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Abstract

We introduce a new methodology for the determination of amino-

acid substitution matrices for use in the alignment of proteins. The new

methodology is based on a pre-existing set cover on the set of residues

and on the undirected graph that describes residue exchangeability given

the set cover. For fixed functional forms indicating how to obtain edge

weights from the set cover and, after that, substitution-matrix elements

from weighted distances on the graph, the resulting substitution matrix

can be checked for performance against some known set of reference align-

ments and for given gap costs. Finding the appropriate functional forms

and gap costs can then be formulated as an optimization problem that

seeks to maximize the performance of the substitution matrix on the refer-

ence alignment set. We give computational results on the BAliBASE suite

using a genetic algorithm for optimization. Our results indicate that it is

possible to obtain substitution matrices whose performance is either com-

parable to or surpasses that of several others, depending on the particular

scenario under consideration.

Keywords: Sequence alignment, Substitution matrix, Residue set cover.

1 Introduction

One of the most central problems of computational molecular biology is to
align two sequences of residues, a residue being generically understood as a
nucleotide or an amino acid, depending respectively on whether the sequences
under consideration are nucleic acids or proteins. This problem lies at the
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heart of several higher-level applications, such as heuristically searching se-
quence bases [44, 57, 1, 2] or aligning a larger number of sequences concomitantly
[26, 64, 22, 58, 39, 56, 17] for the identification of special common substructures
(the so-called motifs, cf. [15, 7, 74, 60, 63]) that encode structural or functional
similarities of the sequences [70, 78, 8, 41] or yet the sequences’ promoter regions
in the case of nucleic acids [74], for example.

Finding the best alignment between two sequences is based on maximizing
a scoring function that quantifies the overall similarity between the sequences.
Normally this similarity function has two main components. The first one is a
symmetric matrix, known as the substitution matrix for the set of residues under
consideration, which gives the contribution the function is to incur when two
residues are aligned to each other. The second component represents the cost
of aligning a residue in a sequence to a gap in the other, and gives the negative
contribution to be incurred by the similarity function when this happens. There
is no consensually accepted, general-purpose criterion for selecting a substitution
matrix or a gap-cost function. Common criteria here include those that stem
from structural or physicochemical characteristics of the residues (e.g., [19, 23,
49, 18, 59, 16]) and those that somehow seek to reproduce well-known alignments
as faithfully as possible (e.g., [47, 13, 25, 40, 61, 21, 27, 34, 33, 5, 62, 35, 52, 6,
43, 30, 51, 75, 82]). Useful surveys include [77, 29, 73].

We then see that, even though an optimal alignment between two sequences
is algorithmically well understood and amenable to being computed efficiently,
the inherent difficulty of selecting appropriate scoring parameters suggests that
the problem is still challenging in a number of ways. This is especially true
of the case of protein alignment, owing primarily to the fact that the set of
residues is significantly larger than in the case of nucleic acids, and also to the
existence of a multitude of criteria whereby amino acids can be structurally or
functionally exchanged by one another.

For a given structural or physicochemical property (or set of properties) of
amino acids, this exchangeability may be expressed by a set cover of the set of
all amino acids, that is, by a collection of subsets of that set that includes every
amino acid in at least one subset. Each of these subsets represents the possibility
of exchanging any of its amino acids by any other. Set covers in this context
have been studied extensively [67, 32, 69, 65, 45, 50, 36, 54, 68, 81, 31, 76, 10, 42]
and constitute our departing point in this paper. As we describe in Section 2, we
introduce a new methodology for discovering both an appropriate substitution
matrix and gap-cost parameters that starts by considering an amino-acid set
cover. It then builds a graph from the set cover and sets up an optimization
problem whose solution is the desired substitution matrix and gap costs.1

The resulting optimization problem is defined on a set of target sequence
pairs, preferably one that embodies as great a variety of situations as possible.
The target pairs are assumed to have known alignments, so the optimal solution
to the problem of finding parameters comprises the substitution matrix and the

1Our new methodology is ultimately related to the work of several other authors that have
dealt with the issue of assessing the efficacy of a substitution matrix or its relation to possible
groupings of amino acids. We refer the interested reader to [28, 79, 46, 24, 37], for example.
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gap costs whose use in a predefined alignment algorithm yields alignments of
the target pairs that in some sense come nearest the known alignments of the
same pairs. Our optimization problem is set up as a problem of combinato-
rial search, being therefore highly unstructured and devoid of any facilitating
differentiability properties. Reasonable ways to approach its solution are then
all heuristic in nature. In Section 3, we present the results of extensive com-
putational experiments that employ an evolutionary algorithm and targets the
BAliBASE pairs of amino-acid sequences [71, 3].

Notice, in the context of the methodology categorization we mentioned ear-
lier in passing, that our new methodology is of a dual character: it both relies
on structural and physicochemical similarities among amino acids and depends
on a given set of aligned sequences in order to arrive at a substitution matrix
and gap costs. We return to this hybrid aspect of our methodology in Section 4,
where conclusions are given.

2 The methodology

We describe our methodology for sequences on a generic set R of residues and
only specialize it to the case of proteins in Section 3. Given two residue sequences
X and Y of lengths x and y, respectively, a global alignment of X and Y can
be expressed by the 2× z matrix A having the property that its first line, when
read from left to right, is X possibly augmented by interspersed gaps, the same
holding for the second line and Y , so long as no column of A comprises gaps only.
It follows that z ≥ x, y. In the case of a local alignment, that is, an alignment
of a subsequence of X and another of Y , this matrix representation remains
essentially unchanged, provided of course that x and y are set to indicate the
sizes of the two subsequences.

For a given substitution matrix S and a pair (h, g) of gap costs,2 the simi-

larity score of alignment A, denoted by F
h,g
S (A), is given by

F
h,g
S (A) =

z
∑

j=1

f
h,g
S (A(1, j), A(2, j)), (1)

where f
h,g
S (A(1, j), A(2, j)) gives the contribution of aligning A(1, j) to A(2, j)

as either S(A(1, j), A(2, j)), if neither A(1, j) nor A(2, j) is a gap; or −(h+ g),
if either A(1, j) or A(2, j) is the first gap in a contiguous group of gaps; or yet
−g, if either A(1, j) or A(2, j) is the kth gap in a contiguous group of gaps for
k > 1. An optimal global alignment of X and Y is one that maximizes the
similarity score of (1) over all possible global alignments of the two sequences.
An optimal local alignment of X and Y , in turn, is the optimal global alignment
of the subsequences of X and Y for which the similarity score is maximum
over all pairs of subsequences of the two sequences. The set of all optimal

2For k > 0, we assume the customary affine function p(k) = h+gk with h, g > 0 to express
the cost of aligning the kth gap of a contiguous group of gaps in a line of A to a residue in
the other line as p(k)− p(k − 1), assuming p(0) = 0 [64].
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alignments of X and Y may be exponentially large in x and y, but it does
nonetheless admit a concise representation as a matrix or directed graph that
can be computed efficiently by well-known dynamic programming techniques
[80, 9, 53, 11], regardless of whether a global alignment of the two sequences is
desired [55] or a local one [66]. We refer to this representation as A∗

X,Y .
Our strategy for the determination of a suitable substitution matrix starts

with a set cover C = {C1, . . . , Cc} of the residue set R, that is, C is such that C1∪
· · ·∪Cc = R. Next we defineG to be an undirected graph of node setR having an
edge between two nodes (residues) u and v if and only if at least one of C1, . . . , Cc

contains both u and v. Graph G provides a natural association between how
exchangeable a node is by another and the distance between them in the graph.
Intuitively, the closer two nodes are to each other in G the more exchangeable
they are and we expect an alignment of the two to contribute relatively more
positively to the overall similarity score. Quantifying this intuition involves
crucial decisions, so we approach the problem in two careful steps, each leaving
considerable room for flexibility. The first step consists of turning G into a
weighted graph, that is, assigning nonnegative weights to its edges, and then
computing the weighted distance between all pairs of nodes.3 The second step
addresses the turning of these weighted distances into elements of a substitution
matrix so that larger distances signify ever more restricted exchangeability.

Let us begin with the first step. For (u, v) an edge of G, let w(u, v) denote its
weight. We define the value of w(u, v) on the premise that, if the exchangeability
of u and v comes from their concomitant membership in a large set of C, then it
should eventually result in a smaller contribution to the overall similarity score
than if they were members of a smaller set. In other words, the former situation
bespeaks an intuitive “weakness” of the property that makes the two residues
exchangeable. In broad terms, then, we should let w(u, v) be determined by the
smallest of the sets of C to which both u and v belong, and should also let it be
a nondecreasing function of the size of this smallest set.

Let c− be the size of the smallest set of C and c+ the size of its largest set.
Let c−u,v be the size of the smallest set of C of which both u and v are members.
We consider two functional forms according to which w(u, v) may depend on
c−u,v as a nondecreasing function. Both forms force w(u, v) to be constrained
within the interval [w−, w+] with w− ≥ 0. For λ ≥ 1, the first form is the
convex function

w1(u, v) = w− + (w+ − w−)

(

c−u,v − c−

c+ − c−

)λ

, (2)

while the second is the concave function

w2(u, v) = w+ − (w+ − w−)

(

c+ − c−u,v

c+ − c−

)λ

. (3)

Having established weights for all the edges of G, let du,v denote the weighted
distance between nodes u and v. Clearly, du,u = 0 and, if no path exists in

3Weight non-negativity is crucial here, since the presence of negative weights may render
the weighted-distance problem ill-posed [12].
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G between u and v (i.e., G is not connected and the two nodes belong to two
different connected components), then du,v = ∞.

Carrying out the second step, which is obtaining the elements of the sub-
stitution matrix from the weighted distances on G, involves difficult choices as
well. While, intuitively, it is clear that residues separated by larger weighted
distances in G are to be less exchangeable for each other than residues that
are closer to each other (in weighted terms) in G, the functional form that
the transformation of weighted distances into substitution-matrix elements is to
take is once again subject to somewhat arbitrary decisions. What we do is to
set S(u, v) = 0 if du,v = ∞, and to consider two candidate functional forms for
the transformation in the case of finite distances.

Let us initially set [S−, S+] as the interval within which each element of the
substitution matrix S is to be constrained (we assume S− > 0 for consistency
with the substitution-matrix element that goes with an infinite distance, whose
value we have just set to 0). Let us also denote by d+ the largest (finite)
weighted distance occurring in G for the choice of weights at hand. We then
consider two functional forms for expressing the dependency of S(u, v), as a
nonincreasing function, upon a finite du,v. For µ ≥ 1, we once again consider a
convex function,

S1(u, v) = S− + (S+ − S−)

(

d+ − du,v

d+

)µ

, (4)

and a concave one,

S2(u, v) = S+ − (S+ − S−)

(

du,v

d+

)µ

. (5)

In Figure 1 we provide examples of the candidate functional forms for w1(u, v),
w2(u, v), S1(u, v), and S2(u, v) as given by (2)–(5), respectively. Each functional
form is illustrated for two λ or µ values, as the case may be.

Once we decide on one of the two functional forms (2) or (3), and similarly
on one of (4) or (5), and also choose values for w−, w+, λ, S−, S+, and µ, then
the substitution matrix S as obtained from C is well-defined and, together with
the gap-cost parameters h and g, can be used to find the representation A∗

X,Y of
the set of all optimal (global or local) alignments between the two sequences X
and Y . The quality of our choices regarding functional forms and parameters,
and hence the quality of the resulting S, h, and g, can be assessed if a reference
alignment, call it Ar

X,Y , is available for the two sequences. When this is the

case, we let ρh,gS (Ar
X,Y ,A

∗

X,Y ) be the fraction of the columns of Ar
X,Y that also

appear in at least one of the alignments that are represented in A∗

X,Y .
4 The

substitution matrix S, and also h and g, are then taken to be as good for Ar
X,Y

as ρh,gS (Ar
X,Y ,A

∗

X,Y ) is close to 1.
4This definition must be read with care. If a certain column of Ar

X,Y
refers to a certain

occurrence of residue α in X and of residue β in Y , then it counts towards ρh,g
S

(Ar
X,Y

,A∗

X,Y
)

only if the same two occurrences of α and β are aligned to each other in at least one of the
alignments represented in A∗

X,Y
. The cases in which a residue in one of the two sequences is
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Figure 1: Illustrative plots for (2)–(5), respectively in (a)–(d). In (a) and (b),
w− = 2, w+ = 4, c− = 3, c+ = 7, and λ = 2 (solid plot) or λ = 9 (dashed
plot). In (c) and (d), S− = 2, S+ = 4, d+ = 7, and µ = 2 (solid plot) or µ = 9
(dashed plot).
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Table 1: Parameters and their domains.
Parameter Description Domain
bw Selects between (2) and (3) {1, 2}
w− Least possible edge weight {0.5, 0.55, . . . , 1}
w+ Greatest possible edge weight {1, 1.125, . . . , 5}
λ Exponent for use in (2) or (3) {1, 1.125, . . . , 5}
bS Selects between (4) and (5) {1, 2}
S− Least possible element of S {0.5, 0.55, . . . , 1}
S+ Greatest possible element of S {1, 1.25, . . . , 25}
µ Exponent for use in (4) or (5) {1, 1.125, . . . , 5}
h Initialization gap cost {2, 2.5, . . . , 30}
g Extension gap cost {0.25, 0.375, . . . , 5}

Thus, given a residue set cover C and a set Ar of reference alignments (each
alignment on a different pair of sequences over the same residue setR), obtaining
the best possible substitution matrix S and gap-cost parameters h and g can be
formulated as the following optimization problem: find functional forms and pa-
rameters that maximize some (for now unspecified) average of ρh,gS (Ar

X,Y ,A
∗

X,Y )
over all pairs (X,Y ) of sequences such that Ar

X,Y ∈ Ar. In the next section, we
make this definition precise when residues are amino acids and proceed to the
description of computational results.

3 Computational results

Let bw be a two-valued variable indicating which of (2) or (3) is to be taken
as the functional form for the edge weights, and similarly let bS indicate which
of (4) or (5) is to give the functional form for the elements of S. These new
parameters defined, we begin by establishing bounds on the domains from which
each of the other eight parameters involved in the optimization problem may
take values, and also make those domains discrete inside such bounds by taking
equally spaced delimiters. For the purposes of our study in this section, this
results in what is shown in Table 1.

The parameter domains shown in Table 1 make up for over 3.7 trillion pos-
sible combinations, yielding about 1.6 billion different substitution matrices.5

The set of all such combinations seems to be structured in no usable way, so
finding the best combination with respect to some set of reference alignments as

aligned to a gap in the other in Ar
X,Y

are entirely analogous. The required bookkeeping in

any of the cases is simple to perform if one resorts to the matrix or directed graph that gives
the structure of A∗

X,Y
.

5This is only a rough estimate, since there are combinations that yield the same substitution
matrix. For example, setting λ = 1 renders bw needless, the same holding for µ and bS . In a
similar vein, setting w− = w+ = 1 renders both bw and λ needless, and similarly for bS and
µ (together with bw, w−, w+, and λ) when S− = S+ = 1.
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discussed in Section 2 must not depend on any technique of explicit enumeration
but rather on some heuristic approach.

The approach we use in this section is to employ an evolutionary algorithm
for finding the best possible combination within reasonable time bounds. Each
individual for this algorithm is a 10-tuple indicating one of the possible combina-
tion of parameter values. Our evolutionary algorithm is a standard generational
genetic algorithm [48]. It produces a sequence of 100-individual generations,
the first of which is obtained by randomly choosing a value for each of the
10 parameters in order to produce each of its individuals. Each of the subse-
quent generations is obtained from the current generation by a combination of
crossover and mutation operations, following an initial elitist step whereby the
5 fittest individuals of the current generation are copied to the new one. While
the new generation is not full, either a pair of individuals is selected from the
current generation to undergo crossover (with probability 0.5) or one individual
is selected to undergo a single-locus mutation (with probability 0.5).6 The pair
of individuals resulting from the crossover, or the single mutated individual, is
added to the new generation, unless an individual that is being added is identi-
cal to an individual that already exists in the population. When this happens,
the duplicating individual is substituted for by a randomly generated individ-
ual. Selection is performed in proportion to the individuals’ linearly normalized
fitnesses.7

The crux of this genetic algorithm is of course how to assess an individual’s
fitness, and this is where an extant set of reference alignments Ar comes in. In
our study we take Ar to be the set of alignments present in the BAliBASE suite
[3]. It contains 167 families of amino-acid sequences arranged into eight refer-
ence sets. For each family of the first five reference sets two pieces of reference
information are provided: a multiple alignment of all the sequences in the family
and a demarcation of the relevant motifs given the multiple alignment. Families
in the remaining three reference sets are not provided with motif demarcations,
so we refrain from using them in our experiments, since the fitness function that
we use relies on reference motifs as well. Note that, even though the BAliBASE
suite is targeted at multiple sequence alignments (cf. [72, 38] for example ap-
plications), each such alignment trivially implies a pairwise alignment for all
sequence pairs in each family and also motif fragments for each pair. Our set
Ar then comprises every sequence pair from the BAliBASE suite for which a
reference alignment exists with accompanying motif demarcation.

The organization of the BAliBASE suite suggests a host of possibilities for
evaluating the efficacy of a substitution matrix S and of gap-cost parameters h

6Both the crossover point and the locus for mutation are chosen at random, essentially
with the parameters’ domains in mind, so that the probability that such a choice singles out a
parameter whose domain has size a is proportional to log a. Mutating the parameter’s value
is achieved straightforwardly, while breaking the 10-tuples for crossover requires the further
step of interpreting the parameter as a binary number.

7This means that, for 1 ≤ k ≤ 100, the kth fittest individual in the generation is selected
with probability proportional to L−(L−1)(k−1)/99, where L is chosen so that the expression
yields a value L times larger for the fittest individual than it does for the least fit (for which
it yields value 1). We use L = 10 throughout.
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and g. For a pair of sequences (X,Y ), whose reference alignment is Ar
X,Y ∈ Ar,

and recalling that A∗

X,Y represents the set of all optimal alignments of X and

Y given S, h, and g, we use four variants of the ρ
h,g
S (Ar

X,Y ,A
∗

X,Y ) of Section 2
as the bases of the fitness function to be used by the genetic algorithm. These
are denoted by ρ

h,g
S,1(A

r
X,Y ,A

∗

X,Y ) through ρ
h,g
S,4(A

r
X,Y ,A

∗

X,Y ) and differ among
themselves as to which of the columns of the reference alignment are checked to
be present in at least one of the optimal alignments. We let them be as follows:

• ρ
h,g
S,1(A

r
X,Y ,A

∗

X,Y ) is based on all the columns of Ar
X,Y ;

• ρ
h,g
S,2(A

r
X,Y ,A

∗

X,Y ) is based on all the columns of Ar
X,Y that contain no

gaps;

• ρ
h,g
S,3(A

r
X,Y ,A

∗

X,Y ) is based on all the columns of Ar
X,Y that lie within

motifs;

• ρ
h,g
S,4(A

r
X,Y ,A

∗

X,Y ) is based on all the columns of Ar
X,Y that lie within

motifs and contain no gaps.

These defined, we first average each one of them over Ar before combining
them into a fitness function. The average that we take is computed in the
indirectly weighted style of [79], which aims at preventing any family with overly
many pairs, or any pair on which S, h, and g are particularly effective, from
influencing the average too strongly. The weighting takes place on an array
having 10 lines, one for each of the nonoverlapping 0.1-wide intervals within
[0, 1], and one column for each of the BAliBASE families. Initially each pair
(X,Y ) having a reference alignment Ar

X,Y in Ar is associated with the array
cell whose column corresponds to its family and whose line is given by the
interval within which the identity score of the reference alignment Ar

X,Y falls.
This score is the ratio of the number of columns of Ar

X,Y whose two amino
acids are identical to the number of columns that have no gaps (when averaging

ρ
h,g
S,3(A

r
X,Y ,A

∗

X,Y ) or ρ
h,g
S,4(A

r
X,Y ,A

∗

X,Y ), only columns that lie within motifs are
taken into account).

For 1 ≤ k ≤ 4, we then let ρh,gS,k(A
r) be the following average of ρh,gS,k(A

r
X,Y ,A

∗

X,Y )

over Ar. First take the average of ρh,gS,k(A
r
X,Y ,A

∗

X,Y ) for each array cell over the
sequence pairs (X,Y ) that are associated with it (cells with no pairs are ignored).

Then ρ
h,g
S,k(A

r) is computed by first averaging those averages that correspond
to the same line of the array and finally averaging the resulting numbers (note
that lines whose cells were all ignored for having no sequence pairs associated
with them do not participate in this final average).

We are then in position to state the definition of our fitness function. We
denote it by ϕ

h,g
S (Ar) to emphasize its dependency on how well S, h, and g

lead to alignments that are in good accord with the alignments of Ar . It is
given by the standard Euclidean norm of the four-dimensional vector whose kth
component is ρh,gS,k(A

r), that is,

ϕ
h,g
S (Ar) =

√

[

ρ
h,g
S,1(A

r)
]2

+ · · ·+
[

ρ
h,g
S,4(A

r)
]2

. (6)
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Table 2: Substitution matrices used for comparison.
Matrix Original reference Reference for h and g

BC0030 [6]
BENNER74 [5] [79]
BLOSUM62 [27] [79]
FENG [18] [79]
GONNET [21] [79]
MCLACH [47] [79]
NWSGAPPEP [25] [79]
PAM250 [13] [79]
RAO [59] [79]
RUSSELL-RH [62] [6]
VTML160 [51] [24]

Clearly, 0 ≤ ϕ
h,g
S (Ar) ≤ 2 always.

The substitution matrices we have used for comparison are shown in Ta-
ble 2,8 where for each one we give its most common epithet, the reference to
where it was originally described, and, when different from the former, the ref-
erence to where the gap-cost parameters h and g we use with it are to be found
for both global and local alignments. This table is supplemented by Table 3,
where for each matrix we show the value of ϕh,g

S (Ar) for both the global- and the
local-alignment case; numbers in bold typeface are the minimum and maximum
of the corresponding column. Table 4 gives the two set covers we have used: I
is the set cover from [31], S the one from [65].

One first set of results is summarized in the plots of Figure 2 and also in
Table 5. Each of the plots in the figure indicates the evolution of ϕ

h,g
S (Ar)

as the genetic algorithm is run for each of the four combinations of global or
local alignments with the I or S set cover. At each generation, what is plotted
is the greatest value of ϕ

h,g
S (Ar) for individuals of that generation, S being

the substitution matrix that corresponds to each individual as explained in
Section 2. We present each plot against two constant values (indicated as dashed
lines) giving the corresponding minimum and maximum highlighted in Table 3.
The best individual of the last generation of each run is shown as a column
in Table 5 containing the corresponding parameter values. Each of Table 5’s
columns therefore corresponds to a substitution matrix, the one output by the
corresponding run of the genetic algorithm, with accompanying gap costs.

The first notable feature of the four plots in Figure 2 is that, in all cases, the
fittest individual of the initial generation is already well placed with respect to
the substitution matrices of Table 2, even though this generation is the result

8The denomination NWSGAPPEP is taken from [20], whose GCG software package was orig-
inally described by [14]. For global alignments, we use BLOSUM62 to refer to a version of the
matrix that has nonnegative elements exclusively (this version is obtained by adding the ab-
solute value of the least element of the original matrix to all other elements, provided at least
one negative element exists). The same holds for local alignments, in this case for the matrices
BENNER74, GONNET, and PAM250 as well.

10



Table 3: Values of ϕh,g
S (Ar) for the matrices of Table 2 under global or local

alignments.

ϕ
h,g
S (Ar)

S Global alignments Local alignments
BC0030 1.5226 1.5060
BENNER74 1.5601 1.5348
BLOSUM62 1.5532 1.5542

FENG 1.5062 1.4950
GONNET 1.5419 1.5373
MCLACH 1.5415 1.5371
NWSGAPPEP 1.5306 1.5181
PAM250 1.5243 1.5064
RAO 1.4864 1.4912
RUSSELL-RH 1.4508 1.4508
VTML160 1.5734 1.4296

Table 4: Set covers.
Cover set I S
C1 {M, I, L, V } {P}
C2 {M, I, L, V,A, P} {A,G}
C3 {M, I, L, V, F,W} {D,E}
C4 {M, I, L, V,A, P, F,W} {N,Q}
C5 {D,E,H,R,K} {S, T }
C6 {S, T,Q,N} {F,W, Y }
C7 {S, T,Q,N,D,E} {H,K,R}
C8 {Q,N,D,E,H,R,K} {I, L, V }
C9 {S, T,Q,N,D,E,H,R,K} {C,F, I, L,M, V,W, Y }
C10 {Q,N} {D,E,H,K,N,Q,R, S, T }
C11 {D,E,Q,N}
C12 {H,R,K}
C13 {R,K}
C14 {F,W, Y }
C15 {G,N}
C16 {A,C,G, S}
C17 {S, T }
C18 {D,E}
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Figure 2: Evolution of the fitness, as given by (6), under global (a and b) or
local (c and d) alignments for the I (a and c) or S (b and d) set covers.

Table 5: Values of the parameters of Table 1 at the end of each of the four runs
depicted in Figure 2. Indications in parentheses refer to which of parts (a)–(d)
of the figure the columns correspond.

Final values
Parameter Global alignments Local alignments

I (a) S (b) I (c) S (d)
bw 1 1 1 1
w− 0.95 0.85 0.9 0.95
w+ 2.125 2.25 2.125 2
λ 2 2.875 2 4.375
bS 1 1 1 2
S− 0.6 1 0.5 1
S+ 23 10 22.75 10
µ 3.125 1 3.625 1.125
h 29 16.5 29.5 16
g 0.25 0.75 0.375 0.5
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of a random selection of parameter values for each of its individuals. This,
alone, is in our opinion solid indication that the essential underlying premise
of our new methodology—that the elements of a substitution matrix can be
computed as a function of weighted distances on the undirected graph that
represents a certain amino-acid set cover—is sound. From the initial generations
onward, in all four cases some rapid progress is made initially, and then fitness
improvements become more and more sporadic. This is no surprise if we consider
that the fitness landscape we are dealing with is completely non-differentiable
and probably highly rugged (i.e., with many local maxima) as well, which is in
fact the reason why we give mutations the high prominence of a 50% chance as
a new generation is being filled.

The question, of course, is whether running the genetic algorithm beyond
the 270 generations of the figure can lead it to eventually find individuals whose
fitnesses go beyond the uppermost dashed lines in the plots (that is, individ-
uals that surpass the best-performing matrices on the reference alignments in
Ar). Seemingly, this would require some sort of phase-transition behavior fol-
lowing the slow progress that the plots depict past the first 50 generations or so.
While such a behavior is known to occur relatively often when handling hard,
unstructured optimization problems (cf., e.g., [4] for a recent example from
combinatorial optimization), in our case carrying over with the algorithm for
each single generation has required roughly 13 to 14 hours,9 so at first seeking
significant further improvement does seem impractical.

Notice, however, that practically all of this time consumption is related to
computing ϕ

h,g
S (Ar) for each individual in the current population. Because this

is done in a manner that is fully independent from any other individual, we
can speed the overall computation up nearly optimally by simply bringing more
processors into the effort.10

Our second set of results carries the genetic algorithm well beyond the 270
generations of Figure 2. To this end we employed the parallel strategy outlined
above on four processors, and also concentrated solely on evolving individuals
under global alignments for the S set cover. We did, in addition, consider only
a subset of Ar , denoted by Ar,1, comprising sequence pairs that are relative
to the BAliBASE reference set 1. In this case, the fitness function to be max-
imized is ϕ

h,g
S (Ar,1), defined as in (6) when Ar,1 substitutes for Ar. Given

these simplifications, computing through each generation has taken roughly 20
minutes.

The values of ϕh,g
S (Ar,1) for the substitution matrices of Table 2 are given in

Table 6 for global alignments only. Notice that this table also contains values
for the individual fitness components ρh,gS,1(A

r,1), . . . , ρh,gS,4(A
r,1) for each matrix;

9These data refer to an Intel Pentium 4 processor running at 2.26 GHz.
10A finer-grained opportunity for fully independent parallelism can also be identified

if we recognize that computing ϕh,g

S
(Ar) in essence boils down to computing each of

ρh,g
S,1

(Ar
X,Y

,A∗

X,Y
) through ρh,g

S,4
(Ar

X,Y
,A∗

X,Y
), independently, for every pair (X, Y ) having

a reference alignment in Ar . Harnessing this form of parallelism is infeasible, though, given
the current technological reality.
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Table 6: Values of ϕh,g
S (Ar,1) and of ρh,gS,1(A

r,1), . . . , ρh,gS,4(A
r,1) for the matrices

of Table 2 under global alignments.

S ϕ
h,g
S (Ar,1) ρ

h,g
S,1(A

r,1) ρ
h,g
S,2(A

r,1) ρ
h,g
S,3(A

r,1) ρ
h,g
S,4(A

r,1)

BC0030 1.5149 0.7398 0.7738 0.7565 0.7593
BENNER74 1.5448 0.7607 0.7988 0.7632 0.7661
BLOSUM62 1.5865 0.7897 0.8278 0.7758 0.7786

FENG 1.5216 0.7554 0.7922 0.7457 0.7488
GONNET 1.5253 0.7572 0.7906 0.7494 0.7526
MCLACH 1.5544 0.7702 0.8045 0.7654 0.7679
NWSGAPPEP 1.5019 0.7349 0.7671 0.7489 0.7525
PAM250 1.4996 0.7380 0.7705 0.7436 0.7466
RAO 1.5205 0.7553 0.7908 0.7453 0.7486
RUSSELL-RH 1.4661 0.7274 0.7615 0.7197 0.7227

VTML160 1.5789 0.7830 0.8238 0.7736 0.7763
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Figure 3: Evolution of the fitness, as given by (6) on Ar,1, under global align-
ments for the S set cover.

these will be used shortly. In Table 6, as in Table 3, a bold typeface is used to
indicate extremal values within each of the five numeric columns.

Figure 3 and Table 7 summarize the results of this smaller-scale experiment.
The plot in Figure 3 is analogous to each of the plots in Figure 2 and, like them,
is given against the dashed lines that indicate the values highlighted in the
leftmost numeric column of Table 6. It is presented as two juxtaposed plots on
the initial and final 150 generations simply for the sake of emphasizing the rapid
fitness growth during the first few tens of generations, on the one hand, and the
very slow growth thereafter, on the other (during the generations that the plot
skips there is growth in one single generation only). Table 7 is analogous to
Table 5, indicating the parameter values that characterize the fittest individual
at the end of the run of the genetic algorithm.

What is interesting in this second set of results is that, even though nothing
resembling the phase-transition-like behavior alluded to above has taken place,
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Table 7: Values of the parameters of Table 1 at the end of the run depicted in
Figure 3.

Parameter Final value
bw 1
w− 0.95
w+ 3.625
λ 1.875
bS 1
S− 1
S+ 5.5
µ 1.125
h 7.5
g 1.5

the fitness of the substitution matrix and gap costs that arise from the param-
eter values of Table 7, specifically 1.5797, is now very near 1.5865, which is the
highest value appearing in the leftmost numeric column of Table 6. In addition,
let us consider the greatest values of each of ρh,gS,1(A

r,1), . . . , ρh,gS,4(A
r,1) for each

generation. Plotting these values against the corresponding minima and max-
ima highlighted in the rightmost four columns of Table 6 yields what is shown
in Figure 4, which clearly indicates that the genetic algorithm very quickly
produces a substitution matrix, with associated gap costs, that surpasses the
champion of Table 6 as far as the fitness components ρh,gS,3(A

r,1) and ρ
h,g
S,4(A

r,1)

are concerned, even though it lags behind in terms of ρh,gS,1(A
r,1) and ρ

h,g
S,2(A

r,1).
This substitution matrix, it turns out, is then superior to all the matrices of
Table 2 when it comes to stressing alignment columns that lie within motifs.

4 Concluding remarks

We have introduced a new methodology for the determination of amino-acid sub-
stitution matrices. The new methodology starts with a set cover of the residue
alphabet under consideration and builds an undirected graph in which node
vicinity is taken to represent residue exchangeability. The desired substitution
matrix arises as a function of weighted distances in this graph. Determining
the edge weights, and also how to convert the resulting weighted distances into
substitution-matrix elements, constitute the outcome of an optimization process
that runs on a set of reference sequence alignments and also outputs gap costs for
use with the substitution matrix. Our methodology is then of a hybrid nature:
it relies both on the structural and physicochemical properties that underlie the
set cover in use and on an extant set of reference sequence alignments.

The optimization problem to be solved is well-defined: given parameterized
functional forms for turning cover sets into edge weights and weighted distances
into substitution-matrix elements, the problem asks for parameter values and
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Figure 4: Evolution of each of the fitness components ρh,gS,1(A
r,1), . . . , ρh,gS,4(A

r,1),
shown respectively in (a) through (d), under global alignments for the S set
cover.
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gap costs that maximize a certain objective function on the reference set of
alignments. We have reported on computational experiments that use a genetic
algorithm as optimization method and the BAliBASE suite as the source of the
required reference alignments. Our results are supportive of the following main
conclusions. First, that the overall methodology is capable of producing substi-
tution matrices whose performance falls within the same range of a number of
known matrices’ even before any optimization is actually performed (i.e., based
on the random parameter instantiation that precedes the genetic algorithm);
this alone, we believe, singles out our methodology as a principled way of de-
termining substitution matrices that concentrates all the effort related to the
structure and physicochemical properties of amino acids on the discovery of an
appropriate set cover. Secondly, that there are scenarios for which the method-
ology we introduce can already be claimed to yield a substitution matrix that
surpasses all the others against which it was tested.

We have also found that strengthening this latter conclusion so that it holds
in a wider variety of scenarios depends on how efficiently we can run the genetic
algorithm. Fortunately, it appears that it is all a matter of how many processors
can be amassed for the effort, since the genetic procedure is inherently amenable
to parallel processing and highly scalable, too. There is, of course, also the
issue of investigating alternative functional forms and parameter ranges to set
up the optimization problem, and in fact the issue of considering other objective
functions as well. Together with the search for faster optimization, these issues
make for a very rich array of possibilities for further study.
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