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Abstract. Eukaryotic genomes are packaged by the wrapping of DNA
around histone octamers to form nucleosomes. Nucleosome occupan-
cies together with their acetylation and methylation are important
modification factors on all nuclear processes involving DNA. There
have been recently many studies of mapping these modifications in
DNA sequences and of relationship between them and various genetic
activities, such as transcription, DNA repair, and DNA remodeling.
However, most of these studies are experimental approaches. In this
paper, we introduce a computational approach to both predicting and
analyzing nucleosome occupancy, acetylation, and methylation areas
in DNA sequences. Our method employs conditional random fields
(CRFs) to discriminate between DNA areas with high and low relative
occupancy, acetylation, or methylation; and rank features of DNA
sequences based on their weight in the CRFs model trained from the
datasets of these DNA modifications. The results from our method on
the yeast genome reveal genetic area preferences of nucleosome occu-
pancy, acetylation, and methylation are consistent with previous studies.

Keywords: Histone proteins, acetylation, methylation, conditional
random fields.

1 Introduction

Eukaryotic genomes are packaged into nucleosomes that consist of 145–147 base
pairs of DNA wrapped around a histone octamer [9]. The histone components of
nucleosomes and their modification state (of which acetylation and methylation
are the most important ones) can profoundly influence many genetic activities,
including transcription [2, 4, 5, 16], DNA repair, and DNA remodeling [13].

There have been recently many studies of mapping histone occupancies to-
gether with their modifications in DNA sequences and of relationship between
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them and various genetic activities concerning DNAs [1, 2, 5, 7, 16, 18, 19]. But
most of these studies were experimentally conducted by the combination of chro-
matin immunoprecipitation and whole-genome DNA microarrays, or ChIP-Chip
protocol.

The nucleosome occupancy as well as its modifications such as acetylation
and methylation mainly depend on the DNA sequence area they incorporate
in. The majority of acetylation and methylation occurs at specific highly con-
served residues in the histone components of nucleosomes: acetylation sites in-
clude at least nine lysines in histone H3 and H4 (H3K9, H3K14, H3K18, H3K23,
H3K27, H4K5, H4K8, H4K12, and H4K16); methylation sites include H3K4,
H3K9, H3K27, H3K36, H3K79, H3R17, H4K20, H4K59, H4R3 [14]. When a nu-
cleosome appears in a specific DNA sequence area, these potentially sites can
have a certain acetylation or methylation level [5, 16].

Recently we have introduced a support vector machine (SVM)-based method
to qualitatively predict histone occupancy, acetylation and methylation areas in
DNA sequences [15]. In this paper, we present a different computational method
for this prediction problem. We employ conditional random fields (CRF) [6], a
novel machine learning technique, to discriminate between DNA areas with high
and low relative occupancy, acetylation, or methylation. Our experiments showed
that CRF-based method has competitive performance with SVM method. More-
over, similar to SVMs, our CRF method can extract informative k-gram features
based on their weight in the CRFs model trained from the datasets of these DNA
modifications. The results from our CRF-method on the yeast genome are con-
sistent with those from the SVM method and reveal genetic area preferences
of nucleosome occupancy, acetylation, and methylation that are consistent with
previous studies.

2 Materials and Methods

2.1 Datasets

From the genome-wide map of nucleosome acetylation and methylation reported
in [16], we extracted 14 datasets and used to illustrate the performance of our
method. These datasets are described in detail in Table 1. Each example in the
datasets corresponds to a DNA sequence area (segment) with a fixed length L
(in our experiments, we selected L = 200, 500, 1000, 1500). A DNA sequence
area is assigned to the positive class if the relative occupancy, acetylation, or
methylation [16] measured at its middle position is greater than 1.2, and to the
negative class if the relative occupancy, acetylation, or methylation is lesser than
0.8. Sequences with value in between 0.8 and 1.2 are ignored.

2.2 Conditional Random Fields

The sequential classification problem is well known in several scientific fields,
especially computational linguistics, and computational biology [6]. There are
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Table 1. Datasets of histone occupancy, acetylation, and methylation by ChIP-Chip
protocol in vivo [16]

Dataset #positives #negatives Description

H3.YPD 7667 7298 H3 occupancy
H4.YPD 6480 8121 H4 occupancy
H3.H2O2 17971 15516 H3.H202 occupancy
H3K9acvsH3.YPD 15415 12367 H3K9 acetylation relative to H3
H3K14acvsH3.YPD 18771 14277 H3K14 acetylation relative to H3
H3K14acvsWCE.YPD 17672 16290 H3K14 acetylation relative to WCE
H3K14acvsH3.H2O2 18410 15685 H3K14 acetylation relative to H3.H2O2
H4acvsH3.YPD 18410 15685 H4 acetylation relative to H3
H4acvsH3.H2O2 18143 12540 H4 acetylation relative to H3.H2O2
H3K4me1vsH3.YPD 17266 14411 H3K4 monomethylation relative to H3
H3K4me2vsH3.YPD 18143 12540 H3K4 dimethylation relative to H3
H3K4me3vsH3.YPD 19604 17195 H3K4 trimethylation relative to H3
H3K36me3vsH3.YPD 18892 15988 H3K36 trimethylation relative to H3
H3K79me3vsH3.YPD 15337 13500 H3K79 trimethylation relative to H3

two kinds of model for solving this problem, generative models and conditional
models. While generative models define a joint probability distribution of the
observation and labelling sequences p(X, Y ), the conditional models specify the
probability of a label given an observation sequence p(Y |X). The main draw-
back in generative models is that, in order to define a joint probability distri-
bution, they must enumerate all possible observation sequences, which may be
not feasible in practice [6, 12, 21]. Our work employs conditional models, spe-
cially conditional random fields, which can overcome the drawbacks of generative
models.

CRF [6] is a probabilistic framework for segmenting and labelling sequential
data using conditional model [6]. It has the form of a undirected graph that
defines a log-linear distribution over label sequences given a particular obser-
vation sequence. CRFs have several advantages over other models (e.g., HMMs
and MEMMs) such as relaxing strong independence Markov assumptions and
avoiding weakness called the label bias problem [6, 11, 12, 21].

Definition. CRFs can be represented by an undirected graphical model. Ac-
cording to [6], we define G = (V, E) to be an undirected graph, with v ∈ V
corresponds to each of the random variables representing a label sequence Yv

from Y, and e ∈ E corresponds to the definition of conditional independence for
undirected graphical models. In other words, two vertices vi and vj are condi-
tionally independent given all other random variables in the graph.

In theory, CRFs can be represented by arbitrarily structure graph, although
in this work, we focus on linear-chain structure graph. Let X = (x1, x2, ..., xT ) be
an observed data sequence; S be a set of finite state machines, each is associated
with a label l ∈ L; and Y = (y1, y2, ..., yT ) be the state sequence. The linear-
chain CRFs [20, 12] then define the conditional probability of a state sequence
given an input sequence as follows
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pθ(Y |X) = 1
Z(X)exp(

∑T
i=1

∑
k λkfk(yi−1, yi, X, i))

where Z(X) =
∑

s∈S exp(
∑T

i=1

∑
k λkfk(yi−1, yi, X, i)) is a normalization factor

over all state sequences, and fk(yi−1, yi, X, i) are feature functions, each of them
is either a state feature function or a transition function [20, 12, 21]. A state
feature captures a particular property of the observation sequence X at current
state yi. A transition feature represents sequential dependencies by combining
the label l′ of the previous state yi−1 and the label l of the current state yi.
As [6], we assume that the feature functions is fixed, and denote λ = {λk} as a
weight vector which to be learned through training.

Inference in CRFs. Inference in CRFs is to find a state sequence y∗ which is
the most likely given the observation sequence x

y∗ = argmaxypθ(y|x) = argmaxy

{
exp(

∑T
i=1

∑
k λkfk(yi−1, yi, x, i))

}

Similarly to HMMs, CRFs use a dynamic programming method for finding
y∗ [6, 21, 12]. In fact, we choose the most well-known method being the Vieterbi
algorithm [17]. Viterbi stores the probability of the most likely path up to time
t which accounts for the first t observations and ends in state yt. We define this
probability to be αt(yi) (0 ≤ t ≤ T − 1). We set α0(yi) to be the probability of
starting in state yi. The recursion is given by

αt+1 = maxyj {αt(yj)exp (
∑

k λkfk(yj , yi, x, t))}
At the end time (i.e., t = T − 1), we can backtrack through the stored infor-

mation to find the most likely sequence y∗.

Training CRFs. Let D =
{
(xk, yk)

}N

k=1
be the training data set. CRFs are

trained by finding the weight vector θ = {λ1, λ2, ...} to maximize the log-
likelihood

L =
∑N

j=1 log
(
pθ(y(j)|x(j))

) − ∑
k

λ2

2σ2

where the second sum is a Gaussian prior over parameters (with variance σ2)
that provides smoothing to help coping with sparsity in the training data [3].

Since the likelihood function in exponential models of CRFs is convex, the
above optimization problem always has the global optimum solution, which can
be found by an iterated estimation procedure. The traditional method for train-
ing in CRFs is iterative scaling algorithms [6, 21]. Sine those methods are very
slow for classification [20], therefore we use quasi-Newton methods, such as L-
BFGS [8], which are significantly more efficient [10, 20].

L-BFGS is a limited-memory quasi-Newton procedure for unconstrained op-
timization that requires the value and gradient vector of a function to be opti-
mized. Assuming that the training labels on instance j make its state path unam-
biguous, let y(j) denote that path, then the first-derivative of the log-likelihood is
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δL
δλk

=
(∑N

j=1 Ck(y(j), x(j)
)
−

(∑N
j=1

∑
y pθ(y|x(j))Ck(y, x(j))

)
− λk

σ2

where Ck(y, x), the count of feature fk given y and x, equal to
∑T

t=1 fk(yi−1, yi, x, i), i.e., the sum of fk(yi−1, yi, x, i) values for all posi-
tions i in the training sequence. The first two terms correspond to the difference
between the empirical and the model expected values of feature fk. The last
term is the first-derivative of the Gaussian prior.

2.3 Features of a DNA Sequence Area

The most important issue in CRFs learning is to select a set of features that
hopefully capture the relevant relationships among observations and label se-
quences. CRFs have two kinds of features, state features and transition features.
However, in this work we focus only on state features. Also, each observation
sequence in the datasets has only one observation (L-DNA sequence area) and
the label sequence is a sequence of 0 (negative class) and 1 (positive class).
Our feature set to input to CRF systems is built by two steps. First, we use
a k-sliding window along a DNA sequence to get binary k-grams (patterns of
k consecutive nucleotide symbols). Each DNA sequence is thus represented by
a binary 4k-dimensional vector of all possible k-grams. Second, we define the
unigram function for each k-gram as follows:

ut(x) =

⎧
⎨

⎩

1 if the tth k-gram appear in the sequence x

0 otherwise

Therefore, the relationship between the observation and two classes, positive
and negative, is described in the following features:

ftP (y, x) =

⎧
⎨

⎩

ut(x) if y belong to positive class

0 otherwise

ftN(y, x) =

⎧
⎨

⎩

ut(x) if y belong to negative class

0 otherwise

3 Results and Discussion

3.1 Prediction of Histone Occupancy, Acetylation, and Methylation

We used CRFs with the limited-memory quasi-Newton method (Section 2.2) to
perform threefold cross-validation on 14 datasets of histone occupancy, acety-
lation and methylation areas (Table 1). Three criteria of precision, recall and
F1-measure are used to report the results:
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Precisionpositive = TP
TP+FP ; Precisionnegative = TN

TN+FN

Recallpositive = TP
TP+FN ; Recallnegative = TN

TN+FP

Precision = Precisionpositive+Precisionnegative

2

Recall = Recallpositive+Recallnegative

2

F1 − measure = 2∗(Precision∗Recall)
Precision+Recall

where TP, TN, FP, FN are the number of true positive, true negative, false
positive and false negative examples, respectively.

Through various experiments we found that our method gave the best results
when predicting nucleosome occupancy, acetylation, and methylation for DNA
sequence areas of length L = 500 (data not shown). Due to the computational
complexity, we have only tried with k ≤ 6 and report here the results from sets
of k-grams with k=5, k=6, k=4,5, and k=5,6.(Table 2).

The highest performance of our CRF method (at 18th L-BFGS it-
eration) for relative histone occupancy predictions (H3, H4, H3.H2O2),
and acetylation predictions (H3K9acvsH3, H3K14acvsH3, H3K14acvsWCE,
H3K14acvsH3.H2O2, H4acvsH3, H4acvsH3.H2O2), as well as methylation
predictions (H3K4me1vsH3, H3K4me2vsH3, H3K4me3vsH3, H3K36me3vsH3,
H3K79me3vsH3.YPD) achieved when we use features of both 5-grams and 6-
grams (Table 2). The numbers in the brackets are the performance of the sup-
port vector machine (SVM)-based method (which was used in [15] to address the
same problem) when using the same binary k-gram features. As it can be seen,
CRF method is competitive with SVM-based method. In some cases, CRFs gave
better performance, but in others performance was worse. SVM method can take
into account the number of k-gram occurrences that represents DNA sequence
better than binary k-gram features, hence SVM method can achive better per-
formance [15]. However, CRFs have some advantages over SVMs such as they
can easily incorporate knowledge into their prediction, and in the future we will
take account annotated information concerning DNA sequence into our CRF
method to improve the prediction results.

3.2 Genetic Area Preferences of Histone Occupancy, Acetylation,
and Methylation

During the training CRFs model, we reported the weight of features (i.e. weight
vector, see Section 2.2). In a CRF model, features with the larger weight would
be more relevant than those with lower weight. We ranked the features based on
their weight supporting for either positive or negative classes in CRF models,
which were trained on 14 datasets. Table 3 and Table 4 show the most informative
features from a set of 4-grams and 5-grams at 18th L-BFGS iteration (which did
though give the best performance (Table 2), but to make later interpretation
easily) for histone occupancy, acetylation, and methylation.

Informative features ranked by our CRF-based method agree with those from
the previous SVM-based method [15]. They can be useful to analyze the genetic
area preferences of histone occupancy, acetylation, and methylation. For exam-
ple, CG (CpG) is a dinuceotide that appears very often in the most informative
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Table 3. Most informative features selected from CRFs model for positive class with
k-grams=4 and k-grams=5

Dataset Feature Weight Feature Weight Feature Weight Feature Weight
H3.YPD CTTCA 0.16 CTTTA 0.15 TGCAG 0.14 ACAGC 0.14

CGGC 0.13 TGAAG 0.13 GTTTG 0.13 GCGA 0.13
GTGAT 0.13 TCATC 0.13 TGGC 0.13 CAGC 0.13

H4.YPD TAAT 0.26 CTTCA 0.23 CAAAT 0.22 GCCAC 0.20
GGATC 0.20 CTGGT 0.19 TTGGG 0.19 ATTTG 0.18
ATCAG 0.18 GCAG 0.18 TATA 0.18 TTTA 0.17

H3.H2O2 CCGC 0.21 GCGC 0.21 CGGC 0.20 CGGG 0.19
GCCG 0.18 CGCG 0.18 GGCC 0.18 CATGG 0.17
CCGG 0.16 CCCT 0.15 CGCC 0.15 CCACC 0.15

H3K9acvsH3.YPD CATGC 0.11 CAGGG 0.10 GTTCG 0.10 GCGAG 0.10
CTTAG 0.09 TCTCG 0.09 TACC 0.09 GATAC 0.09
CCCCG 0.09 AGGCG 0.09 GCCGG 0.09 CACCG 0.09

H3K14acvsH3.YPD GCGTG 0.12 TTTTT 0.10 TAGTC 0.09 CTCGC 0.09
CTCAT 0.09 CACC 0.08 TCTCT 0.08 ATATA 0.08
CTTTT 0.08 AAAAA 0.08 AGCGG 0.08 TTTTC 0.08

H3K14acvsWCE.YPD ACGGT 0.10 TCTCT 0.10 AGCCT 0.09 CTCAT 0.09
CGGA 0.09 CGGC 0.09 CACC 0.09 TCCG 0.09
AGTCG 0.08 TTGCT 0.08 ATGCG 0.08 GGAGT 0.08

H3K14acvsH3.H2O2 AGGGG 0.12 CCCCT 0.11 TAGTC 0.10 CACC 0.10
CGAGG 0.09 CACAC 0.09 CGTAC 0.09 CCCGG 0.08
ATGCG 0.08 TTAGT 0.08 TCTCT 0.08 CGTGC 0.08

H4acvsH3.YPD CTCAT 0.12 AGCAA 0.10 CACAC 0.10 CACC 0.09
GAAAA 0.09 GATAC 0.08 CATGC 0.08 TACCC 0.08
TAGTC 0.08 TTAT 0.08 TCTCT 0.07 CAAGT 0.07

H4acvsH3.H2O2 AGGGG 0.18 GGGGG 0.14 AAAAG 0.13 CCCCT 0.12
GTGGC 0.11 AAGGG 0.10 CTCCC 0.09 CTTGT 0.09
ACACG 0.09 GATAC 0.09 GGGAG 0.09 CCTCG 0.08

H3K4me1vsH3.YPD GGCA 0.08 TATC 0.08 CCAG 0.08 CTTGA 0.08
TTAA 0.08 TGCGG 0.08 TGCAT 0.07 CCTCA 0.07
TCCAA 0.07 AACCC 0.07 AGTT 0.07 GGTTG 0.07

H3K4me2vsH3.YPD CTCAT 0.06 ATGAG 0.06 GGGAA 0.06 CTTGT 0.06
AGACA 0.06 GATCT 0.05 CACTT 0.05 ACCAC 0.05
AGTCC 0.05 GCTTA 0.05 AAAGA 0.05 GTCCA 0.05

H3K4me3vsH3.YPD CACC 0.10 ACCCG 0.09 AGCCA 0.09 CAAGT 0.08
GTCCA 0.08 GTCAA 0.08 TCTCT 0.08 GAAAA 0.07
GCGTG 0.07 CTCAT 0.07 TAGTC 0.07 TCACT 0.07

H3K36me3vsH3.YPD AAAA 0.14 TACT 0.12 ATAT 0.10 TTTT 0.10
GTGA 0.10 CCTCC 0.09 TAAT 0.09 CGTCC 0.09
CATCA 0.09 AGTT 0.09 AACA 0.09 GGACG 0.09

H3K79me3vsH3.YPD TATA 0.22 TAAT 0.22 TAAA 0.16 ATAT 0.16
TATT 0.14 ATTA 0.14 CATCA 0.14 TTAGA 0.14
TGCA 0.13 TACT 0.13 TTTA 0.13 GATTT 0.11

negative features (Table 4). In other words, CG-rich DNA sequence areas are
often free of histone occupancy, acetylation, or methylation. We all knew that
CpG islands are usually near to gene starts. So we can infer from our results
that promoter regions are often not occupied by nucleosomes. This is consistent
with previous results by experimental approaches in vivo [16].

4 Conclusion

We have introduced a conditional model based method to predict qualitative
histone occupancy, acetylation, and methylation areas in DNA sequences. We
have selected a basic set of features based on DNA-sequence. Moreover, our
model can evaluate the informative features to discriminate between DNA areas
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Table 4. Most informative features selected from CRFs model for negative class with
k-grams=4 and k-grams=5

Dataset Feature Weight Feature Weight Feature Weight Feature Weight
H3.YPD CGCGC 0.15 TTTTT 0.13 AAAAA 0.12 GCGCG 0.11

CGCGG 0.09 CCGCG 0.09 CGGGC 0.09 CGTGC 0.08
GCGGG 0.08 TTATA 0.08 TTTTA 0.07 GGCCG 0.07

H4.YPD AAAAA 0.38 TTTTT 0.29 AGAAA 0.27 GCGCG 0.27
CGGAC 0.26 TTATA 0.26 TATAT 0.25 CGTGC 0.23
CGCGC 0.23 CCCGG 0.22 GGCT 0.22 CGCGG 0.21

H3.H2O2 CGCGC 0.35 GCGCG 0.27 GCGGG 0.23 CGCGG 0.22
CCGCG 0.22 TTTTT 0.20 AGGT 0.18 CTTC 0.16
CCCCC 0.16 GGGCG 0.15 CCGGG 0.15 ACCA 0.14

H3K9acvsH3.YPD GCCGC 0.13 GCAC 0.10 TCCAA 0.10 CCTCC 0.10
ATTTG 0.09 AAAG 0.09 TTCTG 0.09 CAAAT 0.09
TCTT 0.09 ATATT 0.09 GCAG 0.09 GCTG 0.09

H3K14acvsH3.YPD GCCGC 0.11 CCAAT 0.09 TTATC 0.08 CTCGT 0.08
ATTTG 0.08 ATTCA 0.08 TGATG 0.08 AAATT 0.08
CCAAA 0.07 TCTAA 0.07 CATCA 0.07 TCAG 0.07

H3K14acvsWCE.YPD CGCGG 0.14 GCCGC 0.12 AAGC 0.12 GCGGC 0.11
CTTA 0.11 TCTT 0.10 CGCGC 0.10 TCAG 0.10
AACA 0.10 CAAG 0.09 CTCT 0.09 GTCC 0.09

H3K14acvsH3.H2O2 AAATT 0.12 TAGT 0.11 TACG 0.08 GTGGG 0.08
CTTA 0.08 TATTA 0.08 GCGTC 0.08 GTGA 0.08
AAGC 0.08 CATA 0.08 TCCC 0.07 AATCA 0.07

H4acvsH3.YPD GCCGC 0.15 TATTA 0.11 CTCT 0.11 GCGGC 0.10
CAAG 0.09 TCGGA 0.09 TTATC 0.09 ATATT 0.08
TTTGA 0.08 AACA 0.08 TTCTT 0.08 CCAAA 0.08

H4acvsH3.H2O2 TATTA 0.10 TCGT 0.09 TGGAT 0.09 ATATT 0.09
TTTTG 0.09 TAATT 0.08 AATTT 0.08 ACAG 0.08
AAGC 0.08 TACG 0.08 CCATA 0.08 TAAAA 0.08

H3K4me1vsH3.YPD GAAG 0.10 TACAC 0.10 CCGAG 0.09 TATGT 0.08
CAATT 0.08 ATAGT 0.08 CCGGC 0.08 CGAGG 0.08
ACCCG 0.07 GCGTG 0.07 TGGG 0.07 TCCTA 0.07

H3K4me2vsH3.YPD ATATT 0.09 TATTA 0.08 TGAAG 0.07 AATAT 0.06
TAATA 0.06 TAATT 0.05 TTAAT 0.05 GTAAT 0.05
CTAAA 0.05 GCCGC 0.05 AACAT 0.05 ATCAT 0.05

H3K4me3vsH3.YPD GCCGC 0.14 CGCGG 0.09 CAAG 0.09 TCAG 0.09
ACCCC 0.09 GCGGC 0.09 CTTA 0.09 AAGC 0.08
GCGCG 0.08 CTCT 0.08 AACA 0.07 GCGTC 0.07

H3K36me3vsH3.YPD GAAG 0.18 ATAGT 0.12 TATAT 0.12 AAAAG 0.11
TAGGA 0.10 CTTAA 0.10 CTCGA 0.09 CACC 0.09
CTCAT 0.09 GTACT 0.09 ACCCG 0.09 ACATA 0.09

H3K79me3vsH3.YPD TATAT 0.22 ATATA 0.20 ACATA 0.19 AAAAA 0.17
TTGT 0.16 TTATA 0.16 TATAA 0.16 GCCGC 0.15
ACGTA 0.13 GAAG 0.13 GCCCG 0.13 CTTC 0.12

with high and low occupancy, acetylation, or methylation. In the near future,
we plan to incorporate features related to sequence motifs into our method in
order to capture more faithfully the constrains on the model.
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