Skip to main content

A Study of Accessible Motifs and RNA Folding Complexity

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3909))

Abstract

mRNA molecules are folded in the cells and therefore many of their substrings may actually be inaccessible to protein and microRNA binding. The need to apply an accessability criterion to the task of genome-wide mRNA motif discovery raises the challenge of overcoming the core O(n 3) factor imposed by the time complexity of the currently best known algorithms for RNA secondary structure prediction [24, 25, 43].

We speed up the dynamic programming algorithms that are standard for RNA folding prediction. Our new approach significantly reduces the computations without sacrificing the optimality of the results, yielding an expected time complexity of O(n 2 ψ(n)), where ψ(n) is shown to be constant on average under standard polymer folding models. Benchmark analysis confirms that in practice the runtime ratio between the previous approach and the new algorithm indeed grows linearly with increasing sequence size.

The fast new RNA folding algorithm is utilized for genome-wide discovery of accessible cis-regulatory motifs in data sets of ribosomal densities and decay rates of S. cerevisiae genes and to the mining of exposed binding sites of tissue-specific microRNAs in A. Thaliana.

Further details, including additional figures and proofs to all lemmas, can be found at: http://www.cs.tau.ac.il/~michaluz/QuadraticRNAFold.pdf

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarawal, A., Park, J.: Notes on searching in multidimensional monotone arrays. In: Proc. 29th IEEE Symp. on Foundations of Computer Science, pp. 497–512 (1988)

    Google Scholar 

  2. Akmaev, V., Kelley, S., Stormo, G.: A phylogenetic approach to RNA structure prediction. Proc. Int. Conf. Intell. Syst. Mol. Biol. 235, 10–17 (1999)

    Google Scholar 

  3. Arava, Y., Wang, Y., Storey, J., Liu, C., Brown, P., Herschlag, D.: Genome-wide analysis of mRNA translation profiles in saccharomyces cerevisiae. PNAS 100, 3889–3894 (2003)

    Article  Google Scholar 

  4. Christofferson, R., et al.: Application of computational technologies to ribozyme biotechnology products. J. Molecular Struct (Theochem.) 311, 273 (1994)

    Article  Google Scholar 

  5. Crochemore, M., Landau, G., Schieber, B., Ziv-Ukelson, M.: Re-Use Dynamic Programming for Sequence Alignment:An Algorithmic Toolkit. String Algorithmics. KCL Press (2005)

    Google Scholar 

  6. Draper, D.: Themes in RNA-protein recognition. J. Mol. Biol. 293(2), 255–270 (1999)

    Article  MathSciNet  Google Scholar 

  7. Eppstein, D., Galil, Z., Giancarlo, R.: Speeding up dynamic programming. In: Proc. 29th IEEE Symp. on Foundations of Computer Science, pp. 488–496 (1988)

    Google Scholar 

  8. Fisher, M.: Shape of a self-avoiding walk or polymer chain. JCP 44, 616–622 (1966)

    Article  Google Scholar 

  9. Galil, Z., Giancarlo, R.: Speeding up dynamic programming with applications to molecular biology. Theoretical Computer Science 64, 107–118 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Giancarlo, R.: Dynamic Programming: Special Cases. In: Apostolico, A., Galil, Z. (eds.) Pattern Matching Algorithms, Oxford University Press, Oxford (1997)

    Google Scholar 

  11. Goodwin, E., Okkema, P., Evans, T.C., Kimble, J.: Translational regulation of tra-2 by its 3’ untranslated region controls sexual identity in c. elegans. Cell 75, 329–339 (1993)

    Article  Google Scholar 

  12. Goulden, C.: Methods of Statistical Analysis, 2nd edn. Wiley, New York (1956)

    Google Scholar 

  13. Gray, N., Wickens, M.: Annu. Rev. Cell. Dev. Biol. 14, 399–458 (1998)

    Google Scholar 

  14. Hofacker, I.L.: Vienna RNA secondary structure server. NAR (13), 3429–3431 (2003)

    Google Scholar 

  15. Jayaraman, A., Walton, S.P.: Rational selection and quantitative evaluation of antisense oligonucleotides. Biochim. Biophys. Acta 1520, 105 (2001)

    Google Scholar 

  16. Ji, Y., Xu, X., Stormo, G.: Bioinformatics 20, 1591–1602 (2004)

    Google Scholar 

  17. Kabakcioglu, A., Stella, A.: A scale-free network hidden in the collapsing polymer. ArXiv Condensed Matter e-prints (September 2004)

    Google Scholar 

  18. Kafri, Y., Mukamel, D., Peliti, L.: Why is the dna denaturation transition first order? Physical Review Letters 85, 4988–4991 (2000)

    Article  Google Scholar 

  19. Larmore, L., Schieber, B.: On-line dynamic programming with applications to the prediction of RNA secondary structure. J. Algorithms 12(3), 490–515 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, T., Bundschuh, R.: Quantification of the differences between quenched and annealed averaging for RNA secondary structures. ArXiv Physics e-prints (April 2005)

    Google Scholar 

  21. Llave, C., et al.: Cleavage of scarecrow-like mRNA targets directed by a class of arabidopsis miRNA. Science 297, 2053–2056 (2002)

    Article  Google Scholar 

  22. Lyngsø, R.B., Zuker, M., Pedersen, C.N.S.: An improved algorithm for RNA secondary structure prediction. Technical Report RS-99-15, brics (1999)

    Google Scholar 

  23. Mathews, D., et al.: RNA 5, 1458–1469 (1999)

    Google Scholar 

  24. Mathews, D., Sabina, J., Zuker, M., Turner, D.: JMB 288, 911 (1999)

    Google Scholar 

  25. Nussinov, R., Jacobson, A.: Fast algorithm for predicting the secondary structure of single-stranded RNA. PNAS 77(11), 6309–6313 (1980)

    Article  Google Scholar 

  26. Pavesi, G., et al.: An algorithm for finding conserved secondary structure motifs in unaligned RNA sequences. NAR 32, 3258–3269 (2004)

    Article  Google Scholar 

  27. Robins, et al.: PNAS 102, 4006–4009 (2005)

    Google Scholar 

  28. Ross, J.: mRNA stability in mammalian cells. Microbiol Rev. 59(3), 423–450 (1995)

    Google Scholar 

  29. Sagot, M.: Spelling approximate or repeated motifs using a suffix tree. LNCS, pp. 111–127. Springer, Heidelberg (1998)

    Google Scholar 

  30. Smith, L., et al.: Eur. J. Pharm. Sci. 11, 191 (2000)

    Google Scholar 

  31. Tang, G., et al.: Framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003)

    Article  Google Scholar 

  32. Tinoco, I., et al.: Nature New Biology 246, 40–41 (1973)

    Google Scholar 

  33. Vanderzande, C.: Lattice Models of Polymers. Cambridge Lecture Notes in Physics, vol. 11. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  34. Waterman, M., Smith, T.: Rapid dynamic programming algorithms for RNA secondary structure. Adv. Appl. Math. 7, 455–464 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  35. Welsh, M., Scherberg, N., Gilmore, R., Steiner, D.: Translational control of insulin biosynthesis. Biochem. J. 235, 459–467 (1986)

    Google Scholar 

  36. Wilkie, G., Dickson, K., Gray, N.: Regulation of mRNA translation by 5’- and 3’-utr-binding factors. Trends Biochem. Sci. 28, 182–188 (2003)

    Article  Google Scholar 

  37. Yang, E., et al.: Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res. 13, 1863–1872 (2003)

    Article  Google Scholar 

  38. Zilberstein, C., Eskin, E., Yakhini, Z.: Sequence motifs in ranked expression data. In: The First RECOMB Satellite Workshop on Regulatory Genomics (2004)

    Google Scholar 

  39. Zilberstein, C., Ziv-Ukelson, M., Pinter, R.Y., Yakhini, Z.: A high-throughput approach for associating microRNAs with their activity conditions. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 133–151. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  40. Zubiaga, A., Belasco, J., Greenberg, M.: The nonamer uuauuuauu is the key au-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 15, 2219–2230 (1995)

    Google Scholar 

  41. Zuker, M.: Computer prediction of RNA structure. Methods Enzymol. 180, 262–288 (1989)

    Article  Google Scholar 

  42. Zuker, M.: NAR (13), 3406–3415 (2003)

    Google Scholar 

  43. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. NAR 9(1), 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wexler, Y., Zilberstein, C., Ziv-Ukelson, M. (2006). A Study of Accessible Motifs and RNA Folding Complexity. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_40

Download citation

  • DOI: https://doi.org/10.1007/11732990_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33295-4

  • Online ISBN: 978-3-540-33296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics