Skip to main content

A Memetic Algorithm for the Biobjective Minimum Spanning Tree Problem

  • Conference paper
Book cover Evolutionary Computation in Combinatorial Optimization (EvoCOP 2006)

Abstract

Combinatorial optimization problems with multiple objectives are, in general, more realistic representations of practical situations than their counterparts with a single-objective. The bi-objective minimum spanning tree problem is a NP-hard problem with applications in network design. In this paper a memetic algorithm is presented to solve this problem. A computational experiment compares the proposed approach with AESSEA, a known algorithm of the literature. The comparison of the algorithms is done with basis on the binary additive (-indicator. The results show that the proposed algorithm consistently produces better solutions than the other method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, V., Aneja, Y., Nair, K.: Minimal Spanning Tree Subject to a Side Constraint. Computers and Operations Research 9, 287–296 (1982)

    Article  Google Scholar 

  2. Bazlamaçci, C.F., Hindi, K.S.: Minimum-weight Spanning Tree Algorithms A Survey and Empirical Study. Computers and Operations Research 28, 767–785 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chartrand, G., Oellermann, O.R.: Applied and Algorithmic Graph Theory. McGraw-Hill, New York (1993)

    Google Scholar 

  4. Coello, C.A.: A Comprehensive Survey of Evolutionary-based Multiobjective Optimization Techniques. Knowledge and Information Systems 1, 269–308 (1999)

    Article  Google Scholar 

  5. Ehrgott, M.: Approximation Algorithms for Combinatorial Multicriteria Optimization Problems. International Transactions in Operational Research 7, 5–31 (2000)

    Article  MathSciNet  Google Scholar 

  6. Ehrgott, M., Gandibleux, X.: A Survey and Annotated Bibliography of Multiobjective Combinatorial Optimization. OR Spektrum 22, 425–460 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ehrgott, M., Gandibleux, X.: Approximative Solution Methods for Multiobjective Combinatorial Optimization. Top 12(1), 1–89 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feo, T.A., Resende, M.G.C.: Greedy Randomized Adaptive Search Procedures. Journal of Global Optimization 6, 109–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  10. Goldberg, D.: A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann Publishers, San Francisco (1991)

    Google Scholar 

  11. Graham, R.L., Hell, P.: On the History of the Minimum Spanning Tree Problem. Ann. History of Comp. 7, 43–57 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gutin, G., Punnen, A.P.: Traveling Salesman Problem and Its Variations. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  13. Hakami, S.L.: Steiner’s Problem in Graphs and Its Implications. Networks 1, 113–133 (1971)

    Article  MathSciNet  Google Scholar 

  14. Knowles, J.D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. PhD Thesis. Department of Computer Science, University of Reading, Reading, UK (2002)

    Google Scholar 

  15. Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149–172 (2000)

    Article  Google Scholar 

  16. Knowles, J.D., Corne, D.W.: A Comparison of Encodings and Algorithms for Multiobjective Spanning Tree Problems. In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), pp. 544–551 (2001)

    Google Scholar 

  17. Knowles, J.D., Corne, D.W.: Enumeration of Pareto Optimal Multi-criteria Spanning Trees – A Proof of the Incorrectness of Zhou and Gen’s Proposed Algorithm. European Journal of Operational Research 143, 543–547 (2002)

    Article  MATH  Google Scholar 

  18. Kruskal, J.B.: On the Shortest Spanning Subtree of a Graph and the Travelling Salesman Problem. Pric. AMS 7, 48–50 (1956)

    Article  MATH  Google Scholar 

  19. Merz, P., Freisleben, B.: Fitness Landscape Analysis and Memetic Algorithms for the Quadratic Assignment Problem. IEEE Transactions on Evolutionary Computation 4(4), 337–352 (2000)

    Article  Google Scholar 

  20. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. In: Caltech Concurrent Computation Program, C3P Report 826 (1989)

    Google Scholar 

  21. Prim, R.C.: Shortest Connection Networks and Some Generalizations. Bell Systems Techn. J. 36, 1389–1401 (1957)

    Article  Google Scholar 

  22. Prüfer, H.: Neuer Beweis Eines Satzes Uber Permutationen. Arch. Math. Phys. 27, 742–744 (1918)

    MATH  Google Scholar 

  23. Ramos, R.M., Alonso, S., Sicilia, J., Gonzáles, C.: The Problem of the Biobjective Spanning Tree. European Journal of Operational Research 111, 617–628 (1998)

    Article  MATH  Google Scholar 

  24. Raidl, G.R.: An Efficient Evolutionary Algorithm for the Degree-constrained Minimum Spanning Tree Problem. In: Proceedings of the 2000 Congress on Evolutionary Computation (CEC 2000), pp. 104–111. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  25. Raidl, G., Julstrom, B.A.: Edge Sets: An Efficient Evolutionary Coding of Spanning Trees. IEEE Transactions on Evolutionary Computation 7(3), 225–239 (2003)

    Article  Google Scholar 

  26. Steiner, S., Radzik, T.: Solving the Biobjective Minimum Spanning Tree Problem using a k-best Algorithm. Technical Report TR-03-06, Department of Computer Science, King’s College London (2003)

    Google Scholar 

  27. Zhou, G., Gen, M.: Genetic Algorithm Approach on Multi-Criteria Minimum Spanning Tree Problem. European Journal of Operational Research 114, 141–152 (1999)

    Article  MATH  Google Scholar 

  28. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rocha, D.A.M., Goldbarg, E.F.G., Goldbarg, M.C. (2006). A Memetic Algorithm for the Biobjective Minimum Spanning Tree Problem. In: Gottlieb, J., Raidl, G.R. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2006. Lecture Notes in Computer Science, vol 3906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11730095_19

Download citation

  • DOI: https://doi.org/10.1007/11730095_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33178-0

  • Online ISBN: 978-3-540-33179-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics