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Abstract. A probabilistic graphical model is developed in order to de-
tect the dependent evolution between different sites in biological se-
quences. Given a multiple sequence alignment for each molecule of inter-
est and a phylogenetic tree, the model can predict potential interactions
within or between nucleic acids and proteins. Initial validation of the
model is carried out using tRNA sequence data. The model is able to
accurately identify the secondary structure of tRNA as well as several
known tertiary interactions.

1 Introduction

Recent advances in systems biology and comparative genomics are providing
new tools to study evolution from a systems perspective. Selective constraints
often operate on a system composed of multiple components, such that these
components evolve in a coordinated way. We use the term dependent evolu-
tion to denote the dependency of sequence evolution between multiple molec-
ular entities. A molecular entity can be a protein, a non-coding RNA, a DNA
promoter, or a single nucleotide or residue. Dependent evolution is prevalent in
many biomolecular systems. Instances include neo-functionalization and pseudo-
gene formation [1, 2], co-evolution of ligand-receptor pairs [3, 4], protein-protein
interactions [5], residues contributing to the tertiary structure of proteins [6],
and RNA secondary structure [7]. Understanding dependent evolution helps to
predict the physical interactions and functions of biomolecules, reconstruct their
evolutionary history, and further understand the relation between evolution and
function.

In this work, we develop a computational method for detecting and char-
acterizing dependent evolution in orthologous sequences of multiple species.
Continuous-time Markov models of sequence substitutions encoding the depen-
dent or independent evolution of two molecular entities are constructed. The
spatial dependency of adjacent sites in the sequence is captured by a hidden
Markov model (HMM) specifying the interaction states of sites. As a proof-of-
concept demonstration, we apply the model to tRNA sequences and show that
the method can identify their secondary and tertiary structure.



Models of co-evolution have been investigated in many previous studies.
Some of these have demonstrated that the sequence substitution rates of pro-
teins are correlated with their function [8] and relationships with other pro-
teins, such as the number of interactions [5], their interacting partners [5], and
their co-expressed genes [9]. The compensatory substitutions of RNA sequences
have been used to predict RNA secondary structure [10–16, 7, 17]. Other studies
have attempted to predict protein-protein interactions at the residue or whole-
protein levels by using co-evolutionary models [3, 4, 6, 18]. We use a framework
of continuous-time Markov models resembling those in [6, 18], although the as-
sumptions and mathematical approaches are significantly different.

2 Methods

In this study we use both general and specific evolutionary models to detect the
secondary and tertiary structure of tRNAs. These are well suited to a proof-of-
concept demonstration since nucleotide pairs have fewer joint states than residue
pairs (4 × 4 = 16 compared to 20 × 20 = 400), their interaction rules are rela-
tively simple (primarily Watson-Crick base pairing), the secondary and tertiary
interactions of tRNAs are already mapped, and a large number of aligned tRNA
sequences across many species are available.

The typical structure of the tRNA encoding methionine is shown in Fig. 1.
It comprises four stems, three major loops and one variable loop. Each stem
contains several nucleotide pairs forming hydrogen bonds (black bars in Fig. 1).
Those base pairs typically conform with the Watson-Crick complementary rule
(AU or GC). Several GU pairs also form weaker hydrogen bonds (GU wobble).
In addition, nucleotide pairs that are distant in the secondary structure may also
form tertiary interactions (dotted lines in Fig. 1). Unlike secondary interactions,
tertiary interactions do not necessarily conform with the Watson-Crick rules or
GU wobble.

The co-evolutionary model that we developed is a probabilistic graphical
model, operating on a given alignment of families of sequences for two molecular
entities, along two orthogonal dimensions. The first dimension is time, with a
continuous-time Markov process modeling the potentially coupled evolution of
the two entities considered. This model operates at each position in the align-
ment, along a given phylogenetic tree. The second dimension is space, with an
HMM operating along the sequence alignment and determining which regions of
the two entities are co-evolving. Such graphical models were introduced by [19,
20] and have been recently adopted for instance by [21] to model the evolution
of single molecular entities.

Consider first the sequence evolution model of a single nucleotide. It is a
continuous-time Markov process with a substitution rate matrix Q:

dP(x(t))

dt
= P(x(t))Q. (1)

where x(t) denotes the sequence at time t and P(x(t)) a 1×4 probability vector
of x(t) being each nucleotide. Q is a 4 × 4 matrix with each row summed to



Fig. 1. tRNA secondary and tertiary structure
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zero. Different rate matrices have been developed in the literature of molecular
evolution. In this work we use the HKY model [22], which characterizes Q by a
stationary distribution π and a transition/transversion ratio κ:

Q =









− πC κπG πT

πA − πG κπT

κπA πC − πT

πA κπC πG −









(2)

Each diagonal entry is the opposite of the sum of the other entries in the same
row. The transition probability matrix P (x(t)|x(0)) is an entry of the matrix
exponential of Qt:

P (x(t) = b|x(0) = a) = eQt[a, b]. (3)

Given a phylogenetic tree and the length of its branches, the marginal likelihood
of the observed sequence data at the leaves is the joint likelihood summed over
all possible states of internal (ancestral) nodes. This marginal likelihood can be
efficiently calculated using a dynamic programming algorithm [23]. Briefly, let
u be a node in the tree, v and w its children, and tv , tw the branch lengths of
(u, v), (u,w). Define P (Lu|a) as the probability of all the leaves below u given
that the base assigned to u is a. The algorithm is then defined by the recursion:

P (Lu|a) =

{

I(xu = a) if u is a leaf,
∑

b e
Qtv [a, b]P (Lv|b)

∑

c e
Qtw [a, c]P (Lw|c) otherwise.

(4)



where I(.) is the indicator function.
Now consider the sequence evolution model of a nucleotide pair. Define

x(t) = (x1(t), x2(t)) as the joint state of the nucleotide pair at time t. There
are 16 possible joint states. The null model assumes that each nucleotide evolves
independently with an identical substitution rate matrix. Therefore, the transi-
tion probability matrix is:

P (x(t)|x(0)) = (eQ ⊗ eQ)t. (5)

where eQ ⊗ eQ is the tensor product of two identical 4 × 4 matrices eQ. The
outcome is a 16 × 16 matrix, specifying the transition probability of the joint
state in a unit time. Each entry is the product of the corresponding entries in
the single nucleotide substitution matrices. For instance,

P (x(1) = (C,G)|x(0) = (A,U))
= P (x1(1) = C|x1(0) = A)P (x2(1) = G|x2(0) = U)
= eQ[A,C] · eQ[U,G].

(6)

The substitution rate Q2 = log(eQ ⊗ eQ) of the nucleotide pair transitions in
(5) is a 16 × 16 matrix, with the rates of single nucleotide changes identical to
those in (2) and zero rates on double nucleotide changes. More precisely, if we
denote (a, b) the joint state of a nucleotide pair:

Q2((a1, a2), (b1, b2)) =















Q(a1, b1) if a2 = b2,

Q(a2, b2) if a1 = b1,

−Q(a1, b1) −Q(a2, b2) if a1 = b1, a2 = b2,

0 otherwise.

(7)

Equations (5) and (7) are equivalent, and the latter is discussed in [24]. Intu-
itively, if two nucleotides evolve independently, then during an infinitesimal time
only one nucleotide can change, and the rate is identical to the single nucleotide
transition rate.

The alternative model assumes that the evolution of the two nucleotides
is coupled. One way to express their dependent evolution is to “reweight” the
entries of the substitution rate matrix by a potential term ψ:

Qa
2 = Q2 ◦ ψ. (8)

where ψ is a 16× 16 matrix and ◦ denotes the following operation:

Q2(a, b) ◦ ψ(a, b) =







Q2(a, b) · ψ(a, b) if a 6= b,Q2(a, b) > 0,
ψ(a, b) if a 6= b,Q2(a, b) = 0,
−

∑

b′ 6=b Q2(a, b
′) ◦ ψ(a, b′) if a = b.

(9)

It multiplies an off-diagonal, nonzero entry Q2(a, b) by ψ(a, b), sets the value of
a zero entry Q2(a, b) as ψ(a, b), and normalizes a diagonal entry as the opposite
of the sum of the other entries in the same row. Qa

2 is a valid substitution rate
matrix, thus its exponential induces a valid transition probability matrix.



We give (8) a mechanistic interpretation. The sequence substitution pattern
of a co-evolving pair is the composite effect of neutral mutations, which occur
independently at each nucleotide, and a selective constraint, which operates on
the joint state. The potential term ψ rewards the state transitions that denote
co-evolution and penalizes the others. We set the ratio between penalty and
neutrality at ε, and the reward for simultaneous changes as r.

The choice of rewarded and penalized states is crucial. Here, we apply three
different criteria to reweight the joint states. The first criterion rewards the
state transitions that establish Watson-Crick base pairing from non-interacting
pairs, penalizes the state transitions which break it, and is neutral for all other
state transitions. We call it the “Watson-Crick co-evolution” or WC model.
Specifically, the potential term is:

ψ(x(0),x(1)) =







1

ε
if x(0) is not WC and x(1) is WC,

ε if x(0) is WC and x(1) is not WC,
1 otherwise.

(10)

The second criterion includes the GU/UG pairs (denoted GU since the order
does not matter here) in the rewarded states. It thus rewards the state transi-
tions that establish Watson-Crick or GU wobble base pairs, penalizes the state
transitions which break the extended rule, and is neutral for all other state tran-
sitions. We call it the “Watson-Crick co-evolution with GU wobble” or WCW
model. Specifically,

ψ(x(0),x(1)) =







1

ε
if x(0) is not WC or GU and x(1) is WC or GU,

ε if x(0) is WC or GU and x(1) is not WC or GU,
1 otherwise.

(11)

The third criterion does not use prior knowledge of Watson-Crick base pair-
ing and GU wobble and only considers the simultaneous changes of the two
nucleotides (“simple co-evolution” or CO model). It rewards the state transi-
tions where both nucleotides change, and penalizes the state transitions where
only one nucleotide changes. Recall that the rates of simultaneous changes in
the independent model are zero. Therefore, we reward these transitions not by
reweighting their entries in Q2, but by giving them a positive rate r. Specifically,

ψ(x(0),x(1)) =







r if x1(1) 6= x1(0) and x2(1) 6= x2(0),
ε if either x1(1) = x1(0) or x2(1) = x2(0),
1 otherwise.

(12)

The CO model assumes that the interacting nucleotide pairs maintain stable
states. In order to transition from one stable state to another, both nucleotides
must change. We introduce this general model in order to capture tertiary in-
teractions for which pairing rules are complex or unknown. Moreover, since this
general model incorporates no knowledge about nucleotide interactions and has
only two extra free parameters (ε and r), it can be directly extended to more
complicated problems such as protein-protein interactions or multi-way interac-
tions.



We apply the dynamic programming algorithm described in (4) to evaluate
the marginal likelihood of the nucleotide pair data. Specifically, a, b and c are
the joint states of nucleotide pairs and eQt is defined as in (5) for the null model
and as the exponential of (8) times t for the alternative model.

In order to incorporate the spatial dimension of the nucleotide sequence into
the model, we define an HMM for the “interaction states” of the aligned se-
quences. Suppose that the sequences of two molecular entities are aligned (e.g.,
a tRNA sequence is aligned with itself in the opposite direction) across all species.
We define the “interaction state” y(s) of the sequence pair at alignment position
s as a binary random variable, indicating whether co-evolution occurs at posi-
tion s (i.e., y(s) = 1) or not (y(s) = 0). The y(s)’s are the hidden variables of
the HMM. Their transitions are specified by a homogeneous Markov chain with
transition probability P (y(s+ 1) = 1|y(s) = 0) = P (y(s+ 1) = 0|y(s) = 1) = α.
The observed variable X(s) comprises the sequences at position s across all
species. The emission probability P (X(s)|y(s)) corresponds to the likelihood of
the sequence data, conditioned on the null model of independent evolution or
the alternative model of co-evolution. The likelihoods are evaluated by the afore-
mentioned dynamic programming algorithm. Given the transition and emission
probabilities, we apply the Viterbi algorithm to identify the interacting regions
of the two sequences.

Issues arise when there are gaps in the aligned sequences. If “sparse” gaps
appear at scattered positions in a few species, we treat them as missing data,
by giving an equal probability to each nucleotide. If there are consistent gaps
appearing in consecutive regions over many species, we ignore those regions when
calculating the likelihood scores.

In order to quantify the confidence of the inferred interaction states, we used
the log-likelihood ratio (LLR) between the co-evolutionary model and the null
model, at each position within the Viterbi algorithm. Pollock et al. [6] have
pointed out that a χ2 distribution is not appropriate for such co-evolutionary
models. For this reason, we have not reported the p-values that might have oth-
erwise been calculated from a χ2 distribution with one (WC and WCW models)
or two (CO model) extra degrees of freedom.

3 Results

We applied our model to the methionine tRNA sequences of 60 species covering
the three superkingdoms of life. Three different criteria were used to reward and
penalize the joint state transitions in the model of dependent evolution: Watson-
Crick base pairing, Watson-Crick base pairing with GU wobble, simultaneous
changes. We compared the performance of each model in detecting secondary and
tertiary interactions, and further investigated false positives and false negatives.

3.1 Data and Pre-processing

Aligned tRNA sequences were downloaded from the Rfam database [25]. Unique
sequences for the methionine tRNA (tRNA-Met, ATG codon) were extracted for



60 species, including archea, bacteria, eukaryotes and their organelles (mitochon-
dria and chloroplast). The length of the complete sequence alignment including
gaps was lseq = 119 nucleotides. A phylogenetic tree was derived from these
sequences using a Metropolis-coupled Markov chain Monte-Carlo (MC3) simu-
lation implemented in the MrBayes program [26]. The resulting tree was found
to be robust and consistent with the tree topologies obtained by parsimony using
the DNAPARS program of the PHYLIP package [27]. The phylogenetic tree of
the tRNA data is reported in the supplementary materials.

The tRNA sequence was then paired with itself in the opposite direction
in order to evaluate potential co-evolution between all possible nucleotide pairs.
The first entity in the model was the tRNA sequence itself, and the second entity
was the reversed sequence, shifted by a number of nucleotides varying from 1 to
lseq, and “rolled over” to match the length of the first entity. The co-evolutionary
signal, which is the Viterbi path of the HMM, was then plotted as a lseq× lseq

matrix, where the x-axis represents the position in the sequence, and the y-axis
the offset. As an example, the expected signal for the structure depicted in Fig.1
is shown in Fig. 2. The figure comprises four symmetric patterns, which corre-
spond to the four stems of the tRNA secondary structure (in yellow): acceptor
stem at offset 2 and 3, anticodon stem at offset 30, TΨC stem at offset 44 and
45, and D stem at offset 75. The tertiary structure appears as symmetric isolated
nucleotide pairs (in green). The patterns are not symmetric with respect to the
diagonal line due to a gap between positions 60 and 80 covering padding to the
variable loop.

3.2 Sensitivity Analysis

A sensitivity analysis was carried out, varying ε from 10−3 to 0.90, r from 0
to 0.5, and α from 0.05 to 0.45 (results not shown). It was found that the per-
formance of the different methods depends on a reasonable choice of parameter
values. Indeed, the co-evolutionary models merge with the independent model for
ε = 1 and r = 0, therefore no signal can be detected for these parameter values.
Conversely, excessively small values for ε and large values for r compromise the
performance of the analysis. The parameter α can be seen as a spatial ”smooth-
ing” factor, which tends to eliminate isolated hits as its value decreases. This can
help to eliminate isolated false positives from the contiguous secondary structure
signal, but can also prevent the identification of isolated tertiary interactions.
We henceforth report the results for ε = 0.5, r = 0.05 and α = 0.2.

3.3 Watson-Crick Co-evolution

The co-evolutionary signal detected by the WC model is shown as a ROC curve
and at a particular cutoff LLR value of 5.0 in Fig. 3. At this level of significance,
20 out of 21 secondary interactions were identified (in orange), and 4 out of 10
tertiary interactions (in red), resulting in 22 false positives (in light blue). The
“missing” secondary interaction, between nucleotides 36 and 55, shows evidence



Fig. 2. Expected signal for the tRNA secondary and tertiary structure

position

of
fs

et

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

110

of GU wobble, which can be contrasted with the purely Watson-Crick base pair-
ing of the true positive pair 39-52 (Table 1). The WC model is not suited to
the detection of such an interaction, though it is eventually picked up at a much
lower significance level (Fig. 3(a)).

Table 1. Dinucleotide composition of one (a) true positive (b) false negative secondary
interaction, WC model

39-52 A C G U

A 0 0 0 14

C 0 0 5 0

G 0 39 0 0

U 2 0 0 0

36-55 A C G U

A 1 0 0 2

C 0 0 18 3

G 0 1 0 2

U 25 0 8 0

As expected, the four tertiary interactions identified by the WC model (Ta-
ble 2) are mainly Watson-Crick, even though pairs 24-96 and 93-99, which are
detected at a comparatively lower significance level, have some non-negligible
terms off the second diagonal.

Many of the false positives seem to be vertically aligned in Fig. 3(b). A closer
examination reveals that these are composed of nucleotides which are highly con-
served individually, and appear to form a Watson-Crick pair without physically



Fig. 3. Results from the WC model (a) ROC curves (b) signal at a LLR = 5.0 cutoff
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Table 2. Dinucleotide composition of detected tertiary interactions, WC model

9-17 A C G U

A 0 0 0 0

C 0 0 0 0

G 0 0 0 2

U 58 0 0 0

18-86 A C G U

A 0 1 1 24

C 0 0 0 0

G 0 30 0 1

U 1 0 0 0

24-96 A C G U

A 2 0 0 0

C 2 0 0 0

G 0 44 0 0

U 6 0 0 4

93-99 A C G U

A 11 0 0 0

C 0 0 0 0

G 0 0 0 0

U 48 0 0 1

interacting. In particular, the constant nucleotides of the CAU anticodon at po-
sitions 45-47 form spurious Watson-Crick base pairs with other highly conserved
nucleotides in the different loops of the tRNA structure.

3.4 Watson-Crick Co-evolution with GU Wobble

The co-evolutionary signal detected by the WCW model is shown as a ROC
curve and at a particular cutoff LLR value of 5.8 in Fig. 4. At this level of
significance, 19 out of 21 secondary interactions were identified, and 1 out of
10 tertiary interactions, for only 2 false positives. The much steeper ROC curve
for secondary interactions demonstrates the benefit of incorporating additional
biochemical knowledge into the model. Indeed, as many secondary interactions
involve some degree of GU wobble, they are detected earlier by the WCW model
than they were by the WC model. In contrast, the identification of tertiary
interactions does not benefit from the refined model, because those rarely involve
GU wobble. The only exception is the 23-95 pair, which involves GU wobble,
but it is only detected for more than 200 false positives (beyond the boundaries
of Fig. 4(a)).

3.5 Simple Co-evolution Model

The co-evolutionary signal detected by the CO model is shown as a ROC curve
and at a particular cutoff LLR value of 0.8 in Fig. 5. At this level of significance,
all secondary interactions were identified, and 3 out of 10 tertiary interactions,
yielding 25 false positives. The tertiary interactions detected by the CO model
include the pairs 9-17 and 18-86, which were also identified by the WC and
WCW models. However, neither the 24-96, 93-99 nor 23-95 interactions were
identified, as for those pairs one nucleotide often varies while the other remains
constant (Table 2). Additionally, the 42-49 interaction was identified by the CO
model, which had not been detected by the WC and WCW models because it
consists mainly of C-A and U-C pairs.

3.6 Detection of Tertiary Interactions: Summary

Figure 6 highlights the tRNA-Met tertiary interactions that have been detected
using one of the three co-evolutionary models. Among the ten annotated tertiary
interactions, six were identified by at least one of the models: 9-17 and 18-86
(all three models, solid blue), 24-96 and 93-99 (WC and WCW models, solid



Fig. 4. Results from the WCW model (a) ROC curves (b) signal at a LLR = 5.8 cutoff
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Fig. 5. Results from the CO model (a) ROC curves (b) signal at a LLR = 0.8 cutoff
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Fig. 6. Detection of tertiary interactions
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blue), 23-95 (WCW model, dotted blue), 42-49 (CO model, solid red). The four
remaining interactions (dotted black) were not detected by any model. With the
possible exception of 30-82, none of those pairs shows a particular bias towards
Watson-Crick base pairing or simultaneous evolution in their dinucleotide com-
position, so the failure to detect them using the aforementioned models is not
surprising.

4 Discussion

We have shown that a probabilistic graphical model incorporating neutral muta-
tions, selective constraints and sequence adjacency can successfully identify the
secondary and tertiary interactions in a tRNA structure.

The comparison of the results of the WC and WCW models indicates a
trade-off between generality and performance. Indeed, increasing the specificity
of the model by incorporating more biological knowledge significantly improves
the detection of the secondary structure. However, the increased specificity of
the WC and WCW models causes them to miss a non-Watson Crick tertiary
interaction, which is detected by the much more general CO model. Given this
trade-off, the performance of the CO model turns out to be surprisingly good
for both secondary and tertiary interactions, and suggests that rewarding non-
specific simultaneous changes is a simple, yet powerful approach. This result
is encouraging when one considers using such probabilistic graphical models to



investigate the co-evolution of more complex molecular systems, for which the
interaction rules are not well characterized and the number of joint states is
much larger, e.g., between proteins and nucleic acids.

Currently the parameters of the models – ε, r, α and the LLR cutoff – are
set empirically. A more systematic way of estimating them from the data and
testing the model in cross-validation would be a useful extension of this work.

Some scenarios beyond co-evolution may also be captured by this modeling
framework. For instance, instead of rewarding simultaneous changes and penal-
izing unilateral changes, we can invert the potential term to reward unilateral
changes and penalize simultaneous changes. A possible interpretation of this sce-
nario is that the two entities are complementary in function, such as paralogous
genes after their duplication. The conservation of one gene allows the evolution
of the other, which can acquire a new function. A change in both genes, how-
ever, is likely to be detrimental to their original functions and thereby reduces
the fitness.

Supplementary Materials

The phylogenetic tree of the tRNA data across 60 species and the statistics of
dinucleotide composition of all the tertiary interactions are reported in
http://www.soe.ucsc.edu/˜chyeang/RECOMB06/.
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