Skip to main content

Efficient Discovery of Structural Motifs from Protein Sequences with Combination of Flexible Intra- and Inter-block Gap Constraints

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3918))

Included in the following conference series:

Abstract

Discovering protein structural signatures directly from their primary information is a challenging task, because the residues associated with a functional motif are not necessarily clustered in one region of the sequence. This work proposes an algorithm that aims to discover conserved sequential blocks interleaved by large irregular gaps from a set of unaligned biological sequences. Different from the previous works that employ only one type of constraint on gap flexibility, we propose using combination of intra- and inter-block gap constraints to discover longer patterns with larger irregular gaps. The smaller flexible intra-block gap constraint is used to relax the restriction in local motif blocks but still keep them compact, and the larger flexible inter-block gap constraint is proposed to allow longer irregular gaps between compact motif blocks. Using two types of gap constraints for different purposes improves the efficiency of mining process while keeping high accuracy of mining results. The efficiency of the algorithm also helps to identify functional motifs that are conserved in only a small subset of the input sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanchette, M., Schwikowski, B., Tompa, M.: An exact algorithm to identify motifs in orthologous sequences from multiple species. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 8, pp. 37–45 (2000)

    Google Scholar 

  2. Blekas, K., Fotiadis, D.I., Likas, A.: Greedy mixture learning for multiple motif discovery in biological sequences. Bioinformatics 19, 607–617 (2003)

    Article  Google Scholar 

  3. Brazma, A., Jonassen, I., Eidhammer, I., Gilbert, D.: Approaches to the automatic discovery of patterns in biosequences. J. Comput. Biol. 5, 277–305 (1998)

    Article  Google Scholar 

  4. Eidhammer, I., Jonassen, I., Taylor, W.R.: Protein Bioinformatics: An Algorithmic Approach to Sequence and Structure Analysis. John Wiley & Sons, Chichester (2004)

    Google Scholar 

  5. Falquet, L., et al.: The PROSITE database, its status in 2002. Nucl. Acids Res. 30, 235–238 (2002)

    Article  Google Scholar 

  6. Jonassen, I.: Efficient discovery of conserved patterns using a pattern graph. Comput. Appl. Biosci. 13, 509–522 (1997)

    Google Scholar 

  7. Jonassen, I., Collins, J.F., Higgins, D.: Finding flexible patterns in unaligned protein sequences. Protein Science 4(8), 1587–1595 (1995)

    Article  Google Scholar 

  8. Liu, X., Brutlag, D.L., Liu, J.S.: BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac. Symp. Biocomput., 127–138 (2001)

    Google Scholar 

  9. Martin, P., et al.: Insights into the Structure, Solvation, and Mechanism of ArsC Arsenate Reductase, a Novel Arsenic Detoxification Enzyme. Structure 9(2001), 1071–1081 (2001)

    Article  Google Scholar 

  10. Martinez-Yamout, M., Legge, G.B., Zhang, O., Wright, P.E., Dyson, H.J.: Solution structure of the cysteine-rich domain of the Escherichia coli chaperone protein DnaJ. J. Mol. Biol. 300(4), 805–818 (2000)

    Article  Google Scholar 

  11. Narasimhan, G., Bu, C., Gao, Y., Wang, X., Xu, N., Mathee, K.: Mining protein sequences for motifs. J. Comput. Biol. 9, 707–720 (2002)

    Article  Google Scholar 

  12. Neuwald, A.F., Green, P.: Detecting patterns in protein sequences. J. Mol. Biol. 239, 698–712 (1994)

    Article  Google Scholar 

  13. Ogiwara, A., Uchiyama, I., Yasuhiko, S., Kanehisa, M.: Construction of a dictionary of sequence motifs that characterize groups of related proteins. Protein Eng. 5, 479–488 (1992)

    Article  Google Scholar 

  14. Pei, J., Han, J.: Constrained frequent pattern mining: a pattern-growth view. ACM SIGKDD Explorations (Special Issue on Constraints in Data Mining) 4(1), 31–39 (2002)

    Article  Google Scholar 

  15. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C.: Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach. IEEE Transactions on Knowledge and Data Engineering 16, 1424–1440 (2004)

    Article  Google Scholar 

  16. Pevzner, P.A., Sze, S.H.: Combinatorial approaches to finding subtle signals in DNA sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8, 269–278 (2000)

    Google Scholar 

  17. Rigoutsos, I., Floratos, A.: Combinatorial pattern discovery in biological sequences: The Teiresias algorithm. Bioinformatics 14, 55–67 (1998)

    Article  Google Scholar 

  18. Saqi, M.A.S., Sternberg, M.J.E.: Identification of sequence motifs from a set of proteins with related function. Protein Eng. 7, 165–171 (1994)

    Article  Google Scholar 

  19. Shi, Y.Y., Tang, W., Hao, S.F., Wang, C.C.: Constributions of cysteine residues in Zn2 to zinc figers and thioldisulfide oxidoreductase activities of chaperone DnaJ. Biochemistry 44, 1683–1689 (2005)

    Article  Google Scholar 

  20. Silvestri, C., Orlando, S., Perego, R.: A new algorithm for gap constrained sequence mining. In: Proceedings of the 2004, ACM Symposium on Applied Computing, special track on Data Mining, pp. 540–547 (2004)

    Google Scholar 

  21. Su, Q.J., Lu, L., Saxonov, S., Brutlag, D.L.: eBLOCKs: enumerating conserved protein blocks to achieve maximal sensitivity and specificity. Nucl. Acids Res. 33, D178–D182 (2005)

    Google Scholar 

  22. Wang, J.T.L., et al.: Discovering active motifs in sets of related protein sequences and using them for classification. Nucl. Acids Res. 22, 2769–2775 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hsu, CM., Chen, CY., Hsu, CC., Liu, BJ. (2006). Efficient Discovery of Structural Motifs from Protein Sequences with Combination of Flexible Intra- and Inter-block Gap Constraints. In: Ng, WK., Kitsuregawa, M., Li, J., Chang, K. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2006. Lecture Notes in Computer Science(), vol 3918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731139_62

Download citation

  • DOI: https://doi.org/10.1007/11731139_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33206-0

  • Online ISBN: 978-3-540-33207-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics