Skip to main content

A Compositional Approach to the Stochastic Dynamics of Gene Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 3939))

Abstract

We propose a compositional approach to the dynamics of gene regu-latory networks based on the stochastic π-calculus, and develop a representation of gene network elements which can be used to build complex circuits in a transparent and efficient way. To demonstrate the power of the approach we apply it to several artificial networks, such as the repressilator and combinatorial gene circuits first studied in Combinatorial Synthesis of Genetic Networks [1]. For two examples of the latter systems, we point out how the topology of the circuits and the interplay of the stochastic gate interactions influence the circuit behavior. Our approach may be useful for the testing of biological mechanisms proposed to explain the experimentally observed circuit dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guet, C.C., Elowitz, M.B., Hsing, W., Leibler, S.: Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002)

    Article  Google Scholar 

  2. Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. Proc. Nat. Acad. Sci. 98, 8614–8619 (2001)

    Article  Google Scholar 

  3. Paulsson, J., Berg, O.G., Ehrenberg, M.: Stochastic Focusing: fluctuationenhanced sensitivity of intracellular regulation. Proc. Nat. Acad. Sci. 97, 7148–7153 (2000)

    Article  Google Scholar 

  4. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of stochastic process algebras to bioinformatics of molecular processes. Information Processing Letters 80, 25–31 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Regev, A.: Computational Systems Biology: A Calculus for Biomolecular knowledge. Ph.D. Thesis, Tel Aviv University (2002)

    Google Scholar 

  7. Regev, A., Shapiro, E.: Cellular abstractions: Cells as computation. Nature 419, 343 (2002)

    Article  Google Scholar 

  8. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An abstraction for biological compartments. Theoretical Computer Science 325(1), 141–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cardelli, L.: Brane Calculi - Interactions of Biological Membranes. Computational Methods in Systems Biology, pp. 257–278. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  10. Chiarugi, D., Curti, M., Degano, P., Marangoni, R.: VICE: A vIrtual cEll. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 207–220. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Kuttler, C., Niehren, J.: Gene Regulation in the Pi Calculus: Simulating Cooperativity at the Lambda Switch. Transactions on Computational Systems Biology (2005) (to appear)

    Google Scholar 

  12. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  Google Scholar 

  13. Philips, A., Cardelli, L.: A Correct Abstract Machine for the Stochastic Picalculus. In: Proc. BioConcur 2004 (2005)

    Google Scholar 

  14. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Chem. Phys. 81, 2340–2361 (1977)

    Article  Google Scholar 

  15. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  16. Guet, C.C.: Personal communication

    Google Scholar 

  17. Wigler, M., Mishra, B.: Wild by nature. Science 296, 1407–1408 (2002)

    Article  Google Scholar 

  18. Mao, L., Resat, H.: Probabilistic representation of gene regulatory networks. Bioinformatics 20, 2258–2269 (2004)

    Article  Google Scholar 

  19. Ronen, M., Rosenberg, R., Shraiman, B.I., Alon, U.: Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics. Proc. Nat. Acad. Sci. 99, 10555–10560 (2002)

    Article  Google Scholar 

  20. Brenner, S.: Loose Ends. Curr. Biology 5, 332 (1995)

    Article  Google Scholar 

  21. Bray, D.: Reasoning for Results. Nature 412, 863 (2001)

    Article  Google Scholar 

  22. Lazebnik, Y.: Can a biologist fix a radio? Or, what I learned while studying apoptosis. Cancer Cell 2, 179–182 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blossey, R., Cardelli, L., Phillips, A. (2006). A Compositional Approach to the Stochastic Dynamics of Gene Networks. In: Priami, C., Cardelli, L., Emmott, S. (eds) Transactions on Computational Systems Biology IV. Lecture Notes in Computer Science(), vol 3939. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732488_10

Download citation

  • DOI: https://doi.org/10.1007/11732488_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33245-9

  • Online ISBN: 978-3-540-33248-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics