally, rule R22 is defined in accordance with the usual
semantics of until operator.
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5.2 Alternating Büchi Tableau Automata (ABTA) for ACTL*

As a kind of Büchi automata, ABTAs [7] are used in order to prove properties of
infinite behavior. These automata can be used as an intermediate representation
for system properties. Let Γp be the set of atomic propositions and let < be a
set of tableau rule labels defined as follows: 3

< = {∧,∨,¬} ∪ <Act ∪ <¬Act ∪ <SC ∪ <Set where: <Act = {< Cr >, < Wit >
,< SatAg >,< V ioAg >,< Ch >, < Ac >,< Ref >, < Jus >, < At >, < Def >},
<SC = {[SCAg]}, and <Set = {<≡>, X}.
We define ABTAs for ACTL* logic as follows:

Definition 3 (ABTA). An ABTA for ACTL* is a 5-tuple 〈Q, l,→, q0, F 〉,
where: Q is a finite set of states; l : Q → Γp∪< is the state labeling; →⊆ Q×Q is
the transition relation; q0 is the start state; F ⊆ 2Q is the acceptance condition4.

ABTAs allow us to encode ”top-down proofs” for temporal formulae. Indeed,
an ABTA encodes a proof schema in order to prove, in a goal-directed manner,
that a TS satisfies a temporal formula. Let us consider the following example.
We would like to prove that a state s in a TS satisfies a temporal formula of the
form F1 ∧ F2, where F1 and F2 are two formulae. Regardless of the structure
of the system, there would be two sub-goals. The first would be to prove that
s satisfies F1, and the second would be to prove that s satisfies F2. Intuitively,
an ABTA for F1 ∧ F2 would encode this ”proof structure” using states for the
formulae F1 ∧ F2, F1, and F2. A transition from F1 ∧ F2 to each of F1 and F2

should be added to the ABTA and the labeling of the state for F1 ∧ F2 being
”∧” which is the label of a certain rule. Indeed, in an ABTA, we can consider
that: 1) states correspond to ”formulae”, 2) the labeling of a state is the ”logical
operator” used to construct the formula, and 3) the transition relation represents
a ”sub-goal” relationship.

5.3 Translating ACTL* into ABTA (Step 1)

The procedure for translating an ACTL* formula p = E(φ) to an ABTA B
uses goal-directed rules in order to build a tableau from this formula. Indeed,
these proof rules are conducted in a top-down fashion in order to determine if
states satisfy properties. The tableau is constructed by exhaustively applying
the tableau rules presented in Table 1 to p. Then, B can be extracted from this
tableau as follows. First, we generate the states and the transitions. Intuitively,
states will correspond to state formulae, with the start state being p. To generate
new states from an existing state for a formula p′, we determine which rule is
applicable to p′, starting with R1, by comparing the form of p′ to the formula
appearing in the ”goal position” of each rule. Let rule(q) denote the rule applied

3 The partition of the set of tableau rule labels is only used for readability and orga-
nization reasons

4 The notion of acceptance condition is related to the notion of accepting run that we
define in Section 5.4
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at node q. The labeling function l of states is defined as follows. If q does not
have any successor, then l(q) ∈ Γp. Otherwise, the successors of q are given by
rule(q). The label of the rule becomes the label of the state q, and the sub-goals
of the rule are then added as states related to q by transitions.

A tableau for a ACTL* formula p is a maximal proof tree having p as its root
and constructed using our tableau rules (see Section 5.1). If p′ results from the
application of a rule to p, then we say that p′ is a child of p in the tableau. The
height of a tableau is defined as the length of the longest sequence <p0, p1, . . .>,
where pi+1 is the child of pi [11].

Example 1. In order to illustrate the translation procedure and the construction
of an ABTA from an ACTL* formula, let us consider our formula Formula 1
given in Section 4. Table 2 is the tableau to build for translating Formula 1 into
an ABTA. The form of Formula 1 is: AG(p ⇒ q)(≡ AG(¬p ∨ q)) (the root of
Table 2). The first rule we can apply is R5 labeled by ¬ in order to transform all
paths to exists a path. We also use the equivalence (F (p) ≡ ¬G(¬p)). We then
obtain the child number (2). The next rule we can apply is R22 labeled by ∨
because F is an abbreviation of U (F (p) ≡ True U p). Consequently, we obtain
two children (3) and (4). From the child (3) we obtain the child (5) by applying
the rule R10, and from the child (4) we obtain the child (2) by applying the rule
R20 etc. The ABTA obtained from this tableau is illustrated by Fig. 3. States
are labeled by the child’s number in the tableau and the label of the applied rule
according to Table 2.

Table 2. The tableau of Formula 1

¬ : AG(¬Ch(Ag2, SC(Ag1, Ag2, φ1)) ∨ F (Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (1)

∨ : EF (Ch(Ag2, SC(Ag1, Ag2, φ1)) ∧G(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (2)

<Ch>: E(Ch(Ag2, SC(Ag1, Ag2, φ1))∧ <X>: EX(F (Ch(Ag2, SC(Ag1, Ag2, φ1))∧
G(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (3) G(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2)))) (4)

[SCAg2 ] : E(SC(Ag2, Ag1, ?φ1)∧ EF (Ch(Ag2, SC(Ag1, Ag2, φ1))∧
G(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (5) G(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (2)

<≡>: E(?φ1 ∧G(¬Jus(Ag1, SC(Ag1, Ag2,
φ1), φ2))) (6)

?φ1 (7) ∨ : E(G(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (8)

<¬Jus>: E(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2),
XG(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (9)

[SCAg1 ] : E(SC(Ag1, Ag2, φ1 ∴ φ2),
XG(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (10)

∧ : E(φ2 ∴ φ1, XG(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (11)

<≡>: E(φ2, X(¬φ2 ∨ φ1), XG(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (12)

φ2 (13) X : E(X(¬φ2 ∨ φ1), XG(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (14)

<≡>: E((¬φ2 ∨ φ1), XG(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (15)

¬φ2 ∨ φ1 (16) X : E(XG(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (17)

∨ : E(G(¬Jus(Ag1, SC(Ag1, Ag2, φ1), φ2))) (8)
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Fig. 3. The ABTA of Formula 1

The termination proof of the translation procedure is based on the finiteness
of the tableau. This proof is based on the length of formulae and an ordering
relation between these formulae. The proof is detailed in [4].

5.4 Run of an ABTA on a Transition System (Step 2)

Like the automata-based model checking of PLTL, in order to decide about
the satisfaction of formulae, we use the notion of the accepting runs. In our
technique, we need to define the accepting runs of an ABTA on a TS. Firstly,
we have to define the notion of the ABTA’s run. For this reason, we need to
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introduce two types of nodes: positive and negative. Intuitively, nodes classified
positive are nodes that correspond to a formula without negation, and negative
nodes are nodes that correspond to a formula with negation. Definition 4 gives
the definition of this notion of run. In this definition, elements of the set S of
states are denoted si or ti.

Definition 4 (Run of an ABTA). A run of an ABTA B = 〈Q, l,→, q0, F 〉 on
a TS T = 〈S,Lab, ℘, L,Act,

Act−→, s0〉 is a graph in which the nodes are classified
as positive or negative and are labeled by elements of Q× S as follows:

1. The root of the graph is a positive node and is labeled by <q0, s0 > .
2. For a positive node ϕ with label <q, si >:

(a) If l(q) = ¬ and q → q′, then ϕ has one negative successor labeled <
q′, si > and vice versa.

(b) If l(q) ∈ Γp, then ϕ is a leaf.
(c) If l(q) ∈ {∧, <≡>} and {q′|q → q′} = {q1, . . . , qm}, then ϕ has positive

successors ϕ1, . . . , ϕm with ϕj labeled by <qj , si > (1 ≤ j ≤ m).
(d) If l(q) = ∨, then ϕ has one positive successor ϕ′ labeled by <q′, si > for

some q′ ∈ {q′|q → q′}.
(e) If l(q) = X and q → q′ and {s′|si

•−→ s′} = {t1, . . . , tm} where • ∈ Act,
then ϕ has positive successors ϕ1, . . . , ϕm with ϕj labeled by < q′, tj >
(1 ≤ j ≤ m).

(f) If l(q) =<•> where • ∈ Act and q → q′, and si
•−→ si+1, then ϕ has one

positive successor ϕ′ labeled by < q′, si+1,0 > where si+1,0 is the initial
state of the decomposition TS of si+1.

(g) If l(q) =<•> where • ∈ ¬Act and q → q′, and si
•′−→ si+1 where • 6= •′

and •′ ∈ Act, then ϕ has one positive successor ϕ′ labeled by <q′, si+1 >.
3. For a negative node ϕ labeled by <q, si >:

(a) If l(q) ∈ Γp, then ϕ is a leaf.
(b) If l(q) ∈ {∨, <≡>} and {q′|q → q′} = {q1, . . . , qm}, then ϕ has negative

successors ϕ1, . . . , ϕm with ϕj labeled by <qj , si > (1 ≤ j ≤ m).
(c) If l(q) = ∧, then ϕ has one negative successor ϕ′ labeled by <q′, si > for

some q′ ∈ {q′|q → q′}.
(d) If l(q) = X and q → q′ and {s′|si

•−→ s′} = {t1, . . . , tm} where • ∈ Act,
then ϕ has negative successors ϕ1, . . . , ϕm with ϕj labeled by < q′, tj >
(1 ≤ j ≤ m).

(e) If l(q) =<•> where • ∈ Act and q → q′, and si
•−→ si+1, then ϕ has one

negative successor ϕ′ labeled by < q′, si+1,0 > where si+1,0 is the initial
state of the decomposition TS of si+1.

(f) If l(q) =<•> where • ∈ ¬Act and q → q′, and si
•′−→ si+1 where • 6= •′

and •′ ∈ Act, then ϕ has one negative successor ϕ′ labeled by <q′, si+1 >.
4. Otherwise, for a positive (negative) node ϕ labeled by <q, si,j >:

(a) If l(q) =<≡> and {q′|q → q′} = {q1, q2} such that q1 is a leaf, and
si,j has a successor si,j+1, then ϕ has one positive leaf successor ϕ′

labeled by < q1, si,j > and one positive (negative) successor ϕ′′ labeled
by <q2, si,j+1 >.
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(b) If l(q) =<≡> and {q′|q → q′} = {q1, q2} such that q1 is a leaf, and si,j

has no successor, then ϕ has one positive leaf successor ϕ′ labeled by
<q1, si,j > and one positive (negative) successor ϕ′′ labeled by <q2, si >.

(c) If l(q) ∈ {∧,∨, X, [SCAg]} and {q′|q → q′} = {q1}, and si,j
r−→ si,j+1

such that r = l(q), then ϕ has one positive (negative) successor ϕ′ labeled
by <q1, si,j+1 >.

The notion of run of an ABTA on a TS is a non-synchronized product graph
of the ABTA and the TS (see Fig. 1). This run uses the label of nodes in the
ABTA (l(q)), the transitions in the ABTA (q → q′), and the transitions in the
TS (si

•−→ sj). The product is not synchronized in the sense that it is possible
to use transitions in the ABTA while staying in the same state in the TS (this
is the case for example of clauses 2.a, 2.c, and 2.d).

The clause 2.a in the definition says that if we have a positive node ϕ in the
product graph such that the corresponding state in the ABTA is labeled with ¬
and we have a transition q → q′ in this ABTA, then ϕ has one negative successor
labeled with <q′, si >. In this case we use a transition from the ABTA and we
stay in the same state of the TS. In the case of a positive node and if the current
state of the ABTA is labeled with ∧, all the transitions of this current state of
the ABTA are used (clause 2.c). However, if the current state of the ABTA is
labeled with ∨, only one arbitrary transition from the ABTA is used (clause 2.d).
The intuitive idea is that in the case of ∧, all the sub-formulae must be true in
order to decide about the formula of the current node of the ABTA. However,
in the case of ∨ only one sub-formula must be true.

The cases in which a transition of the TS is used are:

1. The current node of the ABTA is labeled with X (which means a next state
in the TS). This is the case of clauses 2.e and 3.d. In this case we use all the
transitions from the current state si to next states of the TS.

2. The current state of the ABTA and a transition from the current state of the
TS are labeled with the same action. This is the case of clauses 2.f and 3.e.
In this case, the current transition of the ABTA and the transition from the
current state si of the TS to a state si+1,0 of the associated decomposition
TS are used. The idea is to start the parsing of the formula coded in the
decomposition TS.

3. The current state of the ABTA and a transition from the current state of
the TS are labeled with different actions where the state of the ABTA is
labeled with a negative formula. This is the case of clauses 2.g and 3.f . In
this case, the formula is satisfied. Consequently, the current transition of
the ABTA and the transition from the current state si of the TS to a next
state si+1 are used. Finally, clauses 4.a, 4.b, and 4.c deal with the case of
verifying the structure of the commitment formulae in the sub-TS. In these
clauses, transitions si,j

r−→ si,j+1 are used. We note here that when si,j has
no successor, the formula contained in this state is an atomic formula or a
boolean formula whose all the sub-formulae are atomic (for example p ∧ q
where p and q are atomic).
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Example 2. Fig. 4 illustrates an example of the run of an ABTA. This figure
illustrates a part of the automaton B⊗ resulting from the product of the TS of
Fig. 2 and the ABTA of Fig. 3. According to the clause 1 (Definition 4), the root
is a positive node and it is labeled by <¬, s0 > because the label of the ABTA’s
root is ¬ (Fig. 3). Consequently, according to the clause 2.a, the successor is a
negative node and it is labeled by < ∨, s0 >. According to the clause 3.b, the
second node has two negative successors labeled by <<Ch>, s0 > and < X, s0 >
etc.

Fig. 4. An example of an ABTA’s run

In an ABTA, every infinite path has a suffix that contains either positive or
negative nodes, but not both. Such a path is referred to as positive in the former
case and negative in the latter. Now we can define the notion of accepting runs
(or successful runs). Let p ∈ Γp and let si be a state in a TS T . Then si |=T p iff
p ∈ Lab(si) and si |=T ¬p iff p /∈ Lab(si). Let si,j be a state in a decomposition
TS of a TS T . Then si,j |=T p iff p ∈ Lab′(si,j) and si,j |=T ¬p iff p /∈ Lab′(si,j).
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Definition 5 (Successful Run). Let r be a run of an ABTA B = 〈Q, l,→
, q0, F 〉 on a TS T = 〈S, Lab, ℘, L, Act,

Act−→, s0〉. The run r is successful iff every
leaf and every infinite path in r is successful. A successful leaf is defined as
follows:

1. A positive leaf labeled by <q, si > is successful iff si |=T l(q) or l(q) =<•>

where • ∈ Act and there is no sj such that si
•−→ sj.

2. A positive leaf labeled by <q, si,j > is successful iff si,j |=T l(q)
3. A negative leaf labeled by <q, si > is successful iff si |=T ¬l(q) or l(q) =<•>

where • ∈ Act and there is no sj such that si
•−→ sj.

4. A negative leaf labeled by <q, si,j > is successful iff si,j |=T ¬l(q)

A successful infinite path is defined as follows:

1. A positive path is successful iff ∀f ∈ F, ∃q ∈ f such that q occurs infinitely
often in the path. This condition is called the Büchi condition.

2. A negative path is successful iff ∃f ∈ F,∀q ∈ f, q does not occur infinitely
often in the path. This condition is called the co-Büchi condition.

We note here that a positive or negative leaf labeled by <q, s> such that
l(q) =<•> where • ∈ Act and there is no s′ such that s

•−→ s′ is considered a
successful leaf because we can not consider it unsuccessful. The reason is that it
is possible to find a transition labeled by • and starting from another state s′′ in
the TS. If we consider such a leaf unsuccessful, then even if we find a successful
infinite path, the run will be considered unsuccessful. However, this is false.

An ABTA B accepts a TS T iff there exists a successful run of B on T . In
order to compute the successful run of the generating ABTA, we should compute
the acceptance states F . For this purpose we use the following definition.

Definition 6 (Acceptance States). Let q be a state in an ABTA B and Q
the set of all states. Suppose φ = φ1Uφ2 ∈ q 5. We define the set Fφ as follows:
Fφ = {q′ ∈ Q|(φ /∈ q′ and Xφ /∈ q′) or φ2 ∈ q′}. The acceptance set F is defined
as follows: F = {Fφ|φ = φ1Uφ2 and ∃q ∈ B, φ ∈ q}.

According to this definition, a state that contains the formula φ or the formula
Xφ is not an acceptance state. The reason is that according to Definition 4, there
is a transition from a state containing φ to a state containing Xφ and vice versa.
Therefore, according to Definition 5, there is a successful run in the ABTA B.
However, we can not decide about the satisfaction of a formula using this run.
The reason is that in an infinite cycle including a state containing φ and a
state containing Xφ, we can not be sure that a state containing φ2 is reachable.
However, according to the semantics of U , the satisfaction of φ needs that a state
containing φ2 is reachable while passing by states containing φ1.

5 Here we consider until formula because it is the formula that allows paths to be
infinite.
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Example 3. In order to compute the acceptance states of the ABTA of Fig. 3,
we use the formula associated to the child number (2) in Table 2:

F (Ch(Ag2, SC(Ag1, Ag2, φ1)) ∧G(¬Jus(Ag1, SC(Ag1, Ag2, φ1)φ2)))

We consider this formula, denoted φ, instead of the root’s formula because its
form is E(φ) (see Section 5.3). Consequently, state (1) and states from (3) to
(17) are the acceptance states according to Definition 6. For example, state (1)
is an acceptance state because φ and Xφ are not in this state, and state (3) is an
acceptance state because φ2 is in this state. States (2) and (4) are not acceptance
states. Because only the first state is labeled by ¬, all finite and infinite paths
are negative paths. Consequently, the only infinite path that is a valid proof of
Formula 1 is (1, (2, 4)*). In this path there is no acceptance state that occurs
infinitely often. Therefore, this path satisfies the Büchi condition. The path vis-
iting the state (3) and infinitely often the state (9) does not satisfy Formula
1 because there is a challenge action (state (3)), and globally no justification
action of the content of the challenged commitment (state (9)).

5.5 Model Checking Algorithm (Step 3)

Our model checking algorithm for verifying that a dialogue game protocol sat-
isfies a given property and that it respects the decomposition semantics of the
underlying communicative acts is inspired by the procedure proposed by [7]. Like
the algorithm proposed by [14], our algorithm explores the product graph of an
ABTA representing an ACLT* formula and a TS for a dialogue game protocol.
This algorithm is on-the-fly (or local) algorithm that consists of checking if a
TS is accepted by an ABTA. This ABTA-based model checking is reduced to
the emptiness of the Büchi automata [31]. The emptiness problem of automata
is to decide, given an automaton A, whether its language L(A) is empty. The
language L(A) is the set of words accepted by A.

Let T = 〈S,Lab, ℘, L,Act,
Act−→, s0〉 be a TS for a dialogue game and let

B = 〈Q, l,→, q0, F 〉 be an ABTA for ACTL*. The procedure consists of building
the ABTA product B⊗ of T and B while checking if there is a successful run in
B⊗. The existence of such a run means that the language of B⊗ is non-empty.
The automaton B⊗ is defined as follows: B⊗ = 〈Q×S,→B⊗ , q0B⊗ , FB⊗〉. There
is a transition between two nodes <q, s> and <q′, s′> iff there is a transition
between these two nodes in some run of B on T . Intuitively, B⊗ simulates all
the runs of the ABTA. The set of accepting states FB⊗ is defined as follows:
q0B⊗ ∈ FB⊗ iff q ∈ F .

Unlike the algorithms proposed in [7, 14], our algorithm uses only one depth-
first search (DFS) instead of two. This is due to the fact that our algorithm
explores directly the product graph using the sign of the nodes (positive or nega-
tive). In addition, our algorithm does not distinguish between recursive and non-
recursive nodes. Therefore, we do not take into account the strongly-connected
components in the ABTA, but we use a marking algorithm that directly works
on the product graph.
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The idea of this algorithm is to construct the product graph while exploring
it. The construction procedure is directly obtained from Definition 4. The algo-
rithm uses the label of nodes in the ABTA, and the transitions in the product
graph obtained from the TS and the ABTA as explained in Definition 4. In or-
der to decide if the ABTA contains an infinite successful run, all the explored
nodes are marked ”visited”. Thus, when the algorithm explores a visited node,
it returns false if the infinite path is not successful. If the node is not already
visited, the algorithm tests if it is a leaf. In this case, it returns false if the node
is a non-successful leaf. If the explored node is not a leaf, the algorithm explores
recursively the successors of this node. If this node is labeled by ”∧”, and signed
positively, then it returns false if one of the successors is false. However, if the
node is signed negatively, it returns false if all the successors are false. A dual
treatment is applied when the node is labeled by ” ∨ ”.

Example 4. In order to check if the language of the automaton illustrated by
Fig. 4 is empty, we check if there is a successful run. The idea is to verify if B⊗
contains an infinite path visiting the state (3) and infinitely often the state (9)
of the ABTA of Fig. 3. If such a path exists, then we conclude that Formula
1 is not satisfied by the TS of Fig. 2. Indeed, the only infinite path of B⊗ is
successful because it does not touch any accepted state and all leaves are also
successful. For instance, the leaf labeled by (<Ch>, s0) is successful since there
is no state si such that s0

Ch−→ si. Therefore, the TS of Fig. 2 is accepted by the
ABTA of Formula 1. Consequently, this TS satisfies Formula 1 and respects its
decomposition semantics.

Soundness and completeness of our model checking method are stated by the
following theorem.

Theorem 1 (Soundness and Completeness). Let ψ be a ACTL* formula
and Bψ the ABTA obtained by the translation procedure described above, and let

T = 〈S, Lab, ℘, L, Act,
Act−→, s0〉 be a TS that represents a dialogue game protocol.

Then, s0 |=T ψ iff T is accepted by Bψ.

Proof. (Direction ⇒). To prove that T is accepted by Bψ, we have to prove
that there exists a run r of Bψ on T such that all leaves and all infinite paths
in the run are successful. Let us assume that s0 |=T ψ. First, let us suppose
that there exists a leaf < q, s > in r such that s |= ¬l(q). Since the application
of tableau rules does not change the satisfaction of formulae, it follows from
Definition 4 that s0 |=T ¬ψ which contradicts our assumption.
Now, we will prove that all infinite paths are successful. The proof proceeds by
contradiction. ψ is a state formula that we can write under the form EΦ, where
Φ is a set of path formulae. Let us assume that there exists an unsuccessful
infinite path xr in r and prove that xT |=T ¬Φ where xT is the path in T
that corresponds to xr (xr is the product of Bψ and T ). The fact that xr is
infinite implies that R22 occurs at infinitely many positions in xr. Because xr

is unsuccessful, ∃φ1, φ2, qi such that φ1Uφ2 ∈ qi and ∀j ≥ i we have φ2 /∈ qj .
When this formula appears in the ABTA at the position qi, we have l(qi) = ∨.
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Thus, according to Definition 4 and the form of R22, the current node ϕ1 of r
labeled by <qi, s> has one successor ϕ1 labeled by <qi+1, s> with φ1Uφ2 ∈ qi

and {φ1, X(φ1Uφ2)} ⊆ qi+1. Therefore, l(qi+1) = ∧, and ϕ2 has a successor
ϕ3 labeled by < qi+2, s > with X(φ1Uφ2) ∈ qi+2. Using R20 and the fact that
l(qi+2) = X, the successor ϕ4 of ϕ3 is labeled by <qi+3, s

′> with φ1Uφ2 ∈ qi+3

and s′ is a successor of s. This process will be repeated infinitely since the path
is unsuccessful. It follows that there is no s in T such that s |=T φ2. Thus,
according to the semantics of U , there is no s in T such that s |=T φ1Uφ2.
Therefore, xT |=T ¬Φ.
(Direction ⇐). The proof proceeds by an inductive construction of xr and
an analysis of the different tableau rules. A detailed proof of this theorem is
presented in [4].

6 Related Work and Conclusion

The verification problem has recently begun to find a significant audience in the
MAS community. Rao and Georgeff [26] have proposed an adaptation of CTL
and CTL* model checking to verify BDI (beliefs, desires and intentions) log-
ics. van der Hoek and Wooldridge [30] have proposed some techniques in order
to reduce the model checking of temporal epistemic properties of MAS to the
model checking of LTL. Benerecetti and Cimatti [3] have proposed a general ap-
proach for model-checking MAS based on CTL together with modalities for BDI
attitudes. Wooldridge et al. [33] have presented the translation of the MABLE
language for the specification and the verification of MAS into Promela, the lan-
guage of the SPIN model checker of LTL. Bordini et al. [9, 10] have addressed
the problem of verifying MAS specified using the AgentSpeak language. They
have showed how programs written in AgentSpeak can be automatically trans-
formed into Promela and into Java, the language of the JPF2 model checker.
Penczek and Lomuscio [24] have developed a bounded model checking algorithm
for branching time logic for knowledge (CTLK). In a similar way, Raimondi and
Lomuscio [25] have implemented an algorithm to verify epistemic CTL proper-
ties of MAS using ordered binary decision diagrams. Kacprzak et al. [20] have
also investigated the problem of verifying epistemic properties using CTLK by
means of an unbounded model checking algorithm. Kacprzak and Penczek [19]
have addressed the problem of verifying game-like structures by means of un-
bounded model checking. There are many differences between all these proposals
and the work presented in this paper that we can summarize as follows. First,
these proposals are based on BDI and epistemic logics that stress the agents’
private mental states. In contrast, our work uses a logic highlighting the public
states reflecting the agents’ interactions expressed in terms of SC and argumen-
tation relations. Second, our model checking algorithm allows us to verify not
only the system’s temporal properties but also the action properties. Finally, the
technique that we use is based on the tableau method and is different from the
techniques used for LTL, CTL and CTL*.
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Complementarily, the verification of agent communication protocols has been
addressed by some research work. Endriss et al. [15] have proposed abductive
logic-based agents and some means of determining whether or not these agents
behave in conformance to agent communication protocols. Baldoni et al. [2] have
addressed the problem of verifying that a given protocol implementation using
a logical language conforms to its AUML specification. Alberti et al. [1] have
considered the problem of verifying on the fly the compliance of the agents’
behavior to protocols specified using a logic-based framework. These approaches
are different from our proposal in the sense that they are not based on model
checking techniques and they do not address the problem of verifying if a protocol
satisfies given properties.

Huget and Wooldridge [18] have used a variation of the MABLE language to
define a semantics of agent communication and have showed that the compliance
to this semantics can be reduced to a model checking problem. Walton [32] has
applied model checking techniques in order to verify the correctness of protocol
communication using the SPIN model checker. The model checking techniques
used by these two proposals are based on LTL, whereas our technique is based
on ACTL*. In addition, our approach is based on a new algorithm and not on
the translation of the specification language to the languages of existing model
checkers. Unlike these two proposals, our technique allows us to simultaneously
verify the correctness of protocols and the agents’ conformance to the semantics.

Recently, Giordano et al. [17] have addressed the problem of specifying and
verifying agent interaction protocols using a Dynamic Linear Time Temporal
Logic (DLTL). The authors have addressed three kinds of verification problems:
1) the compliance of a protocol execution to its specification; 2) the satisfaction
of a property in the protocol; 3) the compliance of agents to the protocol. They
have showed that these problems can be solved by model checking DLTL. This
model checking technique uses a tableau-based algorithm for obtaining a Büchi
automaton from a formula in DLTL. Although this work is close to our proposal,
there are four main differences between these two approaches: (1) The protocols
we dealt with are dialogue game protocols specified using actions that agents
apply on SC. However, the protocols used in [17] are abstract protocols specified
in terms of the effects of communicative actions and some precondition laws. (2)
The model checking technique proposed in [17] uses classical Büchi automaton
that is constructed using a tableau-like procedure and propositional rules. Our
technique is different because it is based on ABTA and not on traditional Büchi
automaton. In addition, the construction of this automaton uses proof rules and
not propositional rules. (3) Our approach is based not only on SC like [17], but
also on an argumentation theory. Consequently, our protocols are more suitable
for MAS because agents can make decisions using their argumentation systems.
(4) The dynamic part in our logic is reflected by an action theory, whereas in
DLTL, the dynamic part is represented by regular programs.

The contribution of this paper is the proposition of a new verification tech-
nique for dialogue game protocols. Our model checking technique allows us to
verify both the correctness of the protocols and the agents’ compliance with the
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decomposition semantics of the communicative acts. This technique uses a com-
bination of an automata-based and a tableau-based algorithm to verify temporal
and action specifications. The formal properties to be verified are expressed in
our ACTL* logic and translated to ABTA using tableau rules. Our model check-
ing algorithm that works on a product graph is an efficient on-the-fly procedure.

As an extension to this work, we intend to use this tableau-based technique
to verify MAS specifications and the conformance of agents with these specifi-
cations. Another interesting direction for future work is to extend the technique
and the logic in order to consider the epistemic properties. Finally, we plan to
use this technique to specify and verify agents’ trust policies.
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