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Abstract. In this paper, we propose a fixed point theory to solve gamesuer-
fect information. The fixed point theory is defined on theit¢atiof antichains of
sets of states. Contrary to the classical solution propbg&tkif [Rei84], our new
solution does not involve determinization. As a conseqgegiés readily applica-
ble to classes of systems that do not admit determinizalNotable examples of
such systems are timed and hybrid automata. As an applicat®show that the
discrete control problem for games of imperfect informataefined by rectan-
gular automata is decidable. This result extends a resuttdmzinger and Kopke
in [HK99].

1 Introduction

Timed and hybrid systems are dynamical systems with bottretis and continuous
components. A paradigmatic example of a hybrid system igjadlicontrol program
for an analog plant environment, like a furnace or an aimpléime controller state moves
discretely between control modes, and in each control mibdeplant state evolves
continuously according to physical laws. A natural model igbrid systems is the
hybrid automatonwhich represents discrete components using finite-staiehimes
and continuous components using real-numbered variathlesanevolution is governed
by differential equations or differential inclusions [ACH5].

The distinction between continuous evolutions of the psate (which is given by
the real-numbered variables of a hybrid automaton) andeatsswitches of the con-
troller state (which is given by the location, or control nepdf the hybrid automaton)
permits a natural formulation of theafety control problemgiven an unsafe séf of
plant states, is there a strategy to switch the controldgesh real time so that the plant
can be prevented from enterib@? In other words, the hybrid automaton specifies a set
of possible control modes, together with the plant behawsulting from each mode,
and the control problem asks for derivingw@aitching strategypetween control modes
that keeps the plant out of trouble.

In the literature, there are algorithms or semi-algorithftesmination is not al-
ways guaranteed) to derive such switching strategy. Thesg-algorithms usually
comes in the form of symbolic fixed point computations thatnipalate sets of
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states using a well-suited monotonic function like the oalfgble predecessor oper-
ator [AHK02,MPS95]. Those algorithms make a strong hypsitiehey consider that
the controller that executes the switching strategy hpsréect informatiorabout the
state of the controlled system. Unfortunately, this is Ugwn unreasonable hypothe-
sis. Indeed, when the switching strategy has to be implesddnt a real hardware, the
controller typically acquires information about the staf¢he system by reading values
on sensors. Those sensors have finite precision, and softimmation about the state
in which the system lies iBnperfect Let us illustrate this. Consider a controller that
monitors the temperature of a tank, and has to maintain thpeeature between given
bounds by switching on and off a gas burner. The temperafuheadank is the state of
the continuous system to control. Assume that the temperatsensed through a ther-
mometer that returns an integer number and ensures a deMitunded by one degree
Celsius. So, when the sensor returns the temperatuhe controller only knows that
the temperature lies in the interval— 1, ¢+ 1) degrees. We say that the sensor reading
is anobservatiorof the system. This observation gives an imperfect infoimmestbout
the state of the system.

Now, if we fix a set of possible observations of the system tatrod, the control
problem that we want to solve is teafety control problem with imperfect information
“given an unsafe séf of plant states, a set of observations, is there an obsemadised
strategy to switch the controller state in real time so thaftlant can be prevented from
enteringU?”. While it is well-known that safety games of perfect infaation can be
won usingmemoryless strategie#t is not the case for games of imperfect informa-
tion [Rei84]. In that paper, Reif studigmmes of incomplete informatiavhich are a
subclass of safety games of imperfect information wheres#teof observations is a
partition of the state space. Notice that this is not the cdsmr tank example since
when the temperature of the watedjghe thermometer may return eithef] or | d]. To
win such games, memory is sometimes necessary: the centnak to remember (part
of) the history of observations that it has made so far. Irfithite state case, games of
incomplete information can be solved algorithmically. Rgbposes an algorithm that
first transforms the game of incomplete information into engaf perfect information
using a kind of determinization procedure.

In this paper, we propose an alternative method to solve gafrimperfect (and in-
complete) information. Our method comes in the form of a figeit (semi-)algorithm
that iterates a monotone operator on the lattice of antichafi sets of states. The great-
est fixed point of this operator contains exactly the infaiioraneeded to determine the
states from which an observation based control strategyseand to synthesize such a
strategy. We prove that our algorithm has an optimal conigyléar finite state games
and we identify a class of infinite state games for which treatgst fixed point of the
operator is computable. Using this class of games and sesath [HK99], we show
that the discrete-time control problem with imperfect imfation is decidable for the
class of rectangular automata. Strategies that win thasegare robust as they can be
implemented using hardware that senses its environmemffinite precision.

Our fixed point method has several advantages over the tdgoci method pro-
posed by Reif. First, as it does not require determinizatian(semi-)algorithm is read-
ily applicable to classes of systems for which determimdzeis not effective: timed and



hybrid automata are notable examples [AD94]. Second, we st there are families
of games on which the Reif’s algorithm needs exponentiat timmen our algorithm
only needs polynomial time. Third, as our method is based lattiae theory, abstract
interpretation methods can be used to derive in a systemvaticapproximation algo-
rithms [CC77].

Our paper is structured as follows. In Section 2, we recalti#finition of the lattice
of antichains. In Section 3, we show how to use this latticgolee games of imperfect
information. In Section 4, we give a fixed point algorithmttleEXPTIME for finite
state games and we compare with the technique of Reif. gjmalBection 5, we solve
games of imperfect information for rectangular automatae fo lack of space, the
proofs of most of the theorems have been omitted and can Inel ia| DDRO6]

2 The Lattice of Antichains of Sets of States

First we recall the notion of antichain. Aantichainon a partially ordered sétX, <)
is a setX’ C X such that for any;, z2 € X’ with x; # x5 we have neither; < x-
norzo < x1, thatisX’ is a set of incomparable elementsXf We define similarly a
chainto be a set of comparable elementsiof

Let ¢, ¢ € 22° and defineg C ¢ ifand only if Vs € ¢ : 3s' € ¢’ : s C &.
This relation is a preorder but is not antisymmetric. Sineenged a partial order, we
construct the sef. C 22° for which C is antisymmetric orl.. The setl is the set of
antichains or(2°, C).

We say that a set C S isdominatedn ¢ if and only if 3s’ € ¢ : s C s’. The set of
dominated elements gfis denotedom(q). Thereduced fornof ¢ is [¢] = ¢\Dom(q)
and dually theexpandedorm of ¢ is ]q[ = ¢ U Dom(q). The set{¢] is an antichain of
(25, C). Observe thabom([q]) = 0, thatisVs,s’ € [q] : if s; C so thens; = so.
The relation= has the useful following properties:

Lemmal Letg, ¢ € 22°.1fq C ¢ theng C ¢'.

S
Lemma 2 Vq,q' € 2% ,Yq1,q2 € {q, [q]. 14l },Vai. 5 € {d',[d']. 1dT} : @1 E @2
is equivalent tay; C g5.

We can now define formally as the sef[q] | ¢ € 223}.
Lemma 3 The relationE C L x L is a partial ordering and(L,C) is a partially
ordered set.

Lemma 4 For ¢,q' € L, the greatest lower bound gfandq’ isq[ |¢' = [{sNs' | s €
q N s € ¢'}] and the least upper bound gfandq’ isq| |¢' = [{s|s€ q V s € ¢'}].

For@Q C L, we have[]Q = f{ﬂquSq | s¢ € ¢}l and|Q = [{s | 3¢ €
Q : s € ¢}]. The least element df is L = []L = () and the greatest element bf
isT=||L={S}
Lemma5 (L,C,||,[],L,T)isacomplete lattice.

This lattice is thdattice of antichains of sets of states



3 Games of Imperfect Information

3.1 Definitions

Notations Given a finite sequence = ag, aq, ..., a,, we denote bya| = n + 1 the
length ofa, byay = aq, . .., a; the sequence of the first+ 1 elements ofi (anda_,
is the empty sequence) and hyt(a) = a,, the last element df.

Definition 6 [Two-player games] Atwo-player games a tuple(S, Sy, X'¢, X% —)
where S is a (non-empty) set of states;, C S is the set ofinitial states,>°
(resp.X™) is a finite alphabet ofontrollable (resp.uncontrollablg actions and—C
S x (XU X%) x Sis atransition relation.

The game is turn-based and played by a controller againstaroament. To ini-
tialize the game, the environment chooses a state Sy and the controller takes the
first turn. A turn of the controller consists of choosing a ttottable actionos that is
enabled in the current state If no such action exists, the controllers loses. A turn of
the environment then consists of determining a sjatech that: -~ y and of choosing
an uncontrollable action and a state such thaty — z. If no enabled action exists
the environment loses. If the game continues forever, therolber wins.

Foro € X°U X%, letEnabled(c) ={z € S| 32’ € S: (z,0,2") €—} be the set
of states in which the actionis enabledand fors C S let Post,(s) = {2’ € S| 3z €
s : (z,0,2") €=} be the set oBuccessor statesf s by the actions. Furthermore,
givenaset’ C XU X", we define the notatioRost = (s) to mean J,, . 5; Post, (s).

The controller has an imperfect view of the game state spatt&t his/her choices
are based on imprecise observations of the states.

Definition 7 [Observation set] Anobservation sebf the state spacé& is a cou-
ple (Obs,y) wherey : Obs — 29 is such that for all: € S, there existobs € Obs
such thatr € ~y(obs).

An observatiorobs is compatiblewith a statex if = € v (obs). When the controller
observes the current stateof the game, he/she receivese observation compatible
with z. The observation is non-deterministically chosen by therenment.

Definition 8 [Imperfectinformation] A two-player gamg, Sp, X<, X*, —) equipped
with an observation s€Dbs, ) of its state space definegame of imperfect informa-
tion (S, Sy, X¢, X% —, Obs,~). The sizeof the game is the sum of the sizes of the
transition relation— and the seObs.

LetG = (S, Sy, X¢, X% — Obs, v) be a game of imperfect information. We say
thatG is agame of incomplete informatiahfor any obs;, obss € Obs, if obs; # obss
then~(obs;) N y(obsy) = ), that is the observations are disjoint, thus partitionimg t
state space. We say th@tis agame of perfect informatioii Obs = S and~ is the
identity function.

The drawback of games of incomplete information is that taey not suited for
a robust modelization of sensors. Indeed, real sensorsreecise and may return
different observations for a given state.



An observation based strategior a game of imperfect informatioz =
(S, Sp, X¢, X", —, Obs, ) is a function\ : Obs™ — X¢. The outcomeof A on G
is the setOutcomey (G) of couples(Z, obs) € S+ x Obs™ such that ) |z| = |obs|,
(%) xo € So, (@4d) forall 0 < i < |x|, z; € y(obs;), and ¢v) forall 1 < ¢ < |z|, there
existsu € X" such thatr; € Post, (Post, 55, | ({zi-1})) -

Definition 9 [Winning strategy] We say that an observation based styatefpr a
gameG of imperfect information isvinning if for every (z,obs) € Outcome,(G),
we havdast(T) € Enabled(A(obs)).

Let us call arhistorya couple(obsy, 1) € Obs™ x X°* such thaBz € S+ :
xo € Sp and for all0 < ¢ < k we havez; € v(obs;)) and for all < i < k we have
ri41 € Postsu(Post,, (2;)). Let us callknowledgeafter an history(obsy, ;1) the
function & : Obst x 2¢7 — 25 defined inductively as follows.

K@o,ﬁ,l) = "/(ObSQ) NSy L
K (obsy,Tk—1) = y(obsk) N Postyu (Post,, , (K (obsk_1,0k—2))) fork >0

Thus, theknowledgeafter an historyobs;, 7;_1) is the set of states the player can
be sure the game is in after this history.

Theimperfect information control probleffior a classC of games of imperfect in-
formation is defined as follows: given a gaifiec C, determine whether there exists a
winning observation based strategy terWe define similarly thencomplete informa-
tion control problemand theperfect information control problem

Safety gamedNVe can encode the classical safety games using our winnimgjtam.
To show that, we first need some definitions. Given a game ofiifapt informations
we say that a set of stafg is final if Vo € X< U X" : Post,(Sy) C S.

We say that a strategyis safeon a game of imperfect informatiad w.r.t. a final
set of bad stateS;, C S if for every (Z, obs) € Outcome, (G) we havelast(Z) ¢ Sj.

Theimperfectinformation safety control probldor a clasg of games of imperfect
information is defined as follows: given a two-player gate= C and a final set of
statesS; of GG, determine whether there exists an observation basedgyratvhich is
safe w.r.tSy.

Theorem 10 The imperfect information safety control problem can beurssdi to the
imperfect information control problem.

3.2 Using the Lattice of Antichains

We show how the lattice of antichains that we have introdulc&gction 2 can be used
to solve games of imperfect information by iterating a poedsor operator.

Controllable predecessor§org € L, define the set ofontrollable predecessord ¢
as follows:

CPre(q) = [{s €S| 3o € X Vobs € Obs-3s' € ¢:
s C Enabled(o) A Post s (Post,(s)) N~ (obs) C s'}]



Let us consider an antichain= {s, s/, ... }. A sets belongs taCPre(q) iff (i) there
is a controllable actiow that is enabled in each state gf (:¢) when the controller
playso, any observation compatible with the next state reachetibgame (after the
environment has played) suffices to determine in which/sef ¢ that next state lie§
and (i) s is maximal .

Lemma 11 The operatoCPre : L. — L is monotone for the partial ordering.

Remark The controllable predecessor operator is a®motone w.r.t. the set of obser-
vationsin the following sense: given a two-player garfie let CPre; (resp.CPres)
be the operator defined on the set of observati@iss;, 1) (resp.(Obss,72)). If
{72(obs) | obs € Obsy} C {~1(obs) | obs € Obs;}, then for anyg € L we have
CPre;(gq) C CPres(q). That corresponds to the informal statement that it is edsie
control a system with more precise observations.

Theorem 12 LetG = (S, Sy, X¢, X%, —, Obs, v) be a game of imperfect information.
There exists an observation based strategy winningdginand only if

{So N ~y(obs) | obs € Obs} T | |{q | ¢ = CPre(q)}. (1)

Before proving this theorem, we give some intuition. We derwy Win the set
L I{qg | ¢ = CPre(q)} which is the greatest fixed point @Pre. Condition (1) states
that any observation of the initial statg suffices to determine in which setof Win
the game has been started. Sitga is a fixed point of the controllable predecessor
operator, we know that in each sebf Win we have a controllable action that can be
played by the controller in every statec s such that ) the state: reached after the
move of the environment lies in one of the setof Win whatever the environment
does and, such that] the sets’ can be determined using any observation compatible
with z. Following this, there exists a winning strategy if Conaliti(1) holds. The other
direction of the theorem is a direct consequence of Tar3kisorem.

Proof of Theorem 12.

First, we give an effective construction of a winning stggtdor GG, in the form
of a finite automaton. Fog € L ando € X¢, let ¢(q,0) = [{s € S | s C
Enabled(c) andVobs € Obs,3s’ € ¢ : Postxu(Post,(s)) N ~y(obs) C s'}] be the

set of controllable predecessorsgdbr the actiorno. From the greatest fixed poitin
of CPre, we define the finite state automatdn= (Q, qo, £, §) where

— @ =WinU {qo} wheregy ¢ Win,

— qo is the initial state,

— L:Q\{q} — Xcis alabeling of the states. For eackk Win, we chooser € X©
such thats € ¢(Win, o) and we fixL(s) = o (such as exists sincéVin is a fixed
point of CPre).

— 6 :Q x Obs — @ is a transition function.

! The quantification ovesbs is universal since for observations that are incompatibith the
new state, the condition holds trivially.



e For eachobs € Obs, chooses € Win such thatSy N y(obs) C s and fix
0(qo, obs) = s;
e For eachs € Win and obs € Obs, chooses’ € Win such that
Post s« (Post, (s)) Ny(obs) C s’ wheres = L(s) and fixd(s, obs) = 5.
Such sets, s’ exist by condition (1).

In this automaton, states are labelled with actions anditians are labelled with
observations. Intuitively, a stateof A corresponds to the minimal knowledge that is
sufficient to control the system and the lalf&ls) is a winning move the controller
can play having this knowledge. The next stdtes determined by the observatiohs
according to the transition relation.

Letd : Q xObs™ — @ be an extension of the transition functi®on words defined
recursively by (s, obs) = d(s, obs) andé (s, obs.obs) = 3(4(s, obs), obs).

The strategy defined byl is A : Obs™ — X¢ such that\(obs) = L(s)
if 5(¢o,0bs) = s. If for someobs there is nos such thatd(go,obs) = s, then the
sequence of observatioolss is impossible. In this case, we can $€bbs) to any value.

Now we proceed with the proof of the theorem.

— If (1) holds. We show that the strategy defined by A is such that for any
(T,0bs) € Outcomey(G), we have {) last(Z) € 6(qo,obs) and §i) last(z) €
Enabled(\(obs)) (thus) is winning) . We show this by induction on the lengtriof
andobs.

1. |7| = 1. We havex = z, andobs = obsy with x¢ € Sy andzg € ~y(obsp).
Lets = 6(qgo,obsg) ando = L(s) = A(obsy). By construction ofd, we have
So Ny(obsy) C s ands € Win.

As z € s andWin is a fixed point ofCPre, we have ) last(z) € (o, obso)
and §i) zo € Enabled(A(obsp)).

2. |z| > 0. We haveZ = mg,z1,...,7; andobs = obsg,obsy, ...,obsy

with 2, € ~(obsg). Let sp—; = 5(q0,%k_1) ando = L(sx-1) =
A(obsy_1).
By the induction hypothesis, we havwg, 1 € si_1. For obs = obsy,
let s, = d(sk—1,0bs). By construction ofA, we haves, € Win and
Post s« (Post, (sx—1)) N v(obs) C si. Therefore, we have, € s; and by
definition of £, we haves, C Enabled(c’) whereo’ = L(s,) = A(obsy).
This yields ¢) last(Z) € 6(qo, obs) and i) x) € Enabled(A(obsy)).

— If X\ 'is an observation based strategy that is winningzomVe must show that (1)
holds. LetV, C 2% x Obs™ be the smallest set (w.r.t. to) such that:

e (So N ~y(obs),obs) € V) for everyobs € Obs, and

o if (s,0bs) € V) then (Posts.(Post, g5 (s)) N 7(obs), obs.obs) € V for
everyobs € Obs.

Let Wy = {s | (s,obs) € Vi }. Let us show thatV, C CPre(W,). By Lemma 1,
it suffices to show thatV, CCPre(Wy)[. Let (s,o0bs) € V) with obs = obsy,
obsy, ..., obs; and let us show that € CPre(W)).

By definition of V), there exists, s1, ..., s, such that sy = Sy N ~(obsp),
s = s, and for eachl < ¢ < ki s; = Postsu(Posty,(s;—1)) N y(obs;) with
o; = M obsgobs; ...obs;_1). For any sequence of stateés = zg,z1, ..., Zk



Algorithm 1: Algorithm for CPre.

Data : A game of imperfect informatioty = (S, So, X, X%, —, Obs, v) and a set
q€ L.

Result :The setZ = CPre(q).

begin

Z—0;

Wait «— {S};

while Wait # 0 do

Pick s € Wait of maximal cardinality ;

Wait «— Wait\{s} ;

if for somes € X° we have :

(1) s C Enabled(o) and

(2) for all obs € Obs, there existss’ € ¢ such thatPostsu (Post,(s)) N

~(obs) C s’

then

7 | Z— ZuU{s};

else
8 | Wait « Wait U {s’ | s’ € Children(s) AVs" € ZUWait: s Z s"};

9 return Z;
end

o A~ WN P

with 2; € s; and (Ty,obs;) € Outcomey(G), since X is winning onG, we

have z;, € Enabled(\(obs)) and thuss C Enabled()\(obs)). Also we have
Post g (Post, g5 (s)) Ny (obs) € W) for everyobs € Obs by construction o¥.

This entails that € JCPre(Wy)[, showing that?’y, C CPre(W)), that isCPre is

extensive atV, and by the Tarski’s fixed point TheoreWi, C Win. The conclu-
sion follows since{ .Sy N y(obs) | obs € Obs} C Wj.

4 Games with Finite State Space

In this section we show that computing the greatest fixedtpdi Pre for finite state
games can be done in EXPTIME. We also compare our algorittsachan the lattice
of antichains with the classical technique of [Rei84].

4.1 Fixed Point Algorithm

To compute the greatest fixed point@?re, we iterateCPre from S using Algorithm 1.
This algorithm constructs systematically subsetS ahd checks at line 6 whether they
belong toCPre(q). This is done by treating all subsets of sizkefore the subsets of
sizei — 1, so we avoid to treat the subsets of the already includedessibad the result
is in reduced form. Therefore, Algorithm 1 uses the follogvoperatorChildren(s) =
{s\{z} | x € s} which returns the subsets obf cardinality|s| — 1.



Lemma 13 Algorithm 1 compute€Pre in EXPTIME in the size of the game.

Lemma 14 An ascending (or descending) chain ¥L,C,| |,[],L,T) has at
most2™ + 1 elements where = |S].

Theorem 15 The imperfect information control problem is EXPTIME-cdetg.

Proof. We first prove the upper bound. From Lemma 14 and s{ifee is monotone,
we reach the greatest fixed poMitin after at mostO(2™) iterations ofCPre. From
Lemma 13 computin@Pre can be done in EXPTIME. The conclusion follows. For the
lower bound, since we solve a more general problem than ReiBf], we have the
EXPTIME-hardness. |

4.2 Example

Consider the two-player game&s; on Fig. 1 with state spaceS =
{1,1/,2,2/,3,3,Bad}, initial stateSy; = {2, 3}, actionsX* = {a,b} andX* = {u}.
The observation set i®bs = {obs, obsy} with y(obs;) = {1,1/,2,2’,Bad} and
~v(obse) = {1,1',3,3'}.

For the controller, the goal is to avoid stddad in which there is no controllable
action. So the controller must play arin statel and3 and ab in state2. However the
controller cannot distinguishfrom 2 using only the current observation. Thus, to dis-
criminate those states, the controller has to rely on its orgrof the past observations.

We show below the iterations of the fixed point algorithm amel tonstruction of
the strategy. The fixed point computation starts ffom- {S}. Each set is paired with
an action that can be played in all the states of that set:

= CPre({S}) = {{1,2,3}.}
CPre(51 = {{Q}ba{]-vg}a}
(

)
= CPre(S2) = {{1}a,{2}s,{3}a}
54 = CPre(S3) =53

SinceS; = S3, we haveWin = S3 = {{1}, {2}, {3}}. The existence of a winning
strategy is established by condition (1) of Theorem 12 sinesetsS;N+y(obs; ) = {2}
andSp N y(obsy) = {3} are dominated iWin.

From the fixed point, using the construction given in the paforheorem 12, we
construct the automaton of Fig. 2 which encodes a winniragesyly. Indeed, when the
game starts the control is either in statéthe given observation isbs; or in state3 if
the given observation isbs,. In the first case, the controller playsand in the second
case, it plays:.. Then the game lies in stafe According to the strategy automaton,
the controller plays an and receives a new observation that allows it to determine if
the game lies now in state(obs;) or in state3 (obs;). From there, the controller can
clearly iterate this strategy.



obs;

Fig. 1. A two-player gameZ, with observation sefobs;, obsz}.

4.3 Comparison with the classical technique of [Rei84]

In [Rei84] the author gives an algorithm to transform a gafeamplete information
G into a game&>’ of perfect information on the histories 6f.

The idea can be expressed as follows : given a game of incéeripfermationG =
(S, So, X¢, X% —1,Obs,~) define a two-player gam@”’ = (S’, S, X¢,{e}, —2) as
follows: S’ is the set of knowledges (obsy, 71 1) such thatobsy, 7_1) is an history
of G. S is the set of knowledgeSK (obsy)|y(obsg) N So # B}. Finally the transition
relation —, is defined as followsK (obsy, 7r_1) —5 K(obsyy1,5%) ands o s
for all s € S’. To obtain the final game of perfect informatié#i, equipG” with the
set of observatioiS’, v7) wherey; is the identity function. Solving the resulting game

Fig. 2. A finite state automatorl defining a winning strategy fa& .



of perfect informatiorG’ requires linear time in the size 6f but there exist games of
incomplete informatiorG requiring the construction of a game of perfect information
of size exponentially larger than the size(®f

As our algorithm does not require this determinizatiors asy to find families of
games where our method is exponentially faster than Rdgtrghm. This is formal-
ized in the next theorem.

Theorem 16 There exist finite state games of incomplete informationvfuch the al-
gorithm of [Rei84] requires an exponential time where ougaithm needs only poly-
nomial time.

5 Control with imperfect information of rectangular automa ta

In this section, we introduce the notion of infinite gameshwiihite stable quotient.
We use this notion to show that téscrete control problem for games of imperfect in-
formation defined by rectangular automasadecidable. This result extends the results
in [HK99].

5.1 Games with Finite R-stable quotient

Here we drop the assumption tiais finite and we consider the case where there exists
a finite quotient ofS over which the game istable We obtain a general decidability
result for games of imperfect information with finite stableotients.

Let R = {ry,72,...,r;} be a finite partition ofS. A sets C S is R-definable
if s =J,cz 7 forsomeZ C R. An antichaing € L is R-definable if for every € g,
s is R-definable.

Definition 17 [R-stable] A game of imperfect informatigis, So, ¢, 2%, —, Obs, 7)
is R-stableif for everyo € X' the following conditions hold:

(i) Enabled(o) is R-definable;
(i7) for everyr € R, Postyu(Post,(r)) is R-definable;
(i4i) foranyr,r’ € R, if for somez € r andu € X", Post,, (Post, )({z}) N7’ # 0 then
foranyz € r, there exists, € X* such thaPost s« (Post, ) ({z}) N1’ # 0;
(iv) furthermore, for evergbs € Obs, y(obs) is R-definable.

The next lemma states properties/ditable games of imperfect information. They
are useful for the proof of the next theorem.

Lemma 18 LetG = (S, Sy, X¢, X%, —, Obs, v) be a R-stable game of imperfect in-
formation. Lets, s’,s” C S andr € R such that(i) s’ and s” are R-definable and
(i) s N r # . If there existss € X° such that(ii¢) s C Enabled(o) and (iv)
Postsu (Post,(s)) N's’ C s’ then(v) » C Enabled(c) and (vi) Postxw (Post, (s U
r)Ns Cs”.

Theorem 19 Let G = (S, Sy, X¢, X%, —,Obs,v) be a R-stable game of imperfect
information. The greatest fixed point GPre is a R-definable antichain and is com-
putable.



Proof. We show that for anyR-definable antichaig € L, the antichainCPre(q) is
also R-definable. Lets € CPre(q). For anyr € R such thats N r # ), we have by
Lemma 18 that U r € CPre(q). Sinces C s U, we must have = s U r. This shows
that s is R-definable. The number aR-definable antichains is finite, and so, using
Tarski's theorem, we can compute the greatest fixed poiPe¢ in a finite number of
iterations. |

5.2 Rectangular automata

We first recall the definition of rectangular automata and wéné their associated
game semantics. We recall a result of [HK99] that estabtishe existence of a finite
bisimulation quotient for this game semantics.

Let X = {z1,...,z,} be a set of real-valued variables.réctangular inequality
over X is a formula of the formx; ~ ¢, wherec is an integer constant, andis one of
the following: <, <, >, >. A rectangular predicat®ver X is a conjunction of rectan-
gular inequalities. The set of all rectangular predicates & is denoteRect(X ). The
rectangular predicat¢ defines the set of vectofg]= {y € R"|¢[X := y] is true}.
For1l < i < n, let [¢]; be the projection on variable; of the set[¢]. A set of the
form [¢], whereg is a rectangular predicate, is calleceatangle Given a nonnegative
integerm € N, the rectangular predicate and the rectangléy] are m-boundedif
|c| < m for every conjunct:; ~ c of ¢. Let us denot®ect,, (X) the set ofn-bounded
rectangular predicate oH.

Definition 20 [Rectangular automaton] Aectangular automatonH is a tuple
(Loc, Lab, Edg, X, Init, Inv, Flow, Jump) where:

Loc = {¢,..., ¢} is afinite set ofocations

Lab is a finite set ofabels

Edg C Loc x Lab x Loc is afinite set okdges

X ={z1,...,z,} is afinite set olvariables

— Init : Loc — Rect(X) gives thenitial condition Init(¢) of location¢. The automa-
ton can start irf with an initial valuatiorw lying in [Init(¢)];

— Inv : Loc — Rect(X) gives theinvariant conditioninv(¢) of location?. The au-
tomaton can stay ifias long as the values of its variables liglinv(¢)];

— Flow : Loc — Rect(X) governs the evolution of the variables in each location.

— Jump maps each edge € Edg to a predicate)Jump(e) of the form¢ A ¢ A

NigUpdate(e) (T; = i), Whereg € Rect(X) and¢’ € Rect(X') andUpdate(e) C

{1,...,n}. The variables inX’ refer to the updated values of the variables after the

edge has been traversed. Each variabhith : € Update(e) is updated nondeter-

ministically to an arbitrary new value in the interat];.

A rectangular automaton is:-bounded if all its rectangular constraints are
bounded.



Definition 21 [Nondecreasing and bounded variables] Hebe a rectangular automa-
ton, and let € {1,...,n}. The variabler; of H is nondecreasing for every control
mode{ € Loc, the invariant interva[lnv(¢)]; and the flow intervalFlow(¢)]; are
subsets of the nonnegative reals. The variablis boundedf for every control mode
{ € Loc, the invariant interva]lnv(¢)]; is a bounded set. The automatirhasnonde-
creasing(resp.bounded nondecreasing or boundgstariablesif all n variables ofH
are nondecreasing (resp. bounded; either nondecreasimgioded).

In the sequel, all the rectangular automata that we conameassumed to be with
nondecreasing or bounded variables.
We now associate a game semantics to each rectangular datoma

Definition 22 [Discrete game semantics of rectangular automata] The gamantics
of a rectangular automatadid = (Loc, Lab, Edg, X, Init, Inv, Flow, Jump) is the game
[H]= (S, Sy, X, X% —) whereS = Loc x R" is thestate spacdwith n = | X]),
So = {(¢,v) € S| v €[lnit(¢)]} is theinitial space X¢ = Lab, X* = {1} and—
contains all the tuple§¢, v), o, (¢/,v")) such that:
— either there exists = (¢, 0, ¢') € Edg such tha{v, v') € [Jump(e)],
—or{ = ({"ando = 1 and there exists a continuously differentiable functjon
[0,1] —[Inv(¢)] such thatf(0) = v, f(1) = " and for allt € (0,1): f(t) €
[Flow(£)].

Games constructed from rectangular automata are playedllass. The game
is started in a locatio with a valuationv for the continuous variables such that
v €[Init(¢)]. At each round, the controller decides to take one of the ledadxdges
if one exists. Then the environment updates the continuatiables by letting time
elapse for 1 time unit as specified by the (nondeterminiétie) predicates. A new
round is started from there. As for the games that we haveideresl previously, the
goal of the controller is to avoid to reach states where hes ¢ have an enabled
transition to propose.

The next definition recalls the notion of bisimulation.

Definition 23 [Bisimulation] A simulationon the games = (S, Sy, X, X%, —) is a
binary relation~ on the state sef such thats; ~ s, implies thatve € X< U X%, if
s1 2 s} then there exists), such thats, 7 s, ands} ~ s5. Such a relation is called
abisimulationif it is symmetric.

We consider the following equivalence relation betweertestaf rectangular au-
tomata.

Definition 24 Given the game semanti§&/|= (S, Sy, Lab, {1}, —) of am-bounded
rectangular automataH, define the equivalence relaties),, on S by (¢, v)=,, (¢',v')

iff £=¢"and foralll <i < neither|v;] = |v.| and[v;] = [v}] or bothv; andv; are
greater thamn. Let us callR~.,, the set of equivalence classesaf, on S.

The next lemma states that the number of equivalence cléss#ss relation is
finite for any rectangular automata.

Lemma 25 [HK99] Let H be am-bounded rectangular automaton. The equivalence
relation =, is the largest bisimulation of the game semanfi&g.



5.3 Control of Rectangular Automata with imperfect information

We are now in position to extend the result of [HK99] to theecatimperfect informa-
tion.

GivenH = (Loc, Lab, Edg, X, Init, Inv, Flow, Jump), am-bounded rectangular au-
tomaton, we say that the observation &@bs, v) is m-bounded if for eaclbs € Obs,
~(obs) is definable as a finite union of sets of the fofiii,v) | v € g} whereg is
m-bounded rectangle.

Theorem 26 For any m-bounded rectangular automatoH with game semantics
[H]= (S, Sy, X, X", —), for anym-bounded observation sébbs, v), the game of
imperfect informatior{S, Sy, X<, X%, —, Obs, ) is R~ -stable.

As corollary of Theorem 19 and Theorem 26, we have that:

Corollary 1. The discrete control problem for games of imperfect infdiaredefined
by m bounded rectangular automata ang-bounded observation sets is decidable (in
2EXPTIME).

So far, we do not have a hardness result but we conjecturghbgbroblem is
2EXPTIME-complete. Now, let us illustrate the discrete eohproblem for games
of imperfect information defined by rectangular automataomexample.

T > 260

Slow
i€ [-10,-9]
2 € [250, 300]

=300

Fast
z € [—30, —25]
x € [210, 300]

Fig. 3. A rectangular automaton modeling a cooling system.



Fig. 4. A finite state automaton defining a winning strategy for theliog system.

ExampleWe have implemented our fixed point algorithm usingT:cH and its script
language [HHWT95]. We illustrate the use of the algorithmamimple example. Fig. 3
shows a rectangular automaton with four locations and ongragous variable:.

In this example, the game models a cooling system that deritie temperature
xz. When requested to start, the system begins to cool dowrnreTdre two modes of
cooling, either fast or slow, among which the environmemtades. The controller can
only observe the system through two observatithaith v(H) = {(¢,z) | x > 280}
andL with v(L) = {(¢,z) | « < 285}. Thus, only the continuous variahiecan be
observed imperfectly, not the modes. Depending on the modever, the timing and
action to stop the system are different. In the slow modeg¢tirgroller has to issue an
actiona when the temperature is bel®80. In the fast mode, the controller has to issue
an actionb when the temperature is bel@¥0.

The controller must use its memory of the past observatiomadke the correct
action in time. If the first two observations dfgH then the controller knows that the
mode isSlow. If the first two observations atd, L then the controller knows that the
mode isFast.

The greatest fixed point, given below, allows the computatibthe deterministic
strategy depicted in Fig. 4. The whole process has been ateonm Hr TECH. The
correspondence between state numbers in the figure and sfdte fixed point is the
following:

— State0 = (Stop, z = 0), (Slow, 295 < x < 300)

— Statel = (Slow, 270 < z < 300)

— (Not depicted) Staté = (Slow, 295 < a < 300), (Fast, 290 < = < 300)
— State3 = (Slow, 260 < = < 289), (Slow, 295 < x < 300)

— Stated = (Slow, 295 < = < 300), (Fast, 260 < x < 295)

— Stateb = (Start,x = 300)

— State6 = (Slow, 250 < = < 280)

— State7 = (Fast, 210 < z < 270)

As before, the strategy associates an action to each seé diktd point and the
observations give the next state of the strategy.
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