Skip to main content

Emergent Generality of Adapted Locomotion Gaits of Simulated Snake-Like Robot

  • Conference paper
Genetic Programming (EuroGP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3905))

Included in the following conference series:

  • 900 Accesses

Abstract

In this work we consider the generality of locomotion gaits of simulated snake-like robot (Snakebot), adapted (via genetic programming, GP) to both (i) a challenging terrain and (ii) a partial mechanical damage. Discussing the emergence of common traits in these gaits, we elaborate on the strong correlation between their respective genotypes. We experimentally verify the generality of the adapted gaits in different “unexpected” environmental conditions and for various mechanical failures of the Snakebots. From an engineering standpoint, we suppose that in response to an eventual degradation of velocity, the Snakebot might activate a general locomotion gait, without the need to diagnose and treat the concrete underlying reason for such degradation. We view this work as a step towards building real Snakebots, which are able to perform robustly in difficult environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeline, P.J.: Genetic Programming and Emergent Intelligence. In: Kinnear Jr., K.E. (ed.) Advances in Genetic Programming, pp. 75–98. MIT Press, Cambridge (1994)

    Google Scholar 

  2. Dowling, K.: Limbless Locomotion: Learning to Crawl with a Snake Robot, doctoral dissertation, tech. report CMU-RI-TR-97-48, Robotics Institute, Carnegie Mellon University (1997)

    Google Scholar 

  3. Hirose, S.: Biologically Inspired Robots: Snake-like Locomotors and Manipulators. Oxford University Press, Oxford (1993)

    Google Scholar 

  4. Ijspeert, A., Crespi, A., Cabelguen, J.: Simulation nd robotics studies of salamander locomotion. Applying neurobiological principles to the control of locomotion in robots. Neuroinformatics 3(3), 171–196 (2005)

    Article  Google Scholar 

  5. Kinnear Jr., K.E.: Generality and difficulty in genetic programming: Evolving a sort. In: Proceedings of the 5th International Conference on Genetic Algorithms, ICGA 1993, pp. 287–294 (1993)

    Google Scholar 

  6. Kimura, H., Yamashita, T., Kobayashi, S.: Reinforcement Learning of Walking Behavior for a Four-Legged Robot. In: 40th IEEE Conference on Decision and Control, pp. 411–416 (2001)

    Google Scholar 

  7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  8. Kushchu, I.: Genetic Programming and Evolutionary Generalization. IEEE Transactions On Evolutionary Computation 6(5), 431–442 (2002)

    Article  MATH  Google Scholar 

  9. Levitan, I.B., Kaczmarek, L.K.: The Neuron: Cell and Molecular Biology. Oxford University Press, New York (2002)

    Google Scholar 

  10. Mahdavi, S., Bentley, P.J.: Evolving Motion of Robots with Muscles. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 655–664. Springer, Heidelberg (2003)

    Google Scholar 

  11. Smith, R.: Open Dynamics Engine (2001-2003), http://q12.org/ode/

  12. Stoy, K., Shen, W.-M., Will, P.M.: A simple approach to the control of locomotion in selfreconfigurable robots. Robotics and Autonomous Systems 44(3), 191–200 (2003)

    Article  Google Scholar 

  13. Takamura, S., Hornby, G.S., Yamamoto, T., Yokono, J., Fujita, M.: Evolution of Dynamic Gaits for a Robot. In: IEEE International Conference on Consumer Electronics, pp. 192–193 (2000)

    Google Scholar 

  14. Tanev, I., Ray, T., Buller, A.: Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE Transactions On Robotics 21, 632–645 (2005)

    Article  Google Scholar 

  15. Tanev, I.: DOM/XML-Based Portable Genetic Representation of Morphology. Behavior and Communication Abilities of Evolvable Agents, Artificial Life and Robotics 8(1), 52–56 (2004)

    Google Scholar 

  16. Tanev, I.: Incorporating learning probabilistic context-sensitive grammar in genetic programming for efficient evolution and adaptation of snakebot. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 155–166. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Teo, J., Abbass, H.A.: Multi-objectivity and Complexity in Embodied Cognition. IEEE Transactions on Evolutionary Computation 9(4), 337–360 (2005)

    Article  Google Scholar 

  18. Zhang, Y., Yim, M.H., Eldershaw, C., Duff, D.G., Roufas, K.D.: Phase automata: a programming model of locomotion gaits for scalable chain-type modular robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, October 27 - 31, pp. 2442–2447 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tanev, I. (2006). Emergent Generality of Adapted Locomotion Gaits of Simulated Snake-Like Robot. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds) Genetic Programming. EuroGP 2006. Lecture Notes in Computer Science, vol 3905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11729976_8

Download citation

  • DOI: https://doi.org/10.1007/11729976_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33143-8

  • Online ISBN: 978-3-540-33144-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics