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Abstract. Many applications involve matching two graphs in order to
identify their common features and compute their similarity. In this pa-
per, we address the problem of computing a graph similarity measure
based on a multivalent graph matching and which is generic in the sense
that other well known graph similarity measures can be viewed as special
cases of it. We propose and compare two different kinds of algorithms:
an Ant Colony Optimization based algorithm and a Reactive Search. We
compare the efficiency of these two algorithms on two different kinds of
difficult graph matching problems and we show that they obtain com-
plementary results.

1 Introduction

Graphs are often used to model structured objects: vertices represent object
components while edges represent binary relations between components. For ex-
ample, graphs are used to model images [3, 5], design objects [10], molecules
or proteins [1], course timetables [9]. In this context, object recognition, clas-
sification and identification involve comparing graphs, i.e., matching graphs to
identify their common features [11]. This may be done by looking for an exact
graph or subgraph isomorphism in order to show graph equivalence or inclusion.
However, in many applications, one looks for similar objects and not identical
ones and exact isomorphisms cannot be found. As a consequence, error-tolerant
graph matchings such as the maximum common subgraph and the graph edit
distance have been proposed [6, 8, 7, 11]. Such matchings drop the condition that
the matching must preserve all vertices and edges: the goal is to find a ”best”
matching, i.e., one which preserves a maximum number of vertices and edges.

Most recently, three different papers ([10, 5, 3]) proposed to go one step fur-
ther by introducing multivalent matchings, where a vertex in one graph may be
matched with a set of vertices of the other graph in order to associate one single
component of an object to a set of components of another object. This allows



one to compare objects described at different levels of granularity such as under-
or over- segmented images [3], or a model of an image having a schematic aspect
with real and over-segmented images [5].

We more particulary focus on the multi-labeled graph similarity measure of
[10] as it has been shown in [20] that it is more general than the two other ones
proposed in [5, 3]. Indeed, it is parameterized by similarity functions that allow
one to easily express problem-dependent knowledge and constraints.

In section 2, we briefly present the generic graph similarity measure of [10]. In
section 3 and 4, we propose two algorithms based on two different approaches for
computing this graph similarity measure. The first one is based on Ant Colony
Optimization (ACO) and the second one is based on Reactive Search (RS). In
section 5, we experimentally compare the two proposed algorithms on two kinds
of graph matching problems. Finally, we conclude on the complementarity of
these two algorithms and we discuss some further work.

2 A generic similarity measure for multi-labeled graphs

Definition of multi-labeled graphs. A directed graph is defined by a couple
G = (V,E), where V is a finite set of vertices and E ⊆ V × V is a set of
directed edges. Vertices and edges may be associated with labels that describe
their properties. Without loss of generality, we assume that each vertex and each
edge has at least one label. Given a set LV of vertex labels and a set LE of edge
labels, a multi-labeled graph is defined by a triple G = 〈V, rV , rE〉 such that:

– V is a finite set of vertices,
– rV ⊆ V ×LV is a relation associating labels to vertices, i.e., rV is the set of

couples (vi, l) such that vertex vi is labeled by l,
– rE ⊆ V × V ×LE is a relation associating labels to edges, i.e., rE is the set

of triples (vi, vj , l) such that edge (vi, vj) is labeled by l. Note that the set
of edges of the graph can be defined by E = {(vi, vj)|∃l, (vi, vj , l) ∈ rE}.

Similarity measure. We now briefly describe the graph similarity measure
introduced in [10]. We refer the reader to the original paper for more details.

The similarity measure is computed with respect to a matching of the vertices
of the two graphs. We consider here a multivalent matching, i.e., each vertex
of one graph is matched with a –possibly empty– set of vertices of the other
graph. More formally, a multivalent matching of two multi-labeled graphs G =
〈V, rV , rE〉 and G′ = 〈V ′, rV ′ , rE′〉 is a relation m⊆V ×V ′ which contains every
couple (v, v′) ∈ V × V ′ such that vertex v is matched with vertex v′.

Once a multivalent matching is defined, the next step is to identify the set of
features that are common to the two graphs with respect to this matching. This
set contains all the features from both G and G′ whose vertices (resp. edges) are
matched by m to at least one vertex (resp. edge) that has the same label. More
formally, the set of common features Gum G′ of two graphs G = 〈V, rV , rE〉 and



G′ = 〈V ′, rV ′ , rE′〉, with respect to a matching m ⊆ V ×V ′, is defined as follows:

G um G′ =̇ {(v, l) ∈ rV | ∃(v, v′) ∈ m, (v′, l) ∈ rV ′}
∪ {(v′, l) ∈ rV ′ | ∃(v, v′) ∈ m(v), (v, l) ∈ rV }
∪ {(vi, vj , l) ∈ rE | ∃(vi, v

′
i) ∈ m,∃(vj , v

′
j) ∈ m (v′

i, v
′
j , l) ∈ rE′}

∪ {(v′
i, v

′
j , l) ∈ rE′ | ∃(vi, v

′
i) ∈ m,∃(vj , v

′
j) ∈ m (vi, vj , l) ∈ rE}

Given a multivalent matching m, we also have to identify the set of split
vertices, i.e., the set of vertices that are matched to more than one vertex, each
split vertex v being associated with the set sv of its matched vertices:

splits(m) = {(v, sv) | v ∈ V, sv = {v′ ∈ V ′|(v, v′) ∈ m}, |sv| ≥ 2}
∪ {(v′, sv′) | v′ ∈ V ′, sv′ = {v ∈ V |(v, v′) ∈ m}, |sv′ | ≥ 2}

The similarity of two graphs G = 〈V, rV , rE〉 and G′ = 〈V ′, rV ′ , rE′〉 with
respect to a matching m is then defined by:

simm(G, G′) =
f(G um G′)− g(splits(m))

f(rV ∪ rV ′ ∪ rE ∪ rE′)
(1)

where f and g are two functions that are defined to weight features and splits,
depending on the considered application.

Finally, the similarity sim(G, G′) of two graphs G = 〈V, rV , rE〉 and G′ =
〈V ′, rV ′ , rE′〉 is the greatest similarity with respect to all possible matchings,
i.e.,

sim(G, G′) = max
m⊆V×V ′

simm(G, G′)

Note that the denominator of formula (1) does not depend on the matching m
—this denominator is introduced to normalize the similarity value between zero
and one. Hence, it will be sufficient to find the matching m that maximizes the
score function below:

score(m) = f(G um G′)− g(splits(m))

Using this graph similarity measure to solve different graph matching
problems. Thanks to the functions f and g of formula (1), the graph similarity
measure of [10] is generic. [20] shows how this graph similarity measure can be
used to solve many different graph matching problems such as the (sub)graph
isomorphism problem, the graph edit distance, the maximum common subgraph
problem and the multivalent matching problems of [5] and [10].

The graph matching problem has been shown to be NP -hard in [20]. A com-
plete algorithm has been proposed for computing the matching which maximizes
formula (1) in [10]. This kind of algorithm, based on an exhaustive exploration
of the search space [16] combined with pruning techniques, guarantees solution
optimality. However, this algorithm is limited to very small graphs (having less
than 10 vertices in the worst case). Therefore, incomplete algorithms, that do
not guarantee optimality but have a polynomial time complexity, appear to be
good alternatives.



3 ACO for the graph matching problem

The ACO (Ant Colony Optimization) meta-heuristic is a bio-inspired approach
[13, 12] that has been used to solve many hard combinatorial optimization prob-
lems. The main idea is to model the problem to solve as a search for an optimal
path in a graph –called the construction graph– and to use artificial ants to
search for ’good’ paths. The behavior of artificial ants mimics the behavior of
real ones: (i) ants lay pheromone trails on the components of the construction
graph to keep track of the most promising components, (ii) ants construct so-
lutions by moving through the construction graph and choose their path with
respect to probabilities which depend on the pheromone trails previously laid,
and (iii) pheromone trails decrease at each cycle simulating in this way the
evaporation phenomena observed in the real world.

