
A Lattice Theory for Solving Games of
Imperfect Information ?

Martin De Wulf, Laurent Doyen??, and Jean-François Raskin

Département d’Informatique
Université Libre de Bruxelles

Abstract. In this paper, we propose a fixed point theory to solve games ofimper-
fect information. The fixed point theory is defined on the lattice of antichains of
sets of states. Contrary to the classical solution proposedby Reif [Rei84], our new
solution does not involve determinization. As a consequence, it is readily applica-
ble to classes of systems that do not admit determinization.Notable examples of
such systems are timed and hybrid automata. As an application, we show that the
discrete control problem for games of imperfect information defined by rectan-
gular automata is decidable. This result extends a result byHenzinger and Kopke
in [HK99].

1 Introduction

Timed and hybrid systems are dynamical systems with both discrete and continuous
components. A paradigmatic example of a hybrid system is a digital control program
for an analog plant environment, like a furnace or an airplane: the controller state moves
discretely between control modes, and in each control mode,the plant state evolves
continuously according to physical laws. A natural model for hybrid systems is the
hybrid automaton, which represents discrete components using finite-state machines
and continuous components using real-numbered variables whose evolution is governed
by differential equations or differential inclusions [ACH+95].

The distinction between continuous evolutions of the plantstate (which is given by
the real-numbered variables of a hybrid automaton) and discrete switches of the con-
troller state (which is given by the location, or control mode, of the hybrid automaton)
permits a natural formulation of thesafety control problem: given an unsafe setU of
plant states, is there a strategy to switch the controller state in real time so that the plant
can be prevented from enteringU? In other words, the hybrid automaton specifies a set
of possible control modes, together with the plant behaviorresulting from each mode,
and the control problem asks for deriving aswitching strategybetween control modes
that keeps the plant out of trouble.

In the literature, there are algorithms or semi-algorithms(termination is not al-
ways guaranteed) to derive such switching strategy. Those semi-algorithms usually
comes in the form of symbolic fixed point computations that manipulate sets of

? Supported by the FRFC project “Centre Fédéré en Vérification” funded by the Belgian Na-
tional Science Fundation (FNRS) under grant nr 2.4530.02

?? Research fellow supported by the Belgian National Science Foundation (FNRS).

states using a well-suited monotonic function like the controllable predecessor oper-
ator [AHK02,MPS95]. Those algorithms make a strong hypothesis: they consider that
the controller that executes the switching strategy has aperfect informationabout the
state of the controlled system. Unfortunately, this is usually an unreasonable hypothe-
sis. Indeed, when the switching strategy has to be implemented by a real hardware, the
controller typically acquires information about the stateof the system by reading values
on sensors. Those sensors have finite precision, and so the information about the state
in which the system lies isimperfect. Let us illustrate this. Consider a controller that
monitors the temperature of a tank, and has to maintain the temperature between given
bounds by switching on and off a gas burner. The temperature of the tank is the state of
the continuous system to control. Assume that the temperature is sensed through a ther-
mometer that returns an integer number and ensures a deviation bounded by one degree
Celsius. So, when the sensor returns the temperaturec, the controller only knows that
the temperature lies in the interval(c−1, c+1) degrees. We say that the sensor reading
is anobservationof the system. This observation gives an imperfect information about
the state of the system.

Now, if we fix a set of possible observations of the system to control, the control
problem that we want to solve is thesafety control problem with imperfect information:
“given an unsafe setU of plant states, a set of observations, is there an observation based
strategy to switch the controller state in real time so that the plant can be prevented from
enteringU?”. While it is well-known that safety games of perfect information can be
won usingmemoryless strategies, it is not the case for games of imperfect informa-
tion [Rei84]. In that paper, Reif studiesgames of incomplete informationwhich are a
subclass of safety games of imperfect information where theset of observations is a
partition of the state space. Notice that this is not the caseof our tank example since
when the temperature of the water isd, the thermometer may return eitherdde or bdc. To
win such games, memory is sometimes necessary: the controller has to remember (part
of) the history of observations that it has made so far. In thefinite state case, games of
incomplete information can be solved algorithmically. Reif proposes an algorithm that
first transforms the game of incomplete information into a game of perfect information
using a kind of determinization procedure.

In this paper, we propose an alternative method to solve games of imperfect (and in-
complete) information. Our method comes in the form of a fixedpoint (semi-)algorithm
that iterates a monotone operator on the lattice of antichains of sets of states. The great-
est fixed point of this operator contains exactly the information needed to determine the
states from which an observation based control strategy exists and to synthesize such a
strategy. We prove that our algorithm has an optimal complexity for finite state games
and we identify a class of infinite state games for which the greatest fixed point of the
operator is computable. Using this class of games and results from [HK99], we show
that the discrete-time control problem with imperfect information is decidable for the
class of rectangular automata. Strategies that win those games are robust as they can be
implemented using hardware that senses its environment with finite precision.

Our fixed point method has several advantages over the algorithmic method pro-
posed by Reif. First, as it does not require determinization, our (semi-)algorithm is read-
ily applicable to classes of systems for which determinization is not effective: timed and

hybrid automata are notable examples [AD94]. Second, we show that there are families
of games on which the Reif’s algorithm needs exponential time when our algorithm
only needs polynomial time. Third, as our method is based on alattice theory, abstract
interpretation methods can be used to derive in a systematicway approximation algo-
rithms [CC77].

Our paper is structured as follows. In Section 2, we recall the definition of the lattice
of antichains. In Section 3, we show how to use this lattice tosolve games of imperfect
information. In Section 4, we give a fixed point algorithm that is EXPTIME for finite
state games and we compare with the technique of Reif. Finally, in Section 5, we solve
games of imperfect information for rectangular automata. Due to lack of space, the
proofs of most of the theorems have been omitted and can be found in [DDR06]

2 The Lattice of Antichains of Sets of States

First we recall the notion of antichain. Anantichainon a partially ordered set〈X,≤〉
is a setX ′ ⊆ X such that for anyx1, x2 ∈ X ′ with x1 6= x2 we have neitherx1 ≤ x2

nor x2 ≤ x1, that isX ′ is a set of incomparable elements ofX . We define similarly a
chainto be a set of comparable elements ofX .

Let q, q′ ∈ 22S

and defineq v q′ if and only if ∀s ∈ q : ∃s′ ∈ q′ : s ⊆ s′.
This relation is a preorder but is not antisymmetric. Since we need a partial order, we
construct the setL ⊆ 22S

for whichv is antisymmetric onL. The setL is the set of
antichains on〈2S ,⊆〉.

We say that a sets ⊆ S is dominatedin q if and only if ∃s′ ∈ q : s ⊂ s′. The set of
dominated elements ofq is denotedDom(q). Thereduced formof q is dqe = q\Dom(q)
and dually theexpandedform of q is eqd= q ∪ Dom(q). The setdqe is an antichain of
〈2S ,⊆〉. Observe thatDom(dqe) = ∅, that is∀s, s′ ∈ dqe : if s1 ⊆ s2 thens1 = s2.
The relationv has the useful following properties:

Lemma 1 Let q, q′ ∈ 22S

. If q ⊆ q′ thenq v q′.

Lemma 2 ∀q, q′ ∈ 22S

, ∀q1, q2 ∈
{

q, dqe, eqd
}

, ∀q′1, q
′

2 ∈
{

q′, dq′e, eq′d
}

: q1 v q2

is equivalent toq′1 v q′2.

We can now define formallyL as the set{dqe | q ∈ 22S

}.

Lemma 3 The relationv⊆ L × L is a partial ordering and〈L,v〉 is a partially
ordered set.

Lemma 4 For q, q′ ∈ L, the greatest lower bound ofq andq′ is q
d

q′ = d{s∩s′ | s ∈
q ∧ s′ ∈ q′}e and the least upper bound ofq andq′ is q

⊔

q′ = d{s | s ∈ q ∨ s ∈ q′}e.

For Q ⊆ L, we have
d

Q = d{
⋂

q∈Q sq | sq ∈ q}e and
⊔

Q = d{s | ∃q ∈
Q : s ∈ q}e. The least element ofL is ⊥ =

d
L = ∅ and the greatest element ofL

is> =
⊔

L = {S}.

Lemma 5 〈L,v,
⊔

,
d

,⊥ ,>〉 is a complete lattice.

This lattice is thelattice of antichains of sets of states.

3 Games of Imperfect Information

3.1 Definitions

Notations Given a finite sequencea = a0, a1, . . . , an, we denote by|a| = n + 1 the
length ofa, by ak = a0, . . . , ak the sequence of the firstk + 1 elements ofa (anda−1

is the empty sequence) and bylast(a) = an the last element ofa.

Definition 6 [Two-player games] Atwo-player gameis a tuple〈S, S0, Σ
c, Σu,→〉

where S is a (non-empty) set of states,S0 ⊆ S is the set ofinitial states,Σc

(resp.Σu) is a finite alphabet ofcontrollable(resp.uncontrollable) actions, and→⊆
S × (Σc ∪ Σu) × S is a transition relation.

The game is turn-based and played by a controller against an environment. To ini-
tialize the game, the environment chooses a statex ∈ S0 and the controller takes the
first turn. A turn of the controller consists of choosing a controllable actionσ that is
enabled in the current statex. If no such action exists, the controllers loses. A turn of
the environment then consists of determining a statey such thatx

σ
−→ y and of choosing

an uncontrollable actionu and a statez such thaty
u
−→ z. If no enabled actionu exists

the environment loses. If the game continues forever, the controller wins.
Forσ ∈ Σc ∪ Σu, let Enabled(σ) = {x ∈ S | ∃x′ ∈ S : (x, σ, x′) ∈→} be the set

of states in which the actionσ is enabled, and fors ⊆ S let Postσ(s) = {x′ ∈ S | ∃x ∈
s : (x, σ, x′) ∈→} be the set ofsuccessor statesof s by the actionσ. Furthermore,
given a setΣ ⊆ Σc ∪ Σu, we define the notationPostΣ(s) to mean

⋃

σ∈Σ Postσ(s).
The controller has an imperfect view of the game state space in that his/her choices

are based on imprecise observations of the states.

Definition 7 [Observation set] Anobservation setof the state spaceS is a cou-
ple (Obs, γ) whereγ : Obs → 2S is such that for allx ∈ S, there existsobs ∈ Obs

such thatx ∈ γ(obs).

An observationobs is compatiblewith a statex if x ∈ γ(obs). When the controller
observes the current statex of the game, he/she receivesoneobservation compatible
with x. The observation is non-deterministically chosen by the environment.

Definition 8 [Imperfect information] A two-player game〈S, S0, Σ
c, Σu,→〉 equipped

with an observation set(Obs, γ) of its state space defines agame of imperfect informa-
tion 〈S, S0, Σ

c, Σu,→, Obs, γ〉. The sizeof the game is the sum of the sizes of the
transition relation→ and the setObs.

Let G = 〈S, S0, Σ
c, Σu,→, Obs, γ〉 be a game of imperfect information. We say

thatG is agame of incomplete informationif for any obs1, obs2 ∈ Obs, if obs1 6= obs2
thenγ(obs1) ∩ γ(obs2) = ∅, that is the observations are disjoint, thus partitioning the
state space. We say thatG is a game of perfect informationif Obs = S andγ is the
identity function.

The drawback of games of incomplete information is that theyare not suited for
a robust modelization of sensors. Indeed, real sensors are imprecise and may return
different observations for a given state.

An observation based strategyfor a game of imperfect informationG =
〈S, S0, Σ

c, Σu,→, Obs, γ〉 is a functionλ : Obs+ → Σc. The outcomeof λ on G
is the setOutcomeλ(G) of couples(x, obs) ∈ S+ × Obs+ such that (i) |x| = |obs|,
(ii) x0 ∈ S0, (iii) for all 0 ≤ i ≤ |x|, xi ∈ γ(obsi), and (iv) for all 1 ≤ i ≤ |x|, there
existsu ∈ Σu such thatxi ∈ Postu(Postλ(obsi−1)

({xi−1})) .

Definition 9 [Winning strategy] We say that an observation based strategy λ for a
gameG of imperfect information iswinning if for every (x, obs) ∈ Outcomeλ(G),
we havelast(x) ∈ Enabled(λ(obs)).

Let us call anhistorya couple(obsk, σk−1) ∈ Obs+ × Σc+ such that∃x ∈ S+ :
x0 ∈ S0 and for all0 ≤ i ≤ k we havexi ∈ γ(obsi)) and for all ≤ i < k we have
xi+1 ∈ PostΣu(Postσi

(xi)). Let us callknowledgeafter an history(obsk, σk−1) the
functionK : Obs+ × ΣC+

→ 2S defined inductively as follows.
{

K(obs0, σ−1) = γ(obs0) ∩ S0

K(obsk, σk−1) = γ(obsk) ∩ PostΣu(Postσk−1
(K(obsk−1, σk−2))) for k > 0

Thus, theknowledgeafter an history(obsk, σk−1) is the set of states the player can
be sure the game is in after this history.

The imperfect information control problemfor a classC of games of imperfect in-
formation is defined as follows: given a gameG ∈ C, determine whether there exists a
winning observation based strategy forG. We define similarly theincomplete informa-
tion control problemand theperfect information control problem.

Safety gamesWe can encode the classical safety games using our winning condition.
To show that, we first need some definitions. Given a game of imperfect informationG
we say that a set of stateSb is final if ∀σ ∈ Σc ∪ Σu : Postσ(Sb) ⊆ Sb.

We say that a strategyλ is safeon a game of imperfect informationG w.r.t. a final
set of bad statesSb ⊆ S if for every (x, obs) ∈ Outcomeλ(G) we havelast(x) /∈ Sb.

Theimperfect information safety control problemfor a classC of games of imperfect
information is defined as follows: given a two-player gameG ∈ C and a final set of
statesSb of G, determine whether there exists an observation based strategyλ which is
safe w.r.tSb.

Theorem 10 The imperfect information safety control problem can be reduced to the
imperfect information control problem.

3.2 Using the Lattice of Antichains

We show how the lattice of antichains that we have introducedin Section 2 can be used
to solve games of imperfect information by iterating a predecessor operator.

Controllable predecessorsFor q ∈ L, define the set ofcontrollable predecessorsof q
as follows:

CPre(q) = d{s ⊆ S | ∃σ ∈ Σc · ∀obs ∈ Obs · ∃s′ ∈ q :
s ⊆ Enabled(σ) ∧ PostΣu(Postσ(s)) ∩ γ(obs) ⊆ s′}e

Let us consider an antichainq = {s′0, s
′

1, . . . }. A sets belongs toCPre(q) iff (i) there
is a controllable actionσ that is enabled in each state ofs, (ii) when the controller
playsσ, any observation compatible with the next state reached by the game (after the
environment has played) suffices to determine in which sets′i of q that next state lies1,
and (iii) s is maximal .

Lemma 11 The operatorCPre : L → L is monotone for the partial orderingv.

Remark The controllable predecessor operator is alsomonotone w.r.t. the set of obser-
vationsin the following sense: given a two-player gameG, let CPre1 (resp.CPre2)
be the operator defined on the set of observations(Obs1, γ1) (resp.(Obs2, γ2)). If
{γ2(obs) | obs ∈ Obs2} v {γ1(obs) | obs ∈ Obs1}, then for anyq ∈ L we have
CPre1(q) v CPre2(q). That corresponds to the informal statement that it is easier to
control a system with more precise observations.

Theorem 12 LetG = 〈S, S0, Σ
c, Σu,→, Obs, γ〉 be a game of imperfect information.

There exists an observation based strategy winning onG if and only if

{S0 ∩ γ(obs) | obs ∈ Obs} v
⊔

{q | q = CPre(q)}. (1)

Before proving this theorem, we give some intuition. We denote by Win the set
⊔

{q | q = CPre(q)} which is the greatest fixed point ofCPre. Condition (1) states
that any observation of the initial statex0 suffices to determine in which sets of Win

the game has been started. SinceWin is a fixed point of the controllable predecessor
operator, we know that in each sets of Win we have a controllable action that can be
played by the controller in every statex ∈ s such that (i) the statez reached after the
move of the environment lies in one of the setss′ of Win whatever the environment
does and, such that (ii) the sets′ can be determined using any observation compatible
with z. Following this, there exists a winning strategy if Condition (1) holds. The other
direction of the theorem is a direct consequence of Tarski’sTheorem.

Proof of Theorem 12.
First, we give an effective construction of a winning strategy for G, in the form

of a finite automaton. Forq ∈ L and σ ∈ Σc, let φ(q, σ) = d{s ∈ S | s ⊆
Enabled(σ) and∀obs ∈ Obs, ∃s′ ∈ q : PostΣu(Postσ(s)) ∩ γ(obs) ⊆ s′}e be the
set of controllable predecessors ofq for the actionσ. From the greatest fixed pointWin

of CPre, we define the finite state automatonA = 〈Q, q0,L, δ〉 where

– Q = Win ∪ {q0} whereq0 /∈ Win,
– q0 is the initial state,
– L : Q\{q0} → Σc is a labeling of the states. For eachs ∈ Win, we chooseσ ∈ Σc

such thats ∈ φ(Win, σ) and we fixL(s) = σ (such aσ exists sinceWin is a fixed
point ofCPre).

– δ : Q × Obs → Q is a transition function.

1 The quantification overobs is universal since for observations that are incompatible with the
new state, the condition holds trivially.

• For eachobs ∈ Obs, chooses ∈ Win such thatS0 ∩ γ(obs) ⊆ s and fix
δ(q0, obs) = s;

• For each s ∈ Win and obs ∈ Obs, chooses′ ∈ Win such that
PostΣu(Postσ(s)) ∩ γ(obs) ⊆ s′ whereσ = L(s) and fixδ(s, obs) = s′.

Such setss, s′ exist by condition (1).

In this automaton, states are labelled with actions and transitions are labelled with
observations. Intuitively, a states of A corresponds to the minimal knowledge that is
sufficient to control the system and the labelL(s) is a winning move the controller
can play having this knowledge. The next states′ is determined by the observationobs

according to the transition relation.
Let δ̂ : Q×Obs+ → Q be an extension of the transition functionδ on words defined

recursively bŷδ(s, obs) = δ(s, obs) andδ̂(s, obs.obs) = δ(δ̂(s, obs), obs).
The strategy defined byA is λ : Obs+ → Σc such thatλ(obs) = L(s)

if δ̂(q0, obs) = s. If for someobs there is nos such thatδ̂(q0, obs) = s, then the
sequence of observationsobs is impossible. In this case, we can setλ(obs) to any value.

Now we proceed with the proof of the theorem.

– If (1) holds. We show that the strategyλ defined byA is such that for any
(x, obs) ∈ Outcomeλ(G), we have (i) last(x) ∈ δ̂(q0, obs) and (ii) last(x) ∈
Enabled(λ(obs)) (thusλ is winning) . We show this by induction on the length ofx
andobs.
1. |x| = 1. We havex = x0 andobs = obs0 with x0 ∈ S0 andx0 ∈ γ(obs0).

Let s = δ̂(q0, obs0) andσ = L(s) = λ(obs0). By construction ofA, we have
S0 ∩ γ(obs0) ⊆ s ands ∈ Win.
As x0 ∈ s andWin is a fixed point ofCPre, we have (i) last(x) ∈ δ̂(q0, obs0)
and (ii) x0 ∈ Enabled(λ(obs0)).

2. |x| > 0. We havex = x0, x1, . . . , xk and obs = obs0, obs1, . . . , obsk

with xk ∈ γ(obsk). Let sk−1 = δ̂(q0, obsk−1) and σ = L(sk−1) =
λ(obsk−1).
By the induction hypothesis, we havexk−1 ∈ sk−1. For obs = obsk,
let sk = δ(sk−1, obs). By construction ofA, we havesk ∈ Win and
PostΣu(Postσ(sk−1)) ∩ γ(obs) ⊆ sk. Therefore, we havexk ∈ sk and by
definition ofL, we havesk ⊆ Enabled(σ′) whereσ′ = L(sk) = λ(obsk).
This yields (i) last(x) ∈ δ̂(q0, obs) and (ii) xk ∈ Enabled(λ(obsk)).

– If λ is an observation based strategy that is winning onG. We must show that (1)
holds. LetVλ ⊆ 2S × Obs+ be the smallest set (w.r.t. to⊆) such that:
• (S0 ∩ γ(obs), obs) ∈ Vλ for everyobs ∈ Obs, and
• if (s, obs) ∈ Vλ then (PostΣu(Postλ(obs)(s)) ∩ γ(obs), obs.obs) ∈ Vλ for

everyobs ∈ Obs.
Let Wλ = {s | (s, obs) ∈ Vλ}. Let us show thatWλ v CPre(Wλ). By Lemma 1,
it suffices to show thatWλ ⊆eCPre(Wλ)d . Let (s, obs) ∈ Vλ with obs = obs0,
obs1, . . . , obsk and let us show thats ∈ CPre(Wλ).
By definition of Vλ, there exists0, s1, . . . , sk such that s0 = S0 ∩ γ(obs0),
sk = s, and for each1 ≤ i ≤ k: si = PostΣu(Postσi

(si−1)) ∩ γ(obsi) with
σi = λ(obs0obs1 . . . obsi−1). For any sequence of statesx = x0, x1, . . . , xk

Algorithm 1: Algorithm for CPre.
Data : A game of imperfect informationG = 〈S, S0, Σ

c, Σu,→, Obs, γ〉 and a set
q ∈ L.

Result : The setZ = CPre(q).
begin

1 Z ← ∅ ;
2 Wait← {S} ;
3 while Wait 6= ∅ do
4 Picks ∈Wait of maximal cardinality ;
5 Wait←Wait\{s} ;
6 if for someσ ∈ Σc we have :

(1) s ⊆ Enabled(σ) and
(2) for all obs ∈ Obs, there existss′ ∈ q such thatPostΣu(Postσ(s)) ∩
γ(obs) ⊆ s′

then
7 Z ← Z ∪ {s} ;

else
8 Wait←Wait ∪ {s′ | s′ ∈ Children(s) ∧ ∀s′′ ∈ Z ∪Wait : s′ 6⊆ s′′} ;

9 return Z;
end

with xi ∈ si and (xk, obsk) ∈ Outcomeλ(G), sinceλ is winning onG, we
have xk ∈ Enabled(λ(obs)) and thuss ⊆ Enabled(λ(obs)). Also we have
PostΣu(Postλ(obs)(s))∩ γ(obs) ∈ Wλ for everyobs ∈ Obs by construction ofVλ.
This entails thats ∈eCPre(Wλ)d , showing thatWλ v CPre(Wλ), that isCPre is
extensive atWλ and by the Tarski’s fixed point TheoremWλ v Win. The conclu-
sion follows since{S0 ∩ γ(obs) | obs ∈ Obs} ⊆ Wλ.

�

4 Games with Finite State Space

In this section we show that computing the greatest fixed point of CPre for finite state
games can be done in EXPTIME. We also compare our algorithm based on the lattice
of antichains with the classical technique of [Rei84].

4.1 Fixed Point Algorithm

To compute the greatest fixed point ofCPre, we iterateCPre fromS using Algorithm 1.
This algorithm constructs systematically subsets ofS and checks at line 6 whether they
belong toCPre(q). This is done by treating all subsets of sizei before the subsets of
sizei− 1, so we avoid to treat the subsets of the already included subsets and the result
is in reduced form. Therefore, Algorithm 1 uses the following operatorChildren(s) =
{s\{x} | x ∈ s} which returns the subsets ofs of cardinality|s| − 1.

Lemma 13 Algorithm 1 computesCPre in EXPTIME in the size of the game.

Lemma 14 An ascending (or descending) chain in〈L,v,
⊔

,
d

,⊥ ,>〉 has at
most2n + 1 elements wheren = |S|.

Theorem 15 The imperfect information control problem is EXPTIME-complete.

Proof. We first prove the upper bound. From Lemma 14 and sinceCPre is monotone,
we reach the greatest fixed pointWin after at mostO(2n) iterations ofCPre. From
Lemma 13 computingCPre can be done in EXPTIME. The conclusion follows. For the
lower bound, since we solve a more general problem than Reif [Rei84], we have the
EXPTIME-hardness. �

4.2 Example

Consider the two-player gameG1 on Fig. 1 with state spaceS =
{1, 1′, 2, 2′, 3, 3′, Bad}, initial stateS0 = {2, 3}, actionsΣc = {a, b} andΣu = {u}.
The observation set isObs = {obs1, obs2} with γ(obs1) = {1, 1′, 2, 2′, Bad} and
γ(obs2) = {1, 1′, 3, 3′}.

For the controller, the goal is to avoid stateBad in which there is no controllable
action. So the controller must play ana in state1 and3 and ab in state2. However the
controller cannot distinguish1 from 2 using only the current observation. Thus, to dis-
criminate those states, the controller has to rely on its memory of the past observations.

We show below the iterations of the fixed point algorithm and the construction of
the strategy. The fixed point computation starts from> = {S}. Each set is paired with
an action that can be played in all the states of that set:

S1 = CPre({S}) = {{1, 2, 3}a}

S2 = CPre(S1) = {{2}b, {1, 3}a}

S3 = CPre(S2) = {{1}a, {2}b, {3}a}

S4 = CPre(S3) = S3

SinceS4 = S3, we haveWin = S3 = {{1}, {2}, {3}}. The existence of a winning
strategy is established by condition (1) of Theorem 12 sincethe setsS0∩γ(obs1) = {2}
andS0 ∩ γ(obs2) = {3} are dominated inWin.

From the fixed point, using the construction given in the proof of Theorem 12, we
construct the automaton of Fig. 2 which encodes a winning strategy. Indeed, when the
game starts the control is either in state2 if the given observation isobs1 or in state3 if
the given observation isobs2. In the first case, the controller playsb and in the second
case, it playsa. Then the game lies in state1. According to the strategy automaton,
the controller plays ana and receives a new observation that allows it to determine if
the game lies now in state2 (obs1) or in state3 (obs2). From there, the controller can
clearly iterate this strategy.

1 1′

2

2′

3

3′

Bad
a

b

u

u

a

b

u

a

b

u

u

obs1

obs2

Fig. 1. A two-player gameG1 with observation set{obs1, obs2}.

4.3 Comparison with the classical technique of [Rei84]

In [Rei84] the author gives an algorithm to transform a game of incomplete information
G into a gameG′ of perfect information on the histories ofG.

The idea can be expressed as follows : given a game of incomplete informationG =
〈S, S0, Σ

c, Σu,→1, Obs, γ〉 define a two-player gameG′′ = 〈S′, S′

0, Σ
c, {ε},→2〉 as

follows:S′ is the set of knowledgesK(obsk, σk−1) such that(obsk, σk−1) is an history
of G. S′

0 is the set of knowledges{K(obs0)|γ(obs0) ∩ S0 6= ∅}. Finally the transition
relation→2 is defined as follows:K(obsk, σk−1)

σk−→2 K(obsk+1, σk) ands
ε
−→2 s

for all s ∈ S′. To obtain the final game of perfect informationG′, equipG′′ with the
set of observation(S′, γI) whereγI is the identity function. Solving the resulting game

q0

b

{2}

a

{1}

a

{3}

obs1 obs2

obs1

obs2

obs1

obs2

obs1

obs2

Fig. 2. A finite state automatonA defining a winning strategy forG1.

of perfect informationG′ requires linear time in the size ofS′ but there exist games of
incomplete informationG requiring the construction of a game of perfect information
of size exponentially larger than the size ofG.

As our algorithm does not require this determinization, it is easy to find families of
games where our method is exponentially faster than Reif’s algorithm. This is formal-
ized in the next theorem.

Theorem 16 There exist finite state games of incomplete information forwhich the al-
gorithm of [Rei84] requires an exponential time where our algorithm needs only poly-
nomial time.

5 Control with imperfect information of rectangular automa ta

In this section, we introduce the notion of infinite games with finite stable quotient.
We use this notion to show that thediscrete control problem for games of imperfect in-
formation defined by rectangular automatais decidable. This result extends the results
in [HK99].

5.1 Games with FiniteR-stable quotient

Here we drop the assumption thatS is finite and we consider the case where there exists
a finite quotient ofS over which the game isstable. We obtain a general decidability
result for games of imperfect information with finite stablequotients.

Let R = {r1, r2, . . . , rl} be a finite partition ofS. A set s ⊆ S is R-definable
if s =

⋃

r∈Z r for someZ ⊆ R. An antichainq ∈ L is R-definable if for everys ∈ q,
s is R-definable.

Definition 17 [R-stable] A game of imperfect information〈S, S0, Σ
c, Σu,→, Obs, γ〉

is R-stableif for everyσ ∈ Σc the following conditions hold:

(i) Enabled(σ) is R-definable;
(ii) for everyr ∈ R, PostΣu(Postσ(r)) is R-definable;

(iii) for anyr, r′ ∈ R, if for somex ∈ r andu ∈ Σu, Postu(Postσ)({x})∩ r′ 6= ∅ then
for anyx ∈ r, there existsu ∈ Σu such thatPostΣu(Postσ)({x}) ∩ r′ 6= ∅;

(iv) furthermore, for everyobs ∈ Obs, γ(obs) is R-definable.

The next lemma states properties ofR-stable games of imperfect information. They
are useful for the proof of the next theorem.

Lemma 18 Let G = 〈S, S0, Σ
c, Σu,→, Obs, γ〉 be aR-stable game of imperfect in-

formation. Lets, s′, s′′ ⊆ S and r ∈ R such that(i) s′ and s′′ are R-definable and
(ii) s ∩ r 6= ∅. If there existsσ ∈ Σc such that(iii) s ⊆ Enabled(σ) and (iv)
PostΣu(Postσ(s)) ∩ s′ ⊆ s′′ then(v) r ⊆ Enabled(σ) and (vi) PostΣu(Postσ(s ∪
r)) ∩ s′ ⊆ s′′.

Theorem 19 Let G = 〈S, S0, Σ
c, Σu,→, Obs, γ〉 be aR-stable game of imperfect

information. The greatest fixed point ofCPre is a R-definable antichain and is com-
putable.

Proof. We show that for anyR-definable antichainq ∈ L, the antichainCPre(q) is
alsoR-definable. Lets ∈ CPre(q). For anyr ∈ R such thats ∩ r 6= ∅, we have by
Lemma 18 thats ∪ r ∈ CPre(q). Sinces ⊆ s ∪ r, we must haves = s ∪ r. This shows
that s is R-definable. The number ofR-definable antichains is finite, and so, using
Tarski’s theorem, we can compute the greatest fixed point ofCPre in a finite number of
iterations. �

5.2 Rectangular automata

We first recall the definition of rectangular automata and we define their associated
game semantics. We recall a result of [HK99] that establishes the existence of a finite
bisimulation quotient for this game semantics.

Let X = {x1, . . . , xn} be a set of real-valued variables. Arectangular inequality
overX is a formula of the formxi ∼ c, wherec is an integer constant, and∼ is one of
the following:<,≤, >,≥. A rectangular predicateoverX is a conjunction of rectan-
gular inequalities. The set of all rectangular predicates overX is denotedRect(X). The
rectangular predicateφ defines the set of vectors[[φ]]= {y ∈ R

n|φ[X := y] is true}.
For 1 ≤ i ≤ n, let [[φ]]i be the projection on variablexi of the set[[φ]]. A set of the
form [[φ]], whereφ is a rectangular predicate, is called arectangle. Given a nonnegative
integerm ∈ N, the rectangular predicateφ and the rectangle[[φ]] arem-boundedif
|c| ≤ m for every conjunctxi ∼ c of φ. Let us denoteRectm(X) the set ofm-bounded
rectangular predicate onX .

Definition 20 [Rectangular automaton] Arectangular automatonH is a tuple
〈Loc, Lab, Edg, X, Init, Inv, Flow, Jump〉 where:

– Loc = {`1, . . . , `m} is a finite set oflocations;
– Lab is a finite set oflabels;
– Edg ⊆ Loc × Lab × Loc is a finite set ofedges;
– X = {x1, . . . , xn} is a finite set ofvariables;
– Init : Loc → Rect(X) gives theinitial condition Init(`) of location`. The automa-

ton can start iǹ with an initial valuationv lying in [[Init(`)]];
– Inv : Loc → Rect(X) gives theinvariant conditionInv(`) of location`. The au-

tomaton can stay iǹas long as the values of its variables lie in[[Inv(`)]];
– Flow : Loc → Rect(Ẋ) governs the evolution of the variables in each location.
– Jump maps each edgee ∈ Edg to a predicateJump(e) of the form φ ∧ φ′ ∧

∧

i/∈Update(e)(x
′

i = xi), whereφ ∈ Rect(X) andφ′ ∈ Rect(X ′) andUpdate(e) ⊆

{1, . . . , n}. The variables inX ′ refer to the updated values of the variables after the
edge has been traversed. Each variablexi with i ∈ Update(e) is updated nondeter-
ministically to an arbitrary new value in the interval[[φ′]]i.

A rectangular automaton ism-bounded if all its rectangular constraints arem-
bounded.

Definition 21 [Nondecreasing and bounded variables] LetH be a rectangular automa-
ton, and leti ∈ {1, . . . , n}. The variablexi of H is nondecreasingif for every control
mode` ∈ Loc, the invariant interval[[Inv(`)]]i and the flow interval[[Flow(`)]]i are
subsets of the nonnegative reals. The variablexi is boundedif for every control mode
` ∈ Loc, the invariant interval[[Inv(`)]]i is a bounded set. The automatonH hasnonde-
creasing(resp.bounded; nondecreasing or bounded) variablesif all n variables ofH
are nondecreasing (resp. bounded; either nondecreasing orbounded).

In the sequel, all the rectangular automata that we considerare assumed to be with
nondecreasing or bounded variables.

We now associate a game semantics to each rectangular automaton.

Definition 22 [Discrete game semantics of rectangular automata] The gamesemantics
of a rectangular automatonH = 〈Loc, Lab, Edg, X, Init, Inv, Flow, Jump〉 is the game
[[H]]= 〈S, S0, Σ

c, Σu,→〉 whereS = Loc × R
n is thestate space(with n = |X |),

S0 = {(`, v) ∈ S | v ∈ [[Init(`)]]} is the initial space, Σc = Lab, Σu = {1} and→
contains all the tuples((`, v), σ, (`′, v′)) such that:

– either there existse = (`, σ, `′) ∈ Edg such that(v, v′) ∈ [[Jump(e)]],
– or ` = `′ andσ = 1 and there exists a continuously differentiable functionf :

[0, 1] →[[Inv(`)]] such thatf(0) = v, f(1) = v′ and for all t ∈ (0, 1): ḟ(t) ∈
[[Flow(`)]].

Games constructed from rectangular automata are played as follows. The game
is started in a locatioǹ with a valuationv for the continuous variables such that
v ∈[[Init(`)]]. At each round, the controller decides to take one of the enabled edges
if one exists. Then the environment updates the continuous variables by letting time
elapse for 1 time unit as specified by the (nondeterministic)flow predicates. A new
round is started from there. As for the games that we have considered previously, the
goal of the controller is to avoid to reach states where he does not have an enabled
transition to propose.

The next definition recalls the notion of bisimulation.

Definition 23 [Bisimulation] A simulationon the gameG = 〈S, S0, Σ
c, Σu,→〉 is a

binary relation∼ on the state setS such thats1 ∼ s2 implies that∀σ ∈ Σc ∪ Σu, if
s1

σ
−→ s′1 then there existss′2 such thats2

σ
−→ s′2 ands′1 ∼ s′2. Such a relation is called

a bisimulationif it is symmetric.

We consider the following equivalence relation between states of rectangular au-
tomata.

Definition 24 Given the game semantics[[H]]= 〈S, S0, Lab, {1},→〉 of a m-bounded
rectangular automatonH , define the equivalence relation≈m onS by (`, v)≈m(`′, v′)
iff ` = `′ and for all1 ≤ i ≤ n eitherbvic = bv′ic anddvie = dv′ie or bothvi andv′i are
greater thanm. Let us callR≈m

the set of equivalence classes of≈m onS.

The next lemma states that the number of equivalence classesfor this relation is
finite for any rectangular automata.

Lemma 25 [HK99] Let H be am-bounded rectangular automaton. The equivalence
relation≈m is the largest bisimulation of the game semantics[[H]].

5.3 Control of Rectangular Automata with imperfect information

We are now in position to extend the result of [HK99] to the case of imperfect informa-
tion.

GivenH = 〈Loc, Lab, Edg, X, Init, Inv, Flow, Jump〉, am-bounded rectangular au-
tomaton, we say that the observation set(Obs, γ) is m-bounded if for eachobs ∈ Obs,
γ(obs) is definable as a finite union of sets of the form{(l, v) | v ∈ g} whereg is
m-bounded rectangle.

Theorem 26 For any m-bounded rectangular automatonH with game semantics
[[H]]= 〈S, S0, Σ

c, Σu,→〉, for anym-bounded observation set(Obs, γ), the game of
imperfect information〈S, S0, Σ

c, Σu,→, Obs, γ〉 is R≈m
-stable.

As corollary of Theorem 19 and Theorem 26, we have that:

Corollary 1. The discrete control problem for games of imperfect information defined
by m bounded rectangular automata andm-bounded observation sets is decidable (in
2EXPTIME).

So far, we do not have a hardness result but we conjecture thatthe problem is
2EXPTIME-complete. Now, let us illustrate the discrete control problem for games
of imperfect information defined by rectangular automata onan example.

Start

ẋ = 0

x = 300

x=300

Slow

ẋ ∈ [−10,−9]

x ∈ [250, 300]

Fast

ẋ ∈ [−30,−25]

x ∈ [210, 300]

Stop

ẋ = 0

a

a

⊥

x ≥ 260

⊥

x ≥ 260

a

x ≤ 280

b

x ≤ 270

⊥

Fig. 3. A rectangular automaton modeling a cooling system.

a

⊥

⊥

⊥

b

a

⊥

q0 0

1 3

4

5

6

7

H

H

L

H

L

L

L

L

H

L

H

L

H

Fig. 4. A finite state automaton defining a winning strategy for the cooling system.

ExampleWe have implemented our fixed point algorithm using HYTECH and its script
language [HHWT95]. We illustrate the use of the algorithm ona simple example. Fig. 3
shows a rectangular automaton with four locations and one continuous variablex.

In this example, the game models a cooling system that controls the temperature
x. When requested to start, the system begins to cool down. There are two modes of
cooling, either fast or slow, among which the environment chooses. The controller can
only observe the system through two observations:H with γ(H) = {(`, x) | x ≥ 280}
andL with γ(L) = {(`, x) | x ≤ 285}. Thus, only the continuous variablex can be
observed imperfectly, not the modes. Depending on the mode however, the timing and
action to stop the system are different. In the slow mode, thecontroller has to issue an
actiona when the temperature is below280. In the fast mode, the controller has to issue
an actionb when the temperature is below270.

The controller must use its memory of the past observations to make the correct
action in time. If the first two observations areH, H then the controller knows that the
mode isSlow. If the first two observations areH, L then the controller knows that the
mode isFast.

The greatest fixed point, given below, allows the computation of the deterministic
strategy depicted in Fig. 4. The whole process has been automated in HYTECH. The
correspondence between state numbers in the figure and states of the fixed point is the
following:

– State0 ≡ (Stop, x = 0), (Slow, 295 < x ≤ 300)
– State1 ≡ (Slow, 270 ≤ x ≤ 300)
– (Not depicted) State2 ≡ (Slow, 295 < x ≤ 300), (Fast, 290 ≤ x ≤ 300)
– State3 ≡ (Slow, 260 ≤ x ≤ 289), (Slow, 295 < x ≤ 300)
– State4 ≡ (Slow, 295 < x ≤ 300), (Fast, 260 ≤ x ≤ 295)
– State5 ≡ (Start, x = 300)
– State6 ≡ (Slow, 250 ≤ x ≤ 280)
– State7 ≡ (Fast, 210 ≤ x ≤ 270)

As before, the strategy associates an action to each set of the fixed point and the
observations give the next state of the strategy.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger,P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34, 1995.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic.Jour-
nal of the ACM, 49:672–713, 2002.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
POPL, pages 238–252, 1977.

[DDR06] M. De Wulf, L. Doyen, and J.-F. Raskin. A lattice theory for solving games of imper-
fect information (extended version). Technical Report 58,U.L.B. – Federated Center
in Verification, 2006. http://www.ulb.ac.be/di/ssd/cfv/publications.html.

[HHWT95] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HYTECH. In TACAS
95: Tools and Algorithms for the Construction and Analysis of Systems, Lecture
Notes in Computer Science 1019, pages 41–71. Springer-Verlag, 1995.

[HK99] T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid au-
tomata.Theoretical Computer Science, 221:369–392, 1999.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesisof discrete controllers for timed
systems. InSTACS’95, volume 900 ofLNCS, pages 229–242. Springer, 1995.

[Rei84] John H. Reif. The complexity of two-player games of incomplete information.Jour-
nal of Computer and System Sciences, 29(2):274–301, 1984.

