Skip to main content

Fluctuating Crosstalk as a Source of Deterministic Noise and Its Effects on GA Scalability

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3907))

Included in the following conference series:

  • 1595 Accesses

Abstract

This paper explores how fluctuating crosstalk in a deterministic fitness function introduces noise into genetic algorithms. We model fluctuating crosstalk or nonlinear interactions among building blocks via higher-order Walsh coefficients. The fluctuating crosstalk behaves like exogenous noise and can be handled by increasing the population size and run duration. This behavior holds until the strength of the crosstalk far exceeds the underlying fitness variance by a certain factor empirically observed. Our results also have implications for the relative performance of building-block-wise mutation over crossover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sastry, K., Goldberg, D.E.: Let’s get Ready to Rumble: Crossover Versus Mutation Head to Head. In: Proceedings of the 2004 Genetic and Evolutionary Computation Conference, vol. 2, pp. 126–137 (2004); Also IlliGAL Report No. 2004005

    Google Scholar 

  2. Goldberg, D.E.: Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Acadamic Publishers, Boston (2002)

    MATH  Google Scholar 

  3. Kumar, V.: Tackling Epistasis: A Survey of Measures and Techniques. In: Goldberg, D.E. (ed.) Assignment from an advanced GEC course taught at UIUC (2002)

    Google Scholar 

  4. Davidor, Y.: Epistasis Variance: A Viewpoint on GA-hardness. Foga 91, 23–35 (1991)

    Google Scholar 

  5. Naudts, B., Kallel, L.: Some Facts about so-called GA-hardness Measures. Tech. Rep. No. 379, Ecole Polytechnique, CMAP, France (1998)

    Google Scholar 

  6. Heckendorn, R.B., Whitley, D.: Predicting Epistasis from Mathematical Models. Evolutionary Computation 7(1), 69–101 (1999)

    Article  Google Scholar 

  7. Mühlenbein, H., Mahnig, T., Rodriguez, A.O.: Schemata, Distributions and Graphical Models in Evolutionary Optimization. Journal of Heuristics 5, 215–247 (1999)

    Article  MATH  Google Scholar 

  8. Pelikan, M., Goldberg, D.E., Lobo, F.G.: A Survey of Optimization by Building and Using Probabilistic Models. Comput. Optim. Appl. 21(1), 5–20 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  10. Beasley, D., Bull, D.R., Martin, R.R.: Reducing Epistasis in Combinatorial Problems by Expansive Coding. In: ICGA, pp. 400–407 (1993)

    Google Scholar 

  11. Barbulescu, L., Watson, J.P., Whitley, L.D.: Dynamic Representations and Escaping Local Optima: Improving Genetic Algorithms and Local Search. In: AAAI/IAAI, pp. 879–884 (2000)

    Google Scholar 

  12. Goldberg, D.E.: Genetic Algorithms and Walsh Functions: Part I, a Gentle Introduction. Complex Systems 3(2), 129–152 (1989) (Also TCGA Report 88006)

    MATH  MathSciNet  Google Scholar 

  13. Bethke, A.D.: Genetic Algorithms as Function Optimizers. PhD thesis, The University of Michigan (1981)

    Google Scholar 

  14. Sastry, K.: Evaluation-Relaxation Schemes for Genetic and Evolutionary Algorithms. Master’s thesis, University of Illinois at Urbana-Champaign, General Engineering Department, Urbana, IL (2001) (Also IlliGAL Report No. 2002004)

    Google Scholar 

  15. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic Algorithms, Noise, and the Sizing of Populations. Complex Systems 6, 333–362 (1992) (Also IlliGAL Report No. 91010)

    MATH  Google Scholar 

  16. Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: Linkage Learning, Estimation Distribution, and Bayesian Networks. Evolutionary Computation 8(3), 314–341 (2000) (Also IlliGAL Report No. 98013)

    Article  Google Scholar 

  17. Harik, G., Cantú-Paz, E., Goldberg, D.E., Miller, B.L.: The Gambler’s Ruin Problem, Genetic Algorithms, and the Sizing of Populations. Evolutionary Computation 7(3), 231–253 (1999) (Also IlliGAL Report No. 96004)

    Article  Google Scholar 

  18. Bulmer, M.G.: The Mathematical Theory of Quantitative Genetics. Oxford University Press, Oxford (1985)

    Google Scholar 

  19. Falconer, D.S.: Introduction to Quantitative Genetics, 3rd edn. John Wiley and Sons, New York (1989)

    Google Scholar 

  20. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive Models for the Breeder Genetic Algorithm: I. Continous Parameter Optimization. Evolutionary Computation 1(1), 25–49 (1993)

    Article  Google Scholar 

  21. Mühlenbein, H., Schlierkamp-Voosen, D.: The Science of Breeding and its Application to the Breeder Genetic Algorithm (BGA). Evolutionary Computation 1(4), 335–360 (1994)

    Article  Google Scholar 

  22. Thierens, D., Goldberg, D.E.: Convergence Models of Genetic Algorithm Selection Schemes. Parallel Problem Solving from Nature 3, 116–121 (1994)

    Google Scholar 

  23. Thierens, D., Goldberg, D.E.: Elitist Recombination: An Integrated Selection Recombination GA. In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 508–512 (1994)

    Google Scholar 

  24. Bäck, T.: Generalized Convergence Models for Tournament—and (μ, λ)— Selection. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 2–8 (1995)

    Google Scholar 

  25. Miller, B.L., Goldberg, D.E.: Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise. Evolutionary Computation 4(2), 113–131 (1996) (Also IlliGAL Report No. 95009)

    Article  Google Scholar 

  26. Voigt, H.M., Mühlenbein, H., Schlierkamp-Voosen, D.: The Response to Selection Equation for Skew Fitness Distributions. In: Proceedings of the International Conference on Evolutionary Computation, pp. 820–825 (1996)

    Google Scholar 

  27. Blickle, T., Thiele, L.: A Mathematical Analysis of Tournament Selection. In: Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 9–16 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sastry, K., Winward, P., Goldberg, D.E., Lima, C. (2006). Fluctuating Crosstalk as a Source of Deterministic Noise and Its Effects on GA Scalability. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732242_72

Download citation

  • DOI: https://doi.org/10.1007/11732242_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33237-4

  • Online ISBN: 978-3-540-33238-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics