
Continuous-Time Recurrent Neural Networks for
Generative and Interactive Musical Performance

Oliver Bown1 and Sebastian Lexer2

1 Centre for Cognition, Computation and Culture,
2 Department of Music,

Goldsmiths College, University of London,
New Cross, SE14 6NW, UK

o.bown@gold.ac.uk, s.lexer@incalcando.com

Abstract. This paper describes an ongoing exploration into the use of
Continuous-Time Recurrent Neural Networks (CTRNNs) as generative
and interactive performance tools, and using Genetic Algorithms (GAs)
to evolve specific CTRNN behaviours. We propose that even randomly
generated CTRNNs can be used in musically interesting ways, and that
evolution can be employed to produce networks which exhibit proper-
ties that are suitable for use in interactive improvisation by computer
musicians. We argue that the development of musical contexts for the
CTRNN is best performed by the computer musician user rather than
the programmer, and suggest ways in which strategies for the evolution
of CTRNN behaviour may be developed further for this context.

1 Introduction

At the junction between computer music and artificial intelligence lies the goal
of developing generative or interactive software agents which exhibit musical-
ity. The appearance of musicality is determined either by a listening, watching
audience or an interacting performing musician. Attempts in this domain have
taken on a wide variety of forms due, on the one hand, to the wide variety of
methods in artificial intelligence, and broadened further by the myriad possible
interpretations of these techniques in a musical domain, and in addition by the
myriad musical styles and substrates in which such an interpretation takes place
[16, 10].

The approach presented here is inspired first and foremost by a search for
general-purpose behavioural entities that could be adopted by computer mu-
sicians in a flexible manner. Our approach is influenced by, and indeed made
possible by, the availability and popularity of modular extensible computer mu-
sic platforms such as Max/MSP [2], PD [3] and SuperCollider [1]. Practising
musicians who work with these tools often build up personalised repertoires
of software patches and commonly adapt publicly available third-party objects
to their own performance needs. This feeds a powerful form of social creative
search in which something designed with a given purpose in mind may be re-
appropriated indefinitely. Thus rather than thinking in terms of stand-alone



intelligent musical systems, we conceive of a generic behavioural tool that can
be developed in different directions by practising musicians.

This paper proposes the Continuous-Time Recurrent Neural Network
(CTRNN) as one such tool. The remainder of this section gives a background and
technical description of the CTRNN and discusses aspects of its behaviour that
are relevant to musical improvisation. Section 2 discusses the implementation
of the CTRNN in Max/MSP and initial performance uses of the CTRNN, and
expands upon our methodology. Sections 3 and 4 discuss methods for evolving
CTRNNs and for designing performance contexts for them.

1.1 Background

Non-symbolic artificial intelligence (AI) emphasises low-level behaviours at the
heart of all species’ strategies for survival, as understood in terms of Darwin’s
theory of evolution [6]. Early work in cybernetics by Grey-Walter [7] established
an experimental context in which wheeled robots, containing sensors and motors
connected by simple analogue circuits, could be designed to produce observably
lifelike behaviour. Since the development of Genetic Algorithms (GAs) and in-
creasingly smaller and faster computer processors, it has become possible to
evolve compact algorithms that allow a physical wheeled robot to satisfactorily
perform more precisely defined cognitive tasks.

The notion of minimal cognition [13, 5] has helped home in on the meaning of
the term lifelike. In recent years a great effort has been made to understand how
extremely simple biologically-inspired algorithms could learn tasks such as object
recognition, selective attention and simple memory, using CTRNNs embodied in
simulated agents and situated in simple physical environments.

1.2 Technical Description of the CTRNN

CTRNNs are a kind of artificial neural network: an interconnected network of
simulated neurons modelled on a computer. In the case of CTRNNs neurons are
typically of a type known as the leaky integrator. This is a greatly simplified
model of a real neuron, with a continually updating internal state determined
by a differential equation,

τi(dyi/dt) = −yi +
∑

Wijσ(gj(yj − bj)) + Ii (1)

where τi is the time constant, gi is the gain and bi is the bias for neuron i,
Ii is any external input for neuron i and Wij is the weight of the connection
between neuron i and neuron j. σ is a non-linear transfer function which in our
case is tanh.

CTRNNs allow recurrency, meaning that network connections can exist in
any direction, including potential connections from any node to itself. The com-
bination of recurrency and internal state makes for a system which can produce
complex internal patterns of activity and which has a memory-like response to



Hidden NodesInput Nodes
Output Nodes 

(subset of hidden nodes)

Fig. 1. CTRNN architecture

its environment [13]. Each node has three parameters – bias, gain and time con-
stant – associated with its behaviour, and each connection between nodes has
one parameter – a weight. Due to the complex relation between network param-
eters and network behaviour, along with the non-specificity of solutions to tasks
that they are typically used for, a common method for arriving at a CTRNN
which performs a certain task is to use a Genetic Algorithm (GA).

CTRNNs are known to be theoretically capable of replicating any dynamical
system, and it has been shown that very small CTRNNs are capable of arbitrarily
complex dynamics [4].

1.3 Categorisation of Behaviour from CTRNN

Our interest in the CTRNN as a musical unit stems from the potentially un-
bounded range of temporal dynamics of which it is capable. It is a sub-symbolic
system, meaning that it is unlikely to have immediate application in the domain
of discretised musical events traditional to computer music and fundamentally
implicit in human musical behaviour. Although an appropriate use of CTRNNs
would therefore be in the signal domain, we focus on simple rhythmic behaviours
at the control rate, and we refer to this domain as gestural. The CTRNN’s in-
teraction with the world consists of vectors of real valued inputs and outputs,
updating continually and frequently, in our case on the order of 10 milliseconds.
A representative example of the CTRNN in a musical context, which illustrates
our intended use of the system, places it with a series of features extracted from
an audio stream as input, and a set of synthesis parameters as output. In this



case the CTRNN is conceived of as a direct interactive participant in a musical
performance.

Beer [4] provides an extensive mathematical analysis of the behaviour of
small CTRNNs, the presentation of which is beyond the scope of this paper. A
key notion in such an analysis is that nodes with suitably strong self-connections
can saturate, meaning that their own feedback dominates their input and locks
them in a certain state. In this way nodes can act as internal switches which
influence the behaviour of the rest of the network. Such nodes may flip states.
More broadly, due to its internal state and recurrency, the state of a CTRNN at
time t is determined not only by the present input, but the history of inputs up
until time t, and the starting state of the network.

In the case of a static input (i.e., whose values are not changing), CTRNNs
can be described in terms of their internal dynamics in the same way as any
closed dynamical system. The network will either find a static resting state,
move periodically, or move quasiperiodically or chaotically [9].

In the case of changing inputs, we consider three distinct categories of
CTRNN behaviour as perceived. These categories are specific to our musical
purpose and are not derived from a formal approach: they attempt to capture a
musician’s perception of CTRNN behaviour rather than CTRNNs themselves.

In the first category, each input state leads to one output pattern, which may
be either static or cyclical. As the input state moves from A to B and back again,
the CTRNN moves between associated patterns, returning to the same pattern
for each input.

The second category is identical to the first except that after changing input
state from A to B, a transitory period of indeterminate length precedes the
output’s arrival at its resting pattern. The length and form of these transitionary
sections vary depending on the particular trajectory through input states, but
always end up at the same pattern for any given input state.

In the third category, there may be more than one output pattern for each
input state, and which one is arrived at will be determined by the trajectory
through input states. Thus moving from input state A to input state B leads
to a different output pattern than if one were to move via input state C. In
other words, the system has multiple attractors for the same resting input, and
is dependent on the history of the input leading up to its resting state.

2 Musical Uses

The use of neural networks in studies of music cognition and in composition
already has a long and rich history. Commonly cited benefits of a neural network
approach to musical problems are generalisation, the possibility of extrapolating
general features from a corpus of examples, and graceful degradation, the robust
nature of the network’s response to unexpected inputs, as compared to rule-based
systems. [15] and [8] contain an exemplary cross-section of such work. Mozer [11],
for example, uses trained recurrent neural networks to generate musical melodies
with note-by-note prediction. He identifies and addresses problems of securing



musical structure over longer time scales than are naturally dealt with by the
network, and thus improves the quality of melodies generated in this way. In this
and other work in music and AI the final goal is often a machine that makes
novel competent music within a given context without the aid of a musician.
According to the valuable ‘Frankenstein’ analogy provided by Todd and Werner
in the same volume [16], the present approach differs from this body of work by
beginning with the problem of the ‘monster’s’ acceptance in society.

2.1 The CTRNN as Max/MSP Object

The first author has implemented the CTRNN in C as a Max/MSP external
object. The object can read and write networks to and from plain text files,
and can also randomly generate networks according to a set of user-specified
parameters. It can also save and recall network states.

Inputs are sent to the CTRNN as a list of floats to the object’s left inlet.
Each input list triggers one update of the network, causing a list of output values
to be sent from the object’s left outlet. Inputs should therefore be sent at equal
time intervals. For behaviour suitable for human interaction, a rate of the order
of 10 milliseconds is appropriate. This can easily be achieved in a robust manner
in Max/MSP.

We describe below how networks with specific behaviour have been generated
using a GA in a simple command-line program so that the Max/MSP object can
then read them. In other cases, users can randomly generate networks by select-
ing a number of input nodes, a number of outputs, and a number of internal
(hidden) nodes, as well as setting maximum and minimum values for a number
of parameters that will then be generated at random. These ranges include val-
ues for the time constants, biases and gains for both hidden nodes and input
nodes (separate ranges are allowed for each type of node), for weights of connec-
tions from input nodes to hidden nodes, and finally for weights of connections
from hidden nodes to hidden nodes. There is also a density parameter which de-
termines the proportion of connections that are non-zero. Randomly generated
networks obviously do not have precisely pre-specified behaviour, but they still
obey tendencies. For example it is easy to vary the number of hidden nodes and
the density of networks and observe an increased activity as both of these values
are increased.

2.2 Development of a Methodology

Initial motivation for using the CTRNN came from a desire to generate metri-
cally free rhythmic patterns, inspired by the work of Karl Sims in evolving loco-
motive behaviours [12]. Rhythmic patterns were achieved by placing a threshold
on one of the CTRNN outputs in order to trigger drum events. This idea was
the subject of the first author’s MSc dissertation, and was conducted entirely in
a non-realtime context.

The second author, working with freely improvised electroacoustic music, has
started working with a trial version of the CTRNN Max/MSP object to control



a spectral filter through which he plays the piano. This reframes the original mo-
tivation behind using the CTRNN according to a distinction in electroacoustic
theory between the systems autonomy of the instrument and the control of the
performer. According to this the most interesting period in the case of the piano
is its decay period, which lies beyond the control of the player: the sound is on
its own after the hammer strikes the string. The pianist John Tilbury describes
this as the contingency of the piano sound [14]. The present form of the CTRNN,
even randomly generated, offers an opportunity to implement similar contingent
relationships between performer and electroacoustic process, generating micro
structures that control electroacoustic processes in turn dependent on the per-
former’s activity. Given the CTRNN as a Max/MSP object the user would be
free to develop his or her own approach to the problem of how to map inputs and
outputs, and take on the responsibility of making the CTRNN sound good in
his or her own musical context through an iterated approach of performance and
adjustment. The challenge of refining parameter mappings is already familiar to
any musician developing interactive software.

Introducing evolution to the project suggests the possibility of developing
a system that has certain behavioural facets that would drive an engaging im-
provisation in very basic ways: for example responding to an input pattern but
not in the same way every time; behaviour potentially changing over time; set-
tling into patterns but producing variations on themes. Put more loosely, such
a system should have idiosyncrasies and tendencies that the user could put to
effective use to drive an improvisation. However, writing fitness functions that
result in these desires being met is not straightforward. In the following section
we describe initial attempts to do this.

3 Evolving Musical CTRNNs

Our long term aim is to develop methods for allowing musician users to be able
to define their own behavioural targets for CTRNNs. However, since the use
of GAs is not straightforward, some thought needs to be given to how this is
facilitated, and what kind of behaviours can be defined. This paper deals with
a simple initial experiment to evolve CTRNNs that exhibit the third category
of behaviour in section 1.3, in the hope that the resulting networks exhibit
behaviour that is inherently appealing to musicians.

This only goes half way to the claim of evolving musical behaviour since there
are many musical considerations left over. In the previous section, we argued that
the CTRNN should be placed in a musical context by the musician user. In the
language of behavioural robotics, this means it is up to the musician to embody
and situate the CTRNN. Embodiment, in this context, refers to the CTRNNs
set of input and output systems in Max/MSP, such as audio analysis tools at the
input, and synthesiser parameters at the output. Situatedness, in this context,
refers to the musical environment in which the CTRNN will be used, which
includes the playing styles and knowledge of the performers who will be playing
with the CTRNN. Note that whilst, ideally, behavioural systems are evolved in



embodied, situated contexts, the complications that come with achieving this in
a musical context are side-stepped by trying to evolve general-purpose musical
behaviours. Such issues are addressed in the concluding remarks.

CTRNNs are assumed to be fully-connected in the hidden layer, and with
a full set of connections from the input layer to the hidden layer. Non-fully
connected CTRNNs are thus expressed as having some zero weights. The number
of parameters needed to describe a fully-connected CTRNN with n hidden nodes
and m input nodes is n2 +3n+nm+3m (since there are n2 connections between
the hidden nodes, and nm connections from the input nodes to the hidden nodes,
each with a single weight, as well as bias, gain and time constant parameters for
each of the hidden and input nodes). Genotypes for the CTRNNs were expressed
as vectors of real numbers in the range {0,1}, with a mapping from genotype
to phenotype that transformed this range to prespecified ranges for each of the
parameters. All mappings were linear except for time constants, which were
mapped exponentially.

A rank-based GA was used with standard crossover and mutation. At each
generation, pairs of individuals from the fittest third of the population were
selected at random for breeding, and their offspring were used to replace indi-
viduals from the weakest third of the population. Mutation involved adding a
random vector of average length 0.01, drawn from a Gaussian distribution, to
the individual genotype string. Genotype values that fell outside of the range
{0,1} were bounced back in with an elasticity of 0.1. Multipoint crossover was
used, with a probability of 0.1 that the source genotype would be swapped at
each point along the genotype.

The fitness function for the CTRNN was as follows: a number x of input
patterns were generated using random walks starting from the origin (the same
set of input patterns were then used for all of the trials). For each input pattern
the CTRNN was reset to zero, and run on the input values for t time steps, then
on a fixed input of zero for another t time steps, and then for another t/10 time
steps, still with the zero input, the output sequence for this final period being
stored. The x stored output sequences were then compared with each other in
order to establish their similarity. For each pair of outputs, absolute differences
between corresponding pairs of values in the output sequences were taken and
summed to produce a dissimilarity score. This was repeated with different time
offsets, and the lowest possible dissimilarity score was taken (i.e., the score for
the case in which the pairs were most similar). The average of the dissimilarity
scores for each pair of outputs was taken as the fitness of the CTRNN. This
meant that out of phase, but otherwise identical, periodic outputs would receive
a score of zero. Two versions of the evolutionary process were attempted. In
the first a gradual increase in the number x of input sequences over the course
of the GA was used in order to smooth the difficulty of the task. Early on in
the GA CTRNNs had tasks involving 3 input sequences, and over time this was
increased to 20 input sequences. In the second version, 20 input sequences were
used right from the beginning. GAs were run for 2000 generations. t was fixed
at 500.



A number of evolutionary runs were made with different values for the num-
ber of hidden nodes from 3 to 10. In each case networks were give two inputs and
three outputs. This was so that the network could be later interacted with using
a two-dimensional controller in Max/MSP (hence the two inputs) and could be
visualised in a three-dimensional parameter-space plot (hence the three outputs).

The resulting CTRNNs were tested for the generality of their behaviour by
being compared with 200 random CTRNNs of the same number of nodes on
an identical task as the fitness function, but with a new set of random input
patterns which were different from the ones used in the fitness function. In
other words, the CTRNNs were tested to see how far their history-dependent
behaviour extended. Figure 2 shows the results of such a test averaged over 10
trials. A few random nodes score higher than the evolved nodes. It was noted
that random nodes with a higher density of connections scored higher, exhibiting
more erratic behaviour in general. However, despite the fact that the performance
of the evolved CTRNNs is quite variable, the graph indicates that the evolved
behaviour has some generality.

Fig. 2. Generality of fitness of evolved networks (lines) versus random net-
works (points) for a range of node numbers. The lighter line shows networks
evolved using an incremental fitness function

Informal interactive testing of the evolved and random networks showed a re-



markable range of behaviours, and the most immediate implication of this is that
a more thorough categorisation of CTRNN behaviour from a musical point of
view is in order. Evolved networks tended to be doing something more interesting
and often the nature of their evolved behaviour was immediately apparent: by
repeating the same input patterns one could easily observe the network falling
into distinct cyclic attractors. The incrementally evolved networks seemed to
find less satisfying solutions which often involved oscillating at a rate near to
the time step of the CTRNN update rules; a behaviour that it would probably
be beneficial to punish. Larger networks were generally more interesting, but the
best networks from this trial, as judged by the first author, were the 5 and 10
node evolved networks, suggesting that larger networks are not necessarily more
interesting.

Similar informal tests with a wider set of CTRNNs revealed the potential
for compositionally useful behaviour in almost all networks, both random and
evolved: regardless of interactive potential or sustained varied dynamics, many
of the oscillations made by CTRNNs at cyclic attractors were rhythmically and
dynamically pleasing when connected up to various synthesis or filter parameters.

We have used the word ‘interesting’ without hope of qualifying it with why
things are interesting at this stage. More formal tests should be set up to deter-
mine which kind of network behaviours are of interest to a range of performing
musicians. Since our focus is on interactive behaviour in an improvisational con-
text our main concern is whether the CTRNNs can sustain interest through
interaction. Whilst our small evolved CTRNNs had a relatively predictable be-
haviour (although they produced more sustained interest than random networks
of a similar size), more complex CTRNNs (with large numbers of densely con-
nected nodes) produced complex output patterns that were intriguing to listen
to but appeared to have very little to do with what was being played to them,
thus failing to be interactive. Truly interesting interactive behaviour comes with
the sense that the CTRNN is responding to its input at the same time as per-
forming autonomously. This has been hard to pinpoint in the present study but
should be made a central concern in future tests.

We conclude that it is relatively easy to define targets for CTRNN behaviour
and approach those targets through evolution, but that further investigation is
needed into how to specify target behaviour that is musically useful. Now that
a framework is in place in which CTRNNs can be evolved and tested, both in
simulation and through direct interaction in musical contexts, it will be possible
to extensively explore a variety of approaches to designing fitness functions and
applying network behaviours to musical goals. Plans for future work in these
areas are discussed in the following section.

4 Future Work

4.1 Finding Target Behaviours

With the standalone GA application in place, exploring behaviours evolved for
different tasks becomes a simple matter of writing new fitness functions. The



Fig. 3. Example of an output trajectory for an evolved CTRNN

fitness function used in the experiment above aims to produce a behaviour that
exhibits some minimal aspect of musicality. A range of similarly general purpose
fitness functions could be added to this to produce a repertoire of behavioural
units, and to this extent it would be desirable to test a variety of simple fitness
functions in an iterative manner with improvising musicians. Alternative func-
tions could focus on levels of predictability, rhythmic features of the CTRNN
behaviour, call and answer dynamics, or producing specific patterns under spe-
cific circumstances.

A natural development would be to get CTRNNs to imitate human perfor-
mances, beginning with recorded training data which the CTRNN is expected to
imitate. Referring back to our representative example in section 1.3, a performer
could take over the part of the CTRNN, controlling the filter, and all input and
output data could then be recorded. However, this approach implies difficulties:
it would not be sufficient just to feed the CTRNN with the input sequences and
rate it according to how close its output comes to the target output sequences.
At the very least the sequences would need to be divided into a set of discrete
trials; this is necessary in order to convince the network to pay any attention
to its inputs. To this end it will be necessary to explore how data sets can be
recorded and divided into significant events either manually or automatically.



4.2 Developing Mappings from CTRNN Outputs

When using the CTRNN in Max/MSP, the user is able to observe three dimen-
sions of output states from a CTRNN in a window generated in Jitter, the video
editing extension to Max/MSP. By observing output states during practice we
propose developing this interface so that a musician could draw colour-coded re-
gions into the 3-D space that he or she wishes to correlate to specific parameter
settings of an instrument. A feedforward neural network could then be trained
to implement the desired mapping. Through an iterative process of practice and
adjustment a more carefully crafted combination of behaviour and desired sound
could be developed, bringing together a CTRNN behaviour with a specific reper-
toire of output states. Successfully implementing this addition may reinforce the
notion that it is sufficient to provide the musician with a set of CTRNNs with
general-purpose behaviours. The musician is then able to chose from a set of
behaviours, and iteratively design a mapping from behaviour to audible musical
output. Similar processes could be applicable to the input of the network.

4.3 Evoking a Coevolutionary Context

Better still would be to create a context in which the behaviour of the CTRNN
can be modified in real time, so that the CTRNN, its embodiment (the
Max/MSP input-output context), and its situatedness (the musical context that
it will be used in) could collectively converge, rather than the latter two converg-
ing around the former. Thus experimentation with real-time interactive CTRNNs
begs the notion of a coevolution between user and unit that would lead to a pow-
erful interactive system at the moment of performance, but would also imply a
gradual adaptive development of all aspects of the system during preparation.
CTRNNs can also be modified in various ways to introduce ontogenic adaptation
(as opposed to evolution) into the preparation process. This paper stops short
of suggestions for how these developments could be achieved, but research into
this problem could take various immediate directions likely to throw up fruitful
results.

5 Summary

We have introduced the CTRNN as a performative and/or compositional tool
for musicians using modular extensible computer music platforms such as
Max/MSP. We have described how networks can be randomly generated or
evolved to produce particular behavioural properties, and demonstrate very sim-
ple examples in which evolved CTRNNs exhibit behaviours that are of interest
to improvising musicians.

We have discussed future work in this area, including gathering training data
to be used for the evolution of more specific CTRNN behaviours and developing
mappings from CTRNNs to performance parameters using a trained feedforward
network. We suggested that the CTRNN should be adapted by musicians ac-
cording to their own performance contexts and their own interpretation of its



behaviour, and that it should inform their own actions during performance as
well as during the development of their performance contexts.

The notion of a coevolution or adaptive codevelopment between CTRNN be-
haviour and user is provoked by the present work. We suggest that this problem
could be made into a fruitful topic of research.

Acknowledgments

Oliver Bown’s research is supported by a bursary from the Department of Com-
puting, Goldsmiths College. We would like to thank Geraint Wiggins for exten-
sive feedback and Mike Riley and the Goldsmiths Department of Visual Arts’
Digital Media Lab for the use of their computers as Apple XGrid agents.

References

1. http://www.audiosynth.com.
2. http://www.cycling74.com.
3. http://www.puredata.info.
4. R. D. Beer. On the dynamics of small continuous recurrent neural networks. Adap-

tive Behavior, 3(4):469–509, 1995.
5. R.D. Beer. The dynamics of active categorical perception in an evolved model

agent. Adaptive Behavior, 11(4):209–243, 2003.
6. C. Darwin. On the origin of species by means of natural selection, or The preser-

vation of favoured races in the struggle for life. D. Appleton and company, 1860.
7. W. Grey Walter. An imitation of life. Scientific American, 182(4):42–54, 1950.
8. N. Griffith and P. M. Todd, editors. Musical Networks. MIT Press, 1999.
9. D. Kaplan and L. Glass. Understanding Nonlinear Dynamics. Springer-Verlag,

1995.
10. E. Miranda. Composing Music with Computers. Focal Press, 2001.
11. M. C. Mozer. Neural network music composition by prediction: Exploring the ben-

efits of psychoacoustic constraints and multi-scale processing. Connection Science,
6(2-3):247–280, 1994.

12. K. Sims. Evolving 3d morphology and behaviour by competition. In Artificial Life
IV Proceedings. MIT Press, 1994.

13. A.C. Slocum, D.C. Downey, and R.D. Beer. Further experiments in the evolution
of minimally cognitive behavior: From perceiving affordances to selective atten-
tion. In J. Meyer, A. Berthoz, D. Floreano, H. Roitblat, and S. Wilson, editors,
From Animals to Animats 6: Proceedings of the Sixth International Conference on
Simulation of Adaptive Behavior, pages 430–439. MIT Press, 2000.

14. J. Tilbury. Feldman and the piano: the art of touch and celebration of contingency.
In Second Biennial International Conference On Twentieth-Century Music, Gold-
smiths College, University of London, 2001.

15. P. M. Todd and D. Gareth Loy. Music and Connectionism. MIT Press, 1991.
16. P. M. Todd and G. Werner. Frankensteinian approaches to evolutionary music

composition. In Niall Griffith and Peter M. Todd, editors, Musical Networks: Par-
allel Distributed Perception and Performance, pages 313–339. MIT Press/Bradford
Books, Cambridge, MA, 1999.

This article was processed using the LATEX macro package with LLNCS style


