Skip to main content

Genome-Wide Discovery of Modulators of Transcriptional Interactions in Human B Lymphocytes

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3909))

Abstract

Transcriptional interactions in a cell are modulated by a variety of mechanisms that prevent their representation as pure pairwise interactions between a transcription factor and its target(s). These include, among others, transcription factor activation by phosphorylation and acetylation, formation of active complexes with one or more co-factors, and mRNA/protein degradation and stabilization processes.

This paper presents a first step towards the systematic, genome-wide computational inference of genes that modulate the interactions of specific transcription factors at the post-transcriptional level. The method uses a statistical test based on changes in the mutual information between a transcription factor and each of its candidate targets, conditional on the expression of a third gene. The approach was first validated on a synthetic network model, and then tested in the context of a mammalian cellular system. By analyzing 254 microarray expression profiles of normal and tumor related human B lymphocytes, we investigated the post transcriptional modulators of the MYC proto-oncogene, an important transcription factor involved in tumorigenesis. Our method discovered a set of 100 putative modulator genes, responsible for modulating 205 regulatory relationships between MYC and its targets. The set is significantly enriched in molecules with function consistent with their activities as modulators of cellular interactions, recapitulates established MYC regulation pathways, and provides a notable repertoire of novel regulators of MYC function. The approach has broad applicability and can be used to discover modulators of any other transcription factor, provided that adequate expression profile data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303, 799–805 (2004)

    Article  Google Scholar 

  2. Gardner, T.S., di Bernardo, D., Lorenz, D., Collins, J.J.: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102–105 (2003)

    Article  Google Scholar 

  3. Elkon, R., Linhart, C., Sharan, R., Shamir, R., Shiloh, Y.: Genome-Wide In Silico Identification of Transcriptional Regulators Controlling the Cell Cycle in Human Cells. Genome Res. 13, 773–780 (2003)

    Article  Google Scholar 

  4. Stuart, J.M., Segal, E., Koller, D., Kim, S.K.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003)

    Article  Google Scholar 

  5. Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dalla-Favera, R., Califano, A.: Reverse engineering of regulatory networks in human B cells. Nature Genetics 37, 382–390 (2005)

    Article  Google Scholar 

  6. Zeitlinger, J., Simon, I., Harbison, C.T., Hannett, N.M., Volkert, T.L., Fink, G.R., Young, R.A.: Program-Specific Distribution of a Transcription Factor Dependent on Partner Transcription Factor and MAPK Signaling. Cell 113, 395–404 (2003)

    Article  Google Scholar 

  7. Luscombe, N.M., Babu, M.M., Yu, H., Snyder, M., Teichmann, S.A., Gerstein, M.: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312 (2004)

    Article  Google Scholar 

  8. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition-specific regulators from expression data. Nature Genetics 34, 166–176 (2003)

    Article  Google Scholar 

  9. de Lichtenberg, U., Jensen, L.J., Brunak, S., Bork, P.: Dynamic Complex Formation During the Yeast Cell Cycle. Science 307, 724–727 (2005)

    Article  Google Scholar 

  10. Pe’er, D., Regev, A., Tanay, A.: Minreg: Inferring an active regulator set. Bioinformatics 18, S258–S267 (2002)

    Google Scholar 

  11. Margolin, A., Nemenman, I., Basso, K., Klein, U., Wiggins, C., Stolovitzky, G., Dalla-Favera, R., Califano, A.: ARACNE: An algorithm for reconstruction of genetic networks in a mammalian cellular context. BMC Bioinformatics (in press, 2005), manuscript available online at: http://arxiv.org/abs/q-bio.MN/0410037

  12. Nemenman, I.: Information theory, multivariate dependence, and genetic network inference KITP, UCSB, NSF-KITP-04-54, Santa Barbara, CA (2004), manuscript available online at: http://arxiv.org/abs/q-bio/0406015

  13. Butte, A.J., Kohane, I.S.: Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac. Symp. Biocomput., 418–429 (2000)

    Google Scholar 

  14. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  15. Mendes, P.: Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem Sci. 22, 361–363 (1997)

    Article  Google Scholar 

  16. Ashburner, M., et al.: Gene Ontology: tool for the unification of biology. Nature Genetics 25, 1061–4036 (2000)

    Google Scholar 

  17. Sears, R., Nuckolls, F., Haura, E., Taya, Y., Tamai, K., Nevins, J.R.: Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000)

    Article  Google Scholar 

  18. Patel, J.H., et al.: The c-MYC Oncoprotein Is a Substrate of the Acetyltransferases hGCN5/PCAF and TIP60. Mol. Cell. Biol. 24, 10826–10834 (2004)

    Article  Google Scholar 

  19. Levens, D.L.: Reconstructing MYC. Genes Dev. 17, 1071–1077 (2003)

    Article  Google Scholar 

  20. Amati, B., Brooks, M.W., Levy, N., Littlewood, T.D., Evan, G.I., Land, H.: Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72, 233–245 (1993)

    Article  Google Scholar 

  21. Peukert, K., et al.: An alternative pathway for gene regulation by Myc. EMBO J. 16, 5672–5686 (1977)

    Article  Google Scholar 

  22. Luscher, B., Kuenzel, E.A., Krebs, E.G., Eisenman, R.N.: Myc oncoproteins are phosphorylated by casein kinase II. EMBO J. 8, 1111–1119 (1989)

    Google Scholar 

  23. Bousset, K., Henriksson, M., Luscher-Firzlaff, J.M., Litchfield, D.W., Luscher, B.: Identification of casein kinase II phosphorylation sites in Max: effects on DNA-binding kinetics of Max homo- and Myc/Max heterodimers. Oncogene 8, 3211–3220 (1993)

    Google Scholar 

  24. Noguchi, K., et al.: Regulation of c-Myc through Phosphorylation at Ser-62 and Ser-71 by c-Jun N-Terminal Kinase. J. Biol. Chem. 274, 32580–32587 (1999)

    Article  Google Scholar 

  25. Gregory, M.A., Qi, Y., Hann, S.R.: Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J. Biol. Chem. 278, 51606–51612 (2003)

    Article  Google Scholar 

  26. Niiro, H., Clark, E.A.: Regulation of B-cell fate by antigen-receptor signals. Nature Reviews Immunology 2, 945–956 (2002)

    Article  Google Scholar 

  27. Machida, N., et al.: Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 as a Putative Effector of Rap2 to Activate the c-Jun N-terminal Kinase. J. Biol. Chem. 279, 15711–15714 (2004)

    Article  Google Scholar 

  28. Salghetti, S.E., Kim, S.Y., Tansey, W.P.: Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J. 18, 717–726 (1999)

    Article  Google Scholar 

  29. Anant, S., Davidson, N.O.: An AU-Rich Sequence Element (UUUN[A/U]U) Downstream of the Edited C in Apolipoprotein B mRNA Is a High-Affinity Binding Site for Apobec-1: Binding of Apobec-1 to This Motif in the 3’ Untranslated Region of c-myc Increases mRNA Stability. Mol. Cell. Biol. 20, 1982–1992 (2000)

    Article  Google Scholar 

  30. Brenner, C., et al.: Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 24, 336–346 (2005)

    Article  MathSciNet  Google Scholar 

  31. Robertson, K.D., et al.: DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genetics 25, 338–342 (2000)

    Article  Google Scholar 

  32. Wingender, E., et al.: The TRANSFAC system on gene expression regulation Nucl. Acids Res. 29, 281–283 (2001)

    Article  Google Scholar 

  33. Karolchik, D., et al.: The UCSC Genome Browser Database. Nucl. Acids Res. 31, 51–54 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, K., Nemenman, I., Banerjee, N., Margolin, A.A., Califano, A. (2006). Genome-Wide Discovery of Modulators of Transcriptional Interactions in Human B Lymphocytes. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_30

Download citation

  • DOI: https://doi.org/10.1007/11732990_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33295-4

  • Online ISBN: 978-3-540-33296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics