A Memetic Algorithm with Bucket Elimination
for the Still Life Problem

José E. Gallardo, Carlos Cotta, and Antonio J. Fernandez

Dept. Lenguajes y Ciencias de la Computacién, ETSI Informaética,
University of Malaga, Campus de Teatinos, 29071 - Mélaga, Spain.
{pepeg,ccottap,afdez}@lcc.uma.es

Abstract. Bucket elimination (BE) is an exact technique based on vari-
able elimination, commonly used for solving constraint satisfaction prob-
lems. We consider the hybridization of BE with evolutionary algorithms
endowed with tabu search. The resulting memetic algorithm (MA) uses
BE as a mechanism for recombining solutions, providing the best possible
child from the parental set. This MA is applied to the maximum den-
sity still life problem. Experimental tests indicate that the MA provides
optimal or near-optimal results at an acceptable computational cost.

1 Introduction

The game of life [1] consists of an infinite checkerboard in which the only player
places checkers on some of its squares. Each square is a cell that has eight
neighbors: the eight cells that share one or two corners with it. A cell is alive
if there is a checker on it, and dead otherwise. The state of the board evolves
iteratively according to three rules: (i) if a cell has exactly two living neighbors
then its state remains the same in the next iteration, (ii) if a cell has exactly
three living neighbors then it is alive in the next iteration and (iii) if a cell has
fewer than two or more than three living neighbors, then it is dead in the next
iteration. An interesting extension of this game is the maximum density still life
problem (MDSLP) that consists of finding board configurations with a maximal
number of living cells not changing along time. These stable configurations are
called mazimum density stable patterns or simply still lifes. In this paper we are
concerned with the MDSLP and finite patterns, i.e., finding n x n still lifes. No
polynomial method is known for this problem.

Our interest in this problem is manifold. Firstly, it must be noted that the
patterns resulting in the game of life are very interesting. For example, by clever
placement of the checkers and adequate interpretation of the patterns, it is pos-
sible to create a Turing-equivalent computing machine [2]. From a more applied
point of view, it is interesting to consider that many aspects of discrete dynami-
cal systems have been developed or illustrated by examples in life game [3,4]. In
this sense, finding stable patterns can be regarded as a mathematical abstraction
of a standard issue in discrete systems control. Finally, the MDSLP is a prime
example of weighted constrained optimization problem, and as such constitutes
an excellent test bed for different optimization techniques.

The still life problem has been recently included in the CSPLib repository
and a dedicated web page! maintains up-to-date results. This problem has been
tackled using different approaches. Bosch and Trick [5] used a hybrid approach
mixing integer programming and constraint programming to solve the cases for
n = 14 and n = 15 in about 6 and 8 days of CPU time respectively. Smith [6]
considered a pure constraint programming approach to tackle the problem and
proposed a formulation of the problem as a constraint satisfaction problem with
0-1 variables and non-binary constraints. A dual formulation of the problem was
also considered, and it was proved that this dual representation outperformed
the initial one (although it could only solve instances up to n = 10). In any case,
this dual encoding was particularly useful to find (90° rotational) symmetric
solutions (e.g., it found the optimal solution for n = 18). Later on, Larrosa et
al. [7, 8] showed the usefulness of variable elimination techniques, namely bucket
elimination (BE), on this problem. Their basic approach could solve the problem
for n = 14 in about 10 seconds. Further improvements pushed the solvability
boundary forward to n = 20 in about the same time. At any rate, it is clear that
these exact approaches are inherently limited for increasing problem sizes, and
their capabilities as anytime algorithms are unclear. Furthermore, to the best of
our knowledge no heuristic approaches to this problem have been attempted.

In this work, we consider the hybridization of evolutionary algorithms with
the BE approach. We will show that memetic algorithms (MAs) endowed with
BE can provide optimal or near-optimal solutions at an acceptable computa-
tional cost. To do so, we will firstly introduce the essentials of BE in next section.

2 WCSPs and Bucket Elimination

A Weighted constraint satisfaction problem (WCSP) [9] is a constraint satisfac-
tion problem (CSP) in which the user can express preferences among solutions.
A WCSP is defined by a tuple (X, D, F), where X = {x1,---,2,} is a set of
variables taking values from their finite domains (D; € D is the domain of x;)
and F' is a set of cost functions (also called soft constraints). Each f € F is de-
fined over a subset of variables var(f) C X, called its scope. For each assignment
t of all variables in the scope of a soft constraint f, ¢t € f (i.e., t is permitted)
if, and only if, ¢ is allowed by the soft constraint. A complete assignment that
satisfies every soft constraint represents a solution to the WCSP. The valuation
of an assignment t is defined as the sum of costs of all functions whose scope is
assigned by t. Permitted assignments receive finite costs that express their de-
gree of preference and forbidden assignments receive cost co. The optimization
goal consists of finding the solution with the lowest valuation.

2.1 The Bucket Elimination Approach

Bucket elimination [10] is a generic algorithm suitable for many automated rea-
soning and optimization problems, in particular for WCSP solving.

! nttp://www.ai.sri.com/~nysmith/life/

function BE(X, D, F)

1: for i := n downto 1 do

2: B; :={f € F|x; €var(f)}
3: gi i= (Eng,/f)Ui

" F = (FUig}) - B

5: end for

6: t:=10

T for i :=1 ton do

8: v = argmineep, {(3 jep,)t (zi,a))}
9: t:=t-(z;,v)
10: end for
11: return(F,t)

end function

Fig. 1. The general template of Bucket Elimination for a WCSP (X, D, F).

BE is based upon the following two operators over functions:

— The sum of two functions f and g denoted (f + g) is a new function with
scope var(f)Uvar(g) which returns for each tuple the sum of costs of f and
g defined as (f + g)(t) = f(t) + g(t);

— The elimination of variable x; from f, denoted f |} 4, is a new function
with scope var(f) — {x;} which returns for each tuple ¢ the minimum cost
extension of ¢t to x;, defined as (f - 9)(t) = mingep,{f(t - (zi,a))} where
t-(x;,a) means the extension of ¢ to the assignment of a to x;. Observe that
when f is a unary function (i.e., arity one), eliminating the only variable in
its scope produces a constant.

Fig. 1 shows an operational schema of the BE algorithm for solving a certain
WCSP. The displayed algorithm returns the optimal cost in F' and one opti-
mal assignment in ¢. Note that BE has exponential space complexity because
in general, the result of summing functions or eliminating variables cannot be
expressed intensionally by algebraic expressions and, as a consequence, interme-
diate results have to be collected extensionally in tables.

As it can be seen in Fig. 1, BE works in two phases. In the first phase (lines
1-5), the algorithm eliminates variables one at a time in reverse order according
to an arbitrary variable ordering o (without loss of generality, here we assume
lexicographical ordering for the variables in X, i.e, 0 = (z1,22,--,2y)). In
the second phase (lines 6-10), the optimal assignment is computed processing
variables in increasing order. The elimination of variable x; is done as follows:
initially (line 2), all cost functions in F' having x; in their scope are stored in B;
(the so called bucket of x;). Next (line 3), BE creates a new function g; defined
as the sum of all functions in B; in which variable z; has been eliminated.
Then (line 4), this function is added to F' that is also updated by removing the
functions in B;. The consequence is that the new F does not contain x; (all
functions mentioning x; were removed) but preserves the value of the optimal

cost. The elimination of the last variable produces an empty scope function (i.e.,
a constant) which is the optimal cost of the problem. The second phase (lines
6-10) generates an optimal assignment of variables. It uses the set of buckets
that were computed in the first phase: starting from an empty assignment ¢ (line
6), variables are assigned from first to last according to o. The optimal value
for x; is the best value regarding the extension of ¢ with respect to the sum
of functions in B; (lines 8,9). We use argming{f(a)} to denote the value of a
producing minimum f(a).

The complexity of BE depends on the problem structure (as captured by its
constraint graph G) and the ordering o. According to [8], the complexity of BE
along ordering o is time ©(Q x n x d¥ (©*1) and space O(n x d¥ (), where
d is the largest domain size, @ is the cost of evaluating cost functions (usually
assumed ©(1)), and w*(o) is the maximum width of nodes in the induced graph
of G relative to o (check [8] for details).

2.2 Bucket Elimination for the Still Life Problem

The general template presented above can be readily applied to the MDSLP.
To this end, let us first introduce some notation. A board configuration for a
nxn instance will be represented by a n-dimensional vector (r1, 79, ..., 7). Each
vector component encodes (as a binary string) a row, so that the j-th bit of row
r; (noted r;;) indicates the state of the j-th cell of the i-th row (a value of 1
represents a live cell and a value of 0 a dead cell). Let Zeroes(r) be the number
of zeroes in binary string r and let Adjacents(r) be the maximum number of
adjacent living cells in row r. If r; is a row and r;_; and r;11 are the rows above
and below 7, then Stable(r;—1,r,7;4+1) is a predicate satisfied if, and only if, all
cells in r are stable.

The formulation has n cost functions f; (i € {1..n}). For i € {2.n — 1}, f; is
ternary with scope var(fi;) = {ri_1,7;, 711} and is defined as?:

oo : —Stable(a,b,c)
oo a1:b1:01:1
fila,b,c) = o0 I ap=b,=c,=1
Zeroes(b) : otherwise
As to f1, it is binary with scope var(f1) = {r1,r2} and is specified as:
oo : —Stable(0,b,c)
fi(b,e) = oo : Adjacents(b) > 2 (2)
Zeroes(b) : otherwise

Likewise, the scope of f,, is var(f,) = {rn—1,7} and its definition is:

oo : —Stable(a,b,0)
fnla,b) = oo : Adjacents(b) > 2 (3)
Zeroes(b) : otherwise

2 Notice in these definitions that stability is not only required within the pattern, but
also in the surrounding cells (assumed dead).

function BE(n, D)

1: for a,b € D do

2: gn(a,b) := mincep{fn-1(a,b,c) + fn(b,c)}

3: end for

4: for i :=n — 1 downto 3 do

5: for a,b € D do

6: gi(a,b) :== mincep{fi—1(a,b,c) + gi+1(b,c)}
7 end for

8: end for

9: (r1,72) == argmin, ,c p{gs(a,b) + fi(a,b)}
10: opt := g3(r1,72) + f1(r1,72)
11: fori:=3ton—1do
12: Ty = argminceD{fi_l(ri_g, Ti—1, C) —+ gi+1(7"11—17 C)}
13: end for
14: T o= argmin,e p{ fa—1(rn—2,7n-1,¢) + fu(rn—1,¢)}
15: return (opt, (11,72,...,7n))

end function

Fig. 2. Bucket Elimination for the MDSLP.

Due to the sequential structure of the corresponding constraint graph, the
model can be easily solved with BE. Fig. 2 shows the corresponding algorithm.
Function BE takes two parameters: n is the size of the instance to be solved,
and D is the domain for each variable (row) in the solution. If domain D is set
to {0..2" — 1} (i.e., a set containing all possible rows) the function implements
an exact method that returns the optimal solution for the problem instance (as
the number of dead cells) and a vector corresponding to rows representing that
solution.

Note that the complexity of this method is time ©(n? x 23") and space
O(n x 22"). On the other hand, a basic search-based solution to the problem
could be implemented with worst case time complexity @(2(”2)) and polyno-
mial space. Observe that the time complexity of BE is therefore an exponential
improvement over basic search algorithms, although its high space complexity
makes the approach unpractical for large instances.

3 A Memetic Algorithm for the MDSLP

WSCPs are very amenable for being tackled with evolutionary metaheuristics.
The quality of the results will obviously depend on how well the structure of the
soft constraints is captured by the search mechanisms used in the optimization
algorithm. To this end, problem-aware algorithmic components are essential. In
the particular case of the MDSLP, we will use tabu search (TS) and BE for this
purpose, integrating them into a memetic approach. Before detailing these two
components, let us describe the basic underlying evolutionary algorithm (EA).

3.1 Representation and Fitness Calculation

The natural representation of MDSLP solutions is the binary encoding. Config-
urations will be represented as a binary n X n matrix r. Clearly, not all such
binary matrices will correspond to stable patterns, i.e., infeasible solutions can
be represented. We have opted for using a penalty-based fitness function in order
to deal with such infeasible solutions. To be precise, the fitness (to be minimized)
of a configuration r is computed as:

n n n+1ln+1
flr)=n®— Z Zm‘ + K Z Z [T;j(bl(nij) +(1- T;j)%(mj)] (4)
=1 j=1 i=0 j=0

where ' is an (n+2) x (n+2) binary matrix obtained by embedding r in a frame
of dead cells (i.e., rj; = ry; for 4,j € {1.n}, and 7;; = 0 otherwise — recall that
stability is not only required within the n x n board, but also in its immediate
neighborhood), K is a constant, n;; is the number of live neighbors of cell (i, 7),

and ¢g, ¢1 : N — N are two functions defined as:

. 0 if2<n<3
0 if n#3 , .

¢o(n)={ / - pr(n)=q K'+2-n ifn<2 (5)
K’ 4+ 1 otherwise K'4+n-3 ifn>3

where K’ is another constant. The first double sum in Eq. (4) corresponds to the
basic quality measure for feasible solutions, i.e., the number of active cells. As
to the last term, it represents the penalty for infeasible solutions. The strength
of penalization is controlled by constants K and K’. We have chosen K = n?
and K’ = 5n%. With this setting, given any two solutions r and s, the one that
violates less constraints is preferred; if two solutions violate the same number of
constraints, the one whose overall degree of violation (i.e., distance to feasibility)
is lower is preferred. Finally, if the two solutions are feasible, the penalty term
is null and the solution with the higher number of live cells is better.

3.2 A Local Improvement Strategy Based on Tabu Search

The fitness function defined above provides a stratified notion of gradient that
can be exploited by a local search strategy. Moreover, notice that the function is
quite decomposable, since interactions among variables are limited to adjacent
cells in the board. Thus, whenever a configuration is modified, the new fitness can
be computed just considering the cells located in adjacent positions to changed
cells. To be precise, assume that cell (7, j) is modified in solution r, resulting in
solution s; the new fitness f(s) can be computed as:

f(s) = f(r)+ K | Afi(rij,mij) + Zﬂf2(7”i'j'777i'ju7“ij) (6)

il
1,7

where the sum in the last term ranges across all cells (i/,) adjacent to (i, 7),
and functions Af; and Afs are defined as:

0 n=2
Afi(e,n) = (=) go(n) n =3 (7)
(=1)¢p1(n) otherwise
Afa(c m,e) = (1=)Afap(n,c) + Afan(n, c) (8)
K'+1 (m=2Ac=0)V (n=4Ac=1)
Afao(n,c) =4 —(K'+1) n=3 9)
0 otherwise
K +1 m=2Ac=1) VvV (n=3Ac=0)
—(K'+1)(n=1Ac=0) V (n=4Nc=1)
Afaa(n,c) =41 m=1Ac=1) vV (n=24Nc=0) (10)
—1 m=0) VvV n=5Ac=1)
0 otherwise

Using this efficient fitness re-computation mechanism, our local search strat-
egy explores the neighborhood N (r) = {s | Hamming(r, s) = 1}, i.e., the set of
solutions obtained by flipping exactly one cell in the configuration. This neigh-
borhood comprises n? configurations, and it is fully explored in order to select
the best neighbor. In order to escape from local optima, a tabu-search scheme
is used: up-hill moves are allowed, and after flipping a cell, it is put in the tabu
list for a number of iterations (randomly drawn from [n/2,3n/2] to hinder cy-
cling in the search). Thus, it cannot be modified in the subsequent iterations
unless the aspiration criterion is fulfilled. In this case, the aspiration criterion is
improving the best solution found in that run of the local search strategy. The
whole process is repeated until a maximum number of iterations is reached, and
the best solution found is returned.

3.3 Optimal recombination with BE

In the context of the fitness function that we have considered, the binary repre-
sentation used turns out to be freely manipulable: any configuration can be evalu-
ated, and therefore any standard recombination operator for binary strings could
be utilized in principle. For example, we could consider the two-dimensional ver-
sion of single-point crossover, depicted in Fig. 3. While feasible from a compu-
tational point of view, such a blind operator would perform poorly though: it
would be more similar to macromutation than to a sensible recombination of
information. To fulfill this latter goal, we can resort to BE.

In section 2.2 it was shown how BE could be used to implement an exact
method to solve the MDSLP. Although the resulting algorithm was better than
basic search-based approaches, the corresponding time and space complexity
were very high. In the following we describe how BE can be used to implement a
recombination operator that explores the dynastic potential [11] (possible chil-
dren) of the solutions being recombined, providing the best solution that can be
constructed without introducing implicit mutation (i.e., exogenous information).

Random
Column

Al A2 Bl BQ Al BQ
Random _
Row — X =
A3 A4 Bg B4 B3 A4
Fig. 3. Blind recombination operator for the MDSLP.
Let x = (z1,29, -, 2n) and y = (y1, Y2, -+, Yn) be two board configurations

for a n x n instance of the MDSLP. Then, BE(n, {1, Z2, +, Zn, Y1,Y2, " s Yn})
calculates the best feasible configuration that can be obtained by combining rows
in and y without introducing information not present in any of the parents.
Observe that we are just restricting the domain of variables to take values corre-
sponding to the configurations being recombined, so that the result of function
BE is the best possible recombination.

In order to analyze time complexity for this recombination operator, the
critical part of the algorithm is the execution of lines 4-8 in Figure 2. In this case,
line 6 has complexity O(n?) (finding the minimum of at most 2n alternatives,
the computation of each being ©(n)). Line 6 has to be executed n X 2n x 2n times
at most, making a global complexity of O(n®) = O(|z|*%), where |x| € O(n?)
is the size of solutions. Notice also that the recombination procedure can be
readily made to further exploit the symmetry of the problem, extending variable
domains to column values in addition to row values. The complexity bounds
remain the same in this case.

It must be noted that the described operator can be generalized to recombine
any number of board configurations like BE(n, J,cg{z: | i € {1..n}}) where S
is a set comprising the solutions to be recombined. In this situation, the time
complexity is O(k*n®) (line 6 is O(kn?), and it is executed O(k?n?) times), where
k = |S| is the number of configurations being recombined. Therefore, finding the
optimal recombination from a set of MDSLP configurations is fixed-parameter
tractable [12] when the number of parents is taken as a parameter.

4 Experimental Results

In order to assess the usefulness of the described hybrid recombination operator,
a set of experiments for different problem sizes (n = 12 up to n = 20) has been
realized. The experiments were done in all cases using a steady-state evolutionary
algorithm (popsize = 100, p,, = 1/n?, px = 0.9, binary tournament selection).
With the aim of maintaining some diversity, duplicated individuals were not
allowed in the population. All algorithms were run until an optimal solution was
found or a time limit was exceeded. This time limit was set to 3 minutes for

10

mean best fitness

feasibility boundary (n2)

10* 1 1 1 1 1 1 1
12 13 14 15 16 17 18 19 20

instance size (n)

Fig. 4. Comparison of a plain EA, and a MA incorporating tabu search for different
problem sizes. Results are averaged for 20 runs.

problem instances of size 12 and were gradually incremented by 60 seconds for
each size increment. For each algorithm and each instance size, 20 independent
executions were run. The experiments have been performed in a Pentium IV PC
(2400MHz and 512MB of main memory) under SuSE Linux.

First of all, experiments were done with a plain EA. This EA did not use lo-
cal search, utilized the blind recombination operator described in Sect. 3.3, and
performed mutation by flipping single cells. This algorithm was compared with
a MA that utilized tabu search for local improvement (maziter = n?), and the
same recombination operator. Since simple bit-flipping moves were commonly
reverted by the local search strategy, a stronger perturbation was considered
during mutation, namely performing a cyclic rotation (by shifting bits one posi-
tion to the right) in a random row (or column). Fig. 4 shows the results of this
comparison. As it can be seen, the EA performs poorly, and is easily beaten by
the MA. While the former cannot even find a single feasible solution in most
runs, the MA finds not just feasible solutions in a consistent way, but solutions
between 0.73% and 5.29% from the optimum (the optimal solution is found in
at least one run for n < 15).

Subsequent experiments compared this basic MA with MAs endowed with
BE for performing recombination as described in Sect. 3.3 (denoted as MABE).
Since the use of BE for recombination has a higher computational cost than
a simple blind recombination, and there is no guarantee that recombining two
infeasible solutions will result in a feasible solution, we have defined two variants
of MABE: in the first one -MABE;r— we require that at least one of the parents
is feasible in order to apply BE; otherwise blind recombination is used. In the

T
o MA
o MABE «
8 % MABE
o MABE,
m ®
6L i
£
=]
£
,g- sk ¥ -
=]
: |
gaf i 7
° $
h=l
X
3L i
2r (} 8 a
[s23
| @ Q 7
0 ‘#E \m \m \m L el L L L L

T 12 13 14 15 16 17 18 19 20
instance size

Fig. 5. Relative distances to optimum for each algorithm for sizes ranging from 12 up
to 20. Each box summarizes 20 runs.

o MA
12H o MABE i
% MABE,_
o MABE,
100 @ i
£
S 8r q
£
I
©
2
@
£ 1
2
°
L
4 i
a
2L i
€]
0 I I I I I
21 22 24 26 28

instance size

Fig. 6. Relative distances to the best known solutions for each algorithm for sizes
ranging from 21 up to 28. Each box summarizes 20 runs. Results are only displayed
for sizes for which an upper bound is available in the literature.

second one -MABEsr— we require the two parents being feasible, thus being
more restrictive in the application of BE. With these two variants, we intend

to explore the computational tradeoffs involved in the application of BE as an
embedded component of the MA. For these algorithms, mutation was performed
prior to recombination in order to better exploit good solutions provided by BE.

Fig. 5 shows the empirical performance of the different algorithms evaluated
(relative to the optimum). Results show that MABE improves over MA on av-
erage and can find better solutions specially for larger instances. For example,
average relative distance to the optimal solution is just 2.39% for n = 20. Note
that results for n = 19 and n = 20 were obtained giving to each run of the
evolutionary algorithm just 10 and 11 minutes respectively. As a comparison,
recall that the approach in [7] respectively requires over 15 hours and over 2
days for these same instances, and that other approaches are unaffordable for
n > 15. Note also that MABE can find the optimal solution in at least one run
for n < 17 and n = 19 and the distance to the optimum for other instances is
less than 1.58%. Results for MABEr and MABEyr show that these algorithms
do not improve over MABE. It seems that the effort saved not recombining un-
feasible solutions does not further improve the performance of the algorithm.
Fig. 6 extends these results up to size 28. The trend is essentially the same for
sizes 21 and 22. Quite interestingly, it seems that for much larger instances the
plain MA starts to catch up with MABE. This may be due to the increased
computational cost for performing recombination. Recall that we are linearly
increasing the allowed computational time with the instance size, whereas the
computational complexity of BE is superlinear.

The statistical significance of the results has been evaluated using a non-
parametric test, the Wilcozon ranksum test [13]. It has been found that differ-
ences are statistically significant (at the standard 5% level) when comparing the
plain EA to any other algorithm in all cases. When comparing MABE(,; and MA,
differences are significant for all instances except for size 12 (where all algorithms
find systematically the optimum in most runs) and size > 24 (where the allowed
computational time might be not enough for MABE,) to progress further in the
search). Finally, improvements for MABE over MABE;r and MABEyr are only
significant in some cases (sizes 20, 22 and 24 for the former, and sizes 14, 15, 19,
20, 21 and 22 for the latter). The fact that MABE is significantly better than
MABE,r in more cases than it is for MABE;r correlates well with the fact that
BE is used less frequently in the former than in the latter.

5 Conclusions and Future Work

We have presented a model for the hybridization of BE, a well-known technique
in the domain of constraint programming, with EAs. The experimental results
for this model have been very positive, solving to optimality large instances of
a hard constrained problem, and outperforming other evolutionary approaches,
including a memetic algorithm incorporating tabu search.

There are many interesting extensions to this work. As it was outlined in Sect.
3.3, the proposed optimal recombination operator can be used with more than
two parents. Furthermore, the resulting operator is fixed-parameter tractable

when the number of parents is taken as parameter. An experimental study of
multiparent recombination in this context can provide very interesting results.
Work is currently underway in this direction.

Further directions for future work can be found in a more-in-depth exploita-
tion of the problem symmetries [5-8]: for any stable pattern an equivalent one
can be created by rotating (by 90°, 180° or 270°) or reflecting the board. The
presented approach could be adapted to incorporate them in the recombination
process, probably boosting the search capabilities. We also plan to analyze this
possibility. Finally, in [7], a hybrid algorithm for the MDSLP that combines BE
and branch-and-bound search is presented providing excellent results. Hybridiz-
ing this algorithm with an EA seems a promising line of research as well.

Acknowledgements This work was partially supported by Spanish MCyT
under contracts T1C2002-04498-C05-02 and TIN2004-7943-C04-01.

References

1. Gardner, M.: The fantastic combinations of John Conway’s new solitaire game.
Scientific American 223 (1970) 120-123
2. E.R. Berlekamp, J.C., Guy, R.: Winning Ways for your Mathematical Plays. Vol-
ume 2 of Games in Particular. Academic Press, London (1982)
3. Gardner, M.: On cellular automata, self-reproduction, the garden of Eden and the
game of “life”. Scientific American 224 (1971) 112-117
4. Gardner, M.: Wheels, Life, and Other Mathematical Amusements. W.H. Freeman,
New York (1983)
5. Bosch, R., Trick, M.: Constraint programming and hybrid formulations for three
life designs. In: CP-AI-OR. (2002) 77-91
6. Smith, B.M.: A dual graph translation of a problem in ‘life’. In Hentenryck,
P.V., ed.: 8th International Conference on Principles and Practice of Constraint
Programming - CP’2002. Volume 2470 of Lecture Notes in Computer Science.,
Ithaca, NY, USA, Springer (2002) 402—414
7. Larrosa, J., Morancho, E., Niso, D.: On the practical use of variable elimination in
constraint optimization problems: ‘still life’ as a case study. Journal of Artificial
Intelligence Research 23 (2005) 421-440
8. Larrosa, J., Morancho, E.: Solving ‘still life’ with soft constraints and bucket
elimination. In Rossi, F., ed.: Principles and Practice of Constraint Programming
- CP 2003. Volume 2833 of Lecture Notes in Computer Science., Kinsale, Ireland,
Springer (2003) 466-479
9. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. Journal of the ACM 44 (1997) 201-236
10. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence 113 (1999) 41-85
11. Radcliffe, N.: The algebra of genetic algorithms. Annals of Mathematics and
Artificial Intelligence 10 (1994) 339-384
12. Downey, R., Fellows, M.: Fixed parameter tractability and completeness I: Basic
theory. SIAM Journal of Computing 24 (1995) 873-921
13. Lehmann, E., D’Abrera, H.: Nonparametrics: Statistical Methods Based on Ranks.
Prentice-Hall, Englewood Cliffs, NJ (1998)