In order to solve graph matching problems, we have proposed in [18] a first
ACO algorithm called ANT-GM (ANT-Graph Matching). However, if this algo-
rithm appeared to be competitive with tabu search on sub-graph isomorphism
problems, it was clearly outperformed on multivalent graph matching problems.
The algorithm presented bellow called ANT-GM’06 improves ANT-GM with respect
to the following points: (i) we consider a new heuristic function in the definition
of the transition probability, (ii) we consider a new pheromonal strategy, and
(iii) we introduce a local search procedure to improve solutions constructed by
ants.

Algorithmic scheme. At each cycle, each ant constructs a complete matching
in a randomized greedy way. Once every ant has generated a matching, a local
search procedure takes place to improve the quality of the best matching of the
cycle. Pheromone trails are updated according to this improved matching. This
process stops iterating either when an ant has found an optimal matching, or
when a maximum number of cycles has been performed.

Contrary to the algorithm introduced in [18], ANT-GM’06 follows the Max-
Min Ant System[21]: we explicit impose lower and upper bounds τmin and τmax

on pheromone trails (with 0 < τmin < τmax). The goal is to favor a larger
exploration of the search space by preventing the relative differences between
pheromone trails from becoming too extreme during processing. Also and in
order to achieve a higher exploration of the search space at the first cycles,
pheromone trails are set to τmax at the beginning.

Construction graph. The construction graph is the graph on which artificial
ants lay pheromone trails. Vertices of this graph are solution components that
are selected by ants to generate solutions. In our graph matching application,
ants build matchings by iteratively selecting couples of vertices to be matched.
Hence, given two attributed graphs G = 〈V, rV , rE〉 and G′ = 〈V ′, rV ′ , rE′〉, the
construction graph is the complete non-directed graph that associates a vertex
to each couple (u, u′) ∈ V × V ′.



Pheromone trails. A key point when developing any ACO algorithm is to
decide where pheromone trails should be laid and how they should be exploited
and updated. In our case, we may consider two different possibilities:

– the first one turns into laying pheromone on the vertices of the construction
graph. So, the amount of pheromone on a vertex (u, u′) represents the learnt
desirability to match u with u′ when constructing matchings.

– the second consists in laying pheromone on the edges of the construction
graph. The amount of pheromone on an edge < (u, u′), (v, v′) > represents
the learnt desirability to match together u with u′ and v with v′ when con-
structing matchings.

Experimental results presented in [18] have been obtained with the second
strategy, that appears to be the best-performing one on the maximum clique
problem [19] and multiple knapsack problem [2]. Since then, we have compared
this second strategy with the first one, and experiments showed us that when
we choose to lay pheromone on vertices (instead of edges), better results are
obtained, also the algorithm is much less time consuming (pheromone laying
and evaporation has a linear complexity with respect to the number of vertices
of the construction graph and not a quadratic one).

So, in ANT-GM’06, pheromone is laid on vertices and not on edges like in the
initial version of ANT-GM. The amount of pheromone on a vertex (u, u′) will be
noted τ(u, u′).

Matching construction by ants. At each cycle, each ant constructs a com-
plete matching: starting from an empty matching m = ∅, by iteratively adding
couples of vertices that are chosen within the set cand = {(u, u′) ∈ V × V ′−m}.
As usually in ACO algorithm, the choice of the next couple to be added to m
is done with respect to a probability that depends on pheromone and heuristic
factors. More formally, given a matching m and a set of candidates cand, the
probability pm(u, u′) of selecting (u, u′) ∈ cand is:

pm(u, u′) =
[τ(u, u′)]α · [ηm(u, u′)]β∑

(v,v′)∈cand

[τ(v, v′)]α · [ηm(v, v′)]β
(2)

where:

– τ(u, u′) is the pheromone factor (when choosing the first couple, τm(u, u′) =
1, so that the probability only depends on the heuristic factor), and

– ηm(u, u′) is a heuristic factor that aims at favoring couples that most increase
the score function, i.e., ηm(u, u′) = score(m ∪ {(u, u′)})− score(m).

– α and β are two parameters that determine the relative importance of the
two factors.

Ants stop adding new couples to the matching when the addition of every
candidate couple decreases the score function or when the score function has not
been increased since the last three iterations.



Local search procedure. The best performing ACO algorithms for many
combinatorial problems are hybrid algorithms that combine probabilistic solu-
tion construction by a colony of ants with local search. In a same perspective,
we have tried to improve the performance of ANT-GM’06 by coupling it with a
local search procedure. In our case, we have chosen a local search which achieves
a ’good’ compromise between quality and time consuming. Once every ant has
constructed a matching, we try to improve the quality of the best matching con-
structed during the cycle as follows: the three worse couples of the matching are
removed from it, and the resulting matching is completed in a greedy way, i.e.,
by iteratively adding couples of vertices that most increase the score function.
This local search process is iterated until no more improvement is obtained.

Note that the ’goodness’ of a couple is judged according to its contribution
in our score function, and couples to be removed at each step of a local search
improvement are couples which have not already been removed.

Pheromone updating step. Once each ant has constructed a matching, and
the best of these matchings has been improved by local search, pheromone trails
are updated according to the Max-Min Ant System. First, evaporation is simu-
lated by multiplying every pheromone trail by a pheromone persistance rate ρ
such that 0 ≤ ρ ≤ 1. Then, the best ant of the cycle deposits pheromone. More
precisely, let mk be the best matching (with respect to the score function) built
during the cycle and improved by local search, and mbest be the best matching
built since the beginning of the run (including the current cycle), the quantity
of pheromone laid is inversely proportional to the gap of score between mk and
mbest, i.e. it is equal to 1/(1 + score(mbest)− score(mk)).

As, we have chosen to put pheromone on the vertices of the construction
graph, the quantity of pheromone to be added is deposited on each couple of
vertices (u, u′) in mk.

4 Reactive search for the graph matching problem

Greedy algorithm. [10] proposed a greedy algorithm to solve the graph match-
ing problem. We briefly describe it because it is used as a starting point of our
Reactive Search algorithm. More information can be found in [10]. The algo-
rithm starts from an empty matching m = ∅, and iteratively adds to m couples
of vertices chosen within the set of candidate couples cand = V × V ′ −m. This
greedy addition of couples to m is iterated until m is locally optimal, i.e., until
no more couple addition can increase the similarity. At each step, the couple
to be added is randomly chosen within the set of couples that most increase
the score function. This greedy algorithm has a polynomial time complexity of
O((|V | × |V ′|)2), provided that the computation of the f and g functions have
linear time complexities with respect to the size of the matching. As a counter-
part of this rather low complexity, this algorithm never backtracks and is not
complete.



Local search. The greedy algorithm of [10] returns a ”locally optimal” match-
ing in the sense that adding or removing one couple of vertices to this matching
cannot improve it. However, it may be possible to improve it by adding and/or
removing more than one couple to this matching. A local search [14, 15] tries
to improve a solution by locally exploring its neighborhood: the neighbours of
a matching m are the matchings which can be obtained by adding or removing
one couple of vertices to m:

∀m ∈ ℘(V × V ′), neighbourhood(m) = {m ∪ {(v, v′)}|(v, v′) ∈ (V × V ′)−m}
∪ {m− {(v, v′)}|(v, v′) ∈ m}

From an initial matching, computed by the greedy algorithm, the search space is
explored from neighbour to neighbour until the optimal solution is found (when
the optimal value is known) or until a maximum number of moves have been
performed. The next neighbour to move on at each step is selected according to
the Tabu meta-heuristic.

Tabu meta-heuristic. Tabu search [14, 17] is one of the best known heuris-
tic to choose the next neighbour to move on. At each step, one chooses the
best neighbour with respect to the score function. To avoid staying around lo-
cally optimal matchings by always performing the same moves, a Tabu list is
used. This list has a length k and memorizes the last k moves (i.e., the last k
added/removed couples) in order to forbid backward moves (i.e., to remove/add
a couple recently added/removed). An exception named ”aspiration” is added:
if a forbidden move reaches a better matching than the best known matching,
the move is nevertheless done.

Reactive Search. The length k of the tabu list is a critical parameter that is
hard to set: if the list is too long, search diversification is too strong so that the
algorithm converges too slowly; if the list is too short, intensification is too strong
so that the algorithm may be stuck around local maxima and fail in improving
the current solution. To solve this parameter tuning problem, [4] introduced Re-
active Search where the length of the Tabu list is dynamically adapted during
the search. To make the Tabu algorithm reactive, one must evaluate the need for
diversifying the search. When the same matching is explored twice, the search
must be diversified. In order to detect such redundancies, a hashing key is mem-
orized for each explored matching. When a collision occurs in the hash table,
the list length is increased. On the contrary, when there is no collision during
a fixed number of moves, thus indicating that search is diversified enough, one
can reduce the list length. Hashing keys are incrementally computed so that this
method has a negligible added cost.

Iterated Reactive Search. This reactive search process is iterated from dif-
ferent starting points: the total number of allowed moves maxMoves is divided



by k and k executions of reactive search having each one maxMoves/k allowed
moves are launched. Finally, we keep the best matching found during the k
executions.

5 Experimental comparison results of RS and ACO

Problem instances. We compare our two algorithms on two different sets of
multivalent matching problems: a randomly generated one and a set of seven
instances introduced in [5].

Test suite 1. We have used a random graph generator to generate ”similar”
pairs of graphs: it randomly generates a first graph and applies some vertex
splitting/merging and some edge and vertex insertion/suppression to build a
second graph which is similar to the first one. When graph components have
many different labels, the best matching is trivially found as nearly all ver-
tices/edges have different labels. Therefore, to obtain harder instances, we have
generated 100 graphs such that all vertices and edges have the same label. These
graphs have between 80 and 100 vertices and between 200 and 360 edges. The
second graph is obtained by doing 5 vertex merging/splitting and 10 edge or ver-
tex insertion/suppression. We define function f of formula (1) as the cardinality
function and function g as a weighted sum:

g(S) = w ∗
∑

(v,sv)∈S

(|sv| − 1) where w is the weight of a split.

The chosen weight w can drastically change the hardness of instances: with a
null weight, problem is trivially solved (one can make as many splitted vertices
as needed to recover labels), whereas, with a high weight, optimal solutions do
not split vertices and problem turns into an univalent graph matching problem.
With intermediate weights, the problem is harder: optimal solutions must do a
balancing between the number of splitted vertices and the number of recovered
labels. We display experimental results obtained for two different ”intermedi-
ate” split weights in order to compare the capacity of our algorithms to deal
with splitted vertices. We first consider instances where w = 1, so that optimal
solutions may contain several splits. We also consider instances where w = 3, so
that optimal solutions contain less splitted vertices. We keep only the 13 hardest
instances (i.e., the ones that cannot be solved by the iterated greedy algorithm
of [10]).

Test suite 2. A non-bijective graph matching problem was introduced in [5] to
find the best matching between models and over-segmented images of brains.
Given a model graph G=(V,E) and an image graph G′=(V ′, E′), a matching is
defined as a function φ : V → ℘(V ′) which associates to each vertex of the model
graph G a non empty set of vertices of G′, and such that (i) each vertex of the
image graph G′ is associated to exactly one vertex of the model graph G, (ii) for
some forbidden couples (v, v′) ∈ V × V ′, v′ must not belong to φ(v), and (iii)
the subgraph induced by every set φ(v) must be connected. A weight sv(vi, v

′
i)



(resp. se(ei, e
′
i)) is associated with each couple of vertices (vi, v

′
i) ∈ V ×V ′ (resp.

of edges (ei, e
′
i) ∈ E × E′). The goal is to find the matching which maximizes a

function depending on these weights of matched vertices and edges.
One can define functions f and g so that the matching which maximizes

formula (1) corresponds to the best matching as defined in [5]. We refer the
reader to [20] for more details on the definition of these two functions. We have
taken the 7 instances of the non-bijective graph matching problem of [5]. Scheme
graphs have between 10 and 50 vertices while image graphs have between 30 and
250 vertices. For these instances, we compare our two algorithms with LS+, a
randomized construction algorithm proposed by [5] that quickly computes a
set of possible non-bijective graph matchings and improves the best of these
matchings with a local search algorithm until a locally optimal point is reached.
For more details on these instances and on the LS+ algorithm, please refer to
[5].

Experimental settings for ACO. For ANT-GM’06, we have set the pheromone
factor weight α to 1 and 2 respectively on test suite 1 and test suite 2, the
pheromone persistance rate ρ to 0.98, the heuristic factor weight β to 10, the
maximum number of cycles MaxCycle respectively to 1000 and 2000, the num-
ber of ants nbAnts to 20, the pheromone lower and upper bound τmin and τmax

to 0.01 and 6.
To evaluate the benefit of integrating local search within ANT-GM’06, we

display results obtained without and with local search. We respectively call these
algorithms ANT-GM’06 and ANT-GM’06+LS.

Experimental settings for RS. Reactive Search needs 5 parameters: the
minimum (min) and the maximum (max) length of the list, the length of ex-
tension (and shortening) diff of the list when a reaction process occurs, the
frequency freq of reduction of the list and the maximum number of allowed
moves nbMoves. The initial length of the list is always set to min. For the two
test suites, max is set to 50, diff is set to 15 and the number of moves is set
to 50000. In order to obtain better results, the two others parameters must be
chosen depending on the considered problem. On instances of test suite 1, min
is set to 15 and freq is set to 5000 whereas on instances of test suite 2, min is
set to 10 and freq is set to 1000. As 50000 moves of RS are performed much
quicker than 1000 cycles of ANT-GM’06, we iterated RS from different calls to
the greedy algorithm. The number of iterations of RS is setted in such a way
that both algorithms spend the same time. Note however that execution of our
reactive local search is deterministic on instances of test suite 2: the weights
used are real numbers and as a consequence couples of vertices are never chosen
randomly. As a consequence, it is useless to use iterated version of RS and we
perform only one execution of RS.

We made at least 20 executions of each algorithm on each instance.



Problem RS ANT-GM’06 ANT-GM’06+LS

Nbr (| V1 |,| E1 |) (| V2 |,| E2 |) L Best Avg T. Best Avg T. Best Avg T.

1 (80, 200) (74, 186) 1512 511 511.00 57 511 511.00 131 512 511.10 140

2 (80, 240) (82, 261) 1415 644 644.00 60 644 644.00 266 644 644.00 239

3 (80, 320) (83, 362) 1445 821 820.97 279 821 820.50 498 822 821.20 660

4 (80, 340) (72, 302) 1174 753 753.00 55 753 753.00 111 753 753.00 130

5 (80, 360) (77, 367) 1139 856 855.97 187 855 855.00 321 855 855.00 249

6 (80, 360) (78, 367) 1196 863 863.00 21 863 863.00 187 864 863.94 565

7 (90, 300) (91, 307) 1670 762 762.00 98 762 762.00 326 762 762.00 213

8 (90, 320) (87, 310) 1611 780 780.00 51 780 780.00 572 780 780.00 409

9 (90, 320) (90, 339) 1716 816 816.00 69 816 815.45 546 816 815.45 602

10 (100, 260) (96, 263) 2093 697 696.63 628 697 696.90 976 697 697.00 812

11 (100, 300) (100, 304) 2078 780 780.00 148 780 780.00 278 780 780.00 279

12 (100, 320) (98, 331) 2080 828 828.00 46 828 828.00 286 828 828.00 218

13 (100, 360) (99, 371) 2455 915 915.00 90 915 915.00 267 915 915.00 152

Table 1. Results on multivalent graph matching problems with splits weighted to 1.
For each instance, the table reports the number of vertices and edges of the two graphs,
the CPU time limit L for one run of each algorithm (on a Pentium IV 1.7 GHz) and,
for each algorithm, the best score and the average score found over at least 20 runs
and the average time needed (in seconds) to get the best score.

Problem RS ANT-GM’06 ANT-GM’06+LS

Nbr (| V1 |,| E1 |) (| V2 |,| E2 |) L Best Avg T. Best Avg T. Best Avg T.

1 (80, 200) (74, 186) 659 496 496.00 28 496 496.00 132 496 496.00 121

2 (80, 240) (82, 261) 798 624 624.00 26 624 624.00 108 624 624.00 88

3 (80, 320) (83, 362) 896 801 801.00 17 801 801.00 213 801 801.00 218

4 (80, 340) (72, 302) 737 732 732.00 27 732 732.00 185 732 732.00 194

5 (80, 360) (77, 367) 852 846 846.00 198 846 846.00 116 846 846.00 77

6 (80, 360) (78, 367) 855 840 840.00 36 840 840.00 94 840 840.00 67

7 (90, 300) (91, 307) 1140 748 748.00 82 748 748.00 186 748 748.00 150

8 (90, 320) (87, 310) 1079 766 766.00 44 766 766.00 187 766 766.00 187

9 (90, 320) (90, 339) 1127 802 802.00 70 802 802.00 167 802 802.00 163

10 (100, 260) (96, 263) 1346 683 683.00 114 683 682.75 556 683 683.00 354

11 (100, 300) (100, 304) 1466 769 769.00 358 769 769.00 274 769 769.00 285

12 (100, 320) (98, 331) 1463 814 814.00 51 814 814.00 241 814 814.00 201

13 (100, 360) (99, 371) 1528 900 900.00 54 900 900.00 245 900 900.00 243

Table 2. Results on multivalent graph matching problems with splits weighted to 3.
For each instance, the table reports the number of vertices and edges of the two graphs,
the CPU time limit L for one run of each algorithm (on a Pentium IV 1.7 GHz) and,
for each algorithm, the best score and the average score found over at least 20 runs
and the average time needed (in seconds) to get the best score.

Results. Table 1 displays results on the 13 instances of test suite 1 with splits
weighted to 1. First, we can see that our 3 algorithms seems to be robust in
the sense that their average results are close to their best results on 20 execu-
tions (for 9 of the 13 instances, the average result is equal to the best result).
Also, we can note that RS performs better than ANT-GM’06: it obtains better



Problem LS+ RS ANT-GM’06 ANT-GM’06+LS

GM-i (| V1 |, | V2 |) L Sim Sim T. Sim Avg T. Sim Avg T.

5 (10, 30) 18 .5474 .5481 0.9 .5601 .5598 16 .5608 .5604 15

5a (10, 30) 19 .5435 .5529 4.6 .5638 .5638 10 .5645 .5641 7

6 (12, 95) 269 .4248 .4213 0.0 .4252 .4251 211 .4252 .4251 215

7 (14, 28) 13 .6319 .6333 2.1 .6369 .6369 7 .6376 .6369 5

8 (30, 100) 595 .5186 .5210 1.3 .5229 .5226 462 .5232 .5228 229

8a (30, 100) 595 .5222 .5245 1.3 .5263 .5261 456 .5269 .5264 241

9 (50, 250) 6018 .5187 .5199 81.7 .5201 .5201 4133 .5203 .5202 2034

Table 3. Results on non-bijective graph matching of [5]. For each instance, the table
reports its name, the number of vertices of the two graphs, the CPU time limit L for one
run of each algorithm (on a Pentium IV 1.7 GHz), the similarities of the best solutions
obtained by LS+[5], RS, ANT-GM’06 without LS and with LS (the best solution, the
average solution found over 20 runs and the average time in seconds).

result on 1 instance and is always as fast as ANT-GM’06. Integrating local search
within ANT-GM’06 actually improves the solution process so that ANT-GM’06 ob-
tains better (resp. worse) results than RS on 3 (resp. 1) instances, whereas they
obtain same results on 9 instances. On these instances, RS and ANT-GM’06+LS
obtain complementary results: ANT-GM’06+LS outperforms RS more frequently
than RS outperforms ANT-GM’06+LS but RS is much quicker than ANT-GM’06+LS,
even when the two algorithms obtain the same results. Finally, note that if one
cycle of ANT-GM’06+LS is more time consuming than one cycle of ANT-GM’06,
ANT-GM’06+LS does not generally need more CPU time than ANT-GM’06 to find
a solution: the local search procedure speed up the convergence of ANT-GM’06
and less cycles are needed to find the best solution.

Table 1 does not show results for the first ANT-GM algorithm described in [18]
but one should note that the new ACO algorithm ANT-GM’06 clearly outperforms
this first one. Actually, on all the considered instances, ANT-GM’06 computes
much better solutions in less CPU time than ANT-GM. For example, on instance
1, the best score found by ANT-GM is 505 and is found in 8648 seconds, whereas
ANT-GM’06 finds a score of 511 in 131 seconds.

Table 2 displays results on the 13 instances of test suite 1 with splits weighted
to 3. On each instance, our three algorithms always find the same best score and
the same average score (except for ANT-GM’06 on one instance). However, RS
finds the solution in shorter times than ANT-GM’06 and ANT-GM’06+LS except
for only two instances. These results show that on these instances, one clearly
has to use our RS algorithm.

On the 7 instances of test suite 2, our three algorithms obtain better results
than LS+, the reference algorithm of [5] (6 instances on 7 are better solved by
RS and 7 instances on 7 are better solved by ACO algorithms). Note that, because
the considered weights are real numbers, an execution of RS is deterministic. As
a consequence, RS is less randomized than for multivalent matching problems,
it quickly converges to ”good” matchings but can easily be trapped into local
optimum. So, results show that, as for non-bijective graph matching problems,
ACO gives better results than RS but needs much more time.



In conclusion, the local search procedure helps ANT-GM’06 to improve the
quality of the results. As a consequence, ANT-GM’06+LS usually obtains better
results but is slower than RS. The time limits allowed to our three algorithms
have been set depending on the ACO algorithms which generaly need a long
time to converge. So, these time limits penalize RS which, within a shorter time,
can generaly find a better solution then ACO algorithms. ANT-GM’06+LS and RS
are complementary: if we need to compute quickly a ”good” solution of hard
instances or if instances are easy, we can use RS but if we have more time to
spend on computation or if we want to solve very hard instances, we can use
ANT-GM’06+LS.

6 Conclusion and further work

In this paper, we address the problem of computing the generic graph similarity
measure of [10]. We propose and compare two different kinds of algorithms: an
Ant Colony Optimization (ACO) based algorithm boosted with local search and
a Reactive Search based on a tabu local search heuristic. We compare the effi-
ciency of these two algorithms on two different kinds of difficult graph matching
problems. We show that ACO usually obtains better results but is slower than
Reactive Search. These two algorithms are complementary: if we need to com-
pute quickly a ”good” solution of hard instances or if instances are easy, we can
use RS but if we have more time to spend on computation or if we want to solve
very hard instances, we can use ACO.

In further work, we would like to compare these algorithms on some other
graph matching problems such as maximum common subgraph problems. For
ACO, we would like to speed up the convergence of the algorithm. This could
be done by using a better local search strategy to repair built matchings. For
RS, we would like to diversify the search. This could be done by using an other
strategy than the elitist greedy algorithm of [10] to choose the starting points
and then, start shorter tabu searches from many starting points.
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13. M. Dorigo and T. Stützle. Ant colony optimization. MIT Press, 2004.
14. F. Glover. Tabu search - part I. Journal on Computing, pages 190–260, 1989.
15. S. Kirkpatrick, S. Gelatt, and M. Vecchi. Optimisation by simulated annealing. In

Science, volume 220, pages 671–680, 1983.
16. B.T. Messmer and H.Bunke. Efficient subgraph isomorphism detection: a decompo-

sition approach. IEEE Trans. on Knowledge and Data Engineering, 12-2:307–323,
2000.

17. Sanja Petrovic, Graham Kendall, and Yong Yang. A tabu search approach for
graph-structured case retrieval. In IOS Press, editor, Proc. of the STarting Artificial
Intelligence Researchers Symposium (STAIRS 2002), pages 55–64, 2002.
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