
Mining Databases and Data Streams

with Query Languages and Rules

Carlo Zaniolo

Computer Science Department
UCLA

Los Angeles, CA 90095
zaniolo@cs.ucla.edu

Abstract. Among data-intensive applications that are beyond the reach
of traditional Data Base Management Systems (DBMS), data mining
stands out because of practical importance and the complexity of the
research problems that must be solved before the vision of Inductive
DBMS can become a reality. In this paper, we first discuss technical de-
velopments that have occurred since the very notion of Inductive DBMS
emerged as a result of the seminal papers authored by Imielinski and
Mannila a decade ago. The research progress achieved since then can be
subdivided into three main problem subareas as follows: (i) language (ii)
optimization, and (iii) representation. We discuss the problems in these
three areas and the different approaches to Inductive DBMS that are
made possible by recent technical advances. Then, we pursue a language-
centric solution, and introduce simple SQL extensions that have proven
very effective at supporting data mining. Finally, we turn our attention
to the related problem of supporting data stream mining using Data
Stream Management Systems (DSMS) and introduce the notion of In-
ductive DSMS. In addition to continuous query languages, DSMS pro-
vide support for synopses, sampling, load shedding, and other built-in
functions that are needed for data stream mining. Moreover, we show
that Inductive DSMS can be achieved by generalizing DSMS to assure
that their continuous query languages support efficiently data stream
mining applications. Thus, DSMS extended with inductive capabilities
will provide a uniquely supportive environment for data stream mining
applications.

1 Introduction

Data Base Management Systems (DBMS) and their enabling technology have
evolved successfully to deal with most of the data-intensive application areas
that have emerged anew during the last twenty years. For instance, in response
to the growing importance of decision-support applications, relational DBMS
and SQL were quickly extended to support OLAP queries—a remarkable exploit
from both technical and commercial viewpoints. On the other hand, there have
also been significant failures, with data mining applications representing the



most egregious of such failures. Therefore, databases today are still mined using
primarily a cache-mining approach, whereby the data is first moved from the
database to a memory cache, which is then processed using mining methods
written in a procedural programming language. Indeed, most mining functions
cannot be expressed efficiently using SQL:2003, which represents the standard
query language of DBMS.

Research on Inductive Inductive DBMS aims at changing this state of affairs
and make it easy to mine databases by their query languages. The emergence
of Inductive DBMS as a well-defined research area can be traced back to the
seminal papers by Imielinski and Manilla [1, 2] who introduced the lofty notion
of a DBMS where complex mining tasks can be expressed with ease using the
query language of the system1. According to [2], Inductive DBMS should also
assure efficient execution of such high-level mining queries via powerful query
optimization techniques—although the enabling technology for such a task was
not available at the time2.

Early attempts to realize the lofty notion of Inductive DBMS have produced
mining languages such as MSQL[3], DMQL[4] and the Mine Rule [5]. These
projects propose SQL extensions to specify the data to be mined and the kind of
patterns to be derived, along with other parameters needed for the task, such the
support and confidence required. As discussed in a comprehensive comparative
study [6], these projects have made a number of contributions, by exploring and
demonstrating some of the key features required in a Inductive DBMS, including

(i) the ability of specifying constraints, meta-patterns, and concept hierarchies
to sharpen the search process,

(ii) the ability to apply the derived rules to the original data for verification and
analysis (crossing over),

(iii) the closure property whereby the query language can be used to operate on
the results produced by the mining query.

The research contributions brought by these approaches have not led to signifi-
cant commercial deployments, because of practical limitations. A first limitation
is that these approaches are primarily intended for association rule mining, al-
though DMQL consider other patterns besides association rules.

A second and more serious concern is that of performance: the projects dis-
cussed in [3–5] do not claim to have achieved performance levels that are com-
parable to those achievable with the cache-mining approach, nor they claim to
have identified a query-optimization approach that can be reasonably expected
to take them there. This in line with the view of Imielinski and Manilla2 that
sophisticated optimizers are needed to achieve good performance and develop-
ing such technology represents a long-term research challenge for which no quick
solution should be expected. Furthermore, experience with query optimizers has

1 ‘There is no such thing as real discovery, just a matter of the expressive power of
the query languages’ [2].

2 ‘KDD query optimization will be more challenging than relational query optimization
... It took more than 20 years to develop efficient query optimization and execution
methods for relational query languages’ [2].

2



shown that it is very difficult to extend relational optimizers to handle more
powerful constructs, such as recursive queries, or richer data models and their
query languages, i.e., XML and XQuery. Therefore, optimizers for data mining
queries require novel techniques, not just extensions of relational optimizer tech-
nology. Such a task could take many years, although progress on this difficult
problem has been achieved in the last few years [7–10]. Once these techniques
will be incorporated into systems supporting declarative mining queries, the lofty
vision of [2] will then be realized, at least for associative rule mining.

In order to provide data mining functions to their users, commercial database
vendors are instead taking a quite different approach. Typically, vendors have
been implementing a suite of data mining functions on top of their DBMS, along
with graphical interfaces to drive these packages [11–13]. While only providing
a predefined set of built-in mining functions, the Microsoft DB serve is however
achieving a closer integration and better interoperability of the mining task with
the SQL query task, by using the descriptive+predictive mining model of OLE
DB DM [13]. Thus the descriptive task generates an internal representation (a
mining model) as a special table that is populated (learned) by executing the
mining task on the training data. Then, a special operator called prediction join
is provided that can be used to predict unknown attribute values for new data
[13]. It is also possible to inspect the descriptive model and export it into an
XML-based representation called PMML (Predictive Model Markup Language).
PMML is a markup language proposed to represent statistical and data mining
information [14].

Therefore, OLE DB DM goes beyond the mining-language approach by ad-
dressing the need to support the multiple steps of the DM process with well-
defined representations linking the various steps. Ideally, this should lead to the
notion of open Inductive DBMS, where, for instance, descriptive models can
be imported into the system and used for prediction (or exported and used for
predictive tasks in a second system).

In addition to the mining-language approach and the DM approach of OLE
DB, there is also a third approach that we will call the middle-road approach.
This offers interesting promises both in terms of mining data bases and data
streams, and is discussed in the next two sections.

2 Query Languages and Data Mining

The mining-language approach proposed in [3–5] defines a very ambitious high-
road path toward Inductive DBMS, since users only need to provide high-level
declarative queries specifying their mining goals. Then, the Inductive DBMS
optimizer is left with the responsibility of selecting an algorithm to accomplish
those goals—a task that, in general, exceeds the capabilities of current technol-
ogy.

At the opposite end of the spectrum, we find the low-road approach dis-
cussed in the prize-winning paper presented in [15]. In said study, a task force
of researchers with deep expertise on mining methods and the IBM DB2 O-R
DBMS tried to implement efficiently the APriori algorithm, exploring several

3



implementation alternatives that only use the DBMS as is, using the standard
SQL version supported by DB2. An acceptable level of performance was achieved
through the use of specialized join techniques and user-defined functions (UDFs),
at the price of excessive difficulties in programming and debugging [15]. We will
characterize the approach taken in [15] as a ‘low-road’ path toward Inductive
DBMS. While the work presented in [15] established the inadequacy of SQL in
supporting complex data mining algorithms such as Apriori, it provided no clear
indication how to proceed to overcome these inadequacy.

Once we compare the high-road approach against the low road we see that
the first makes unrealistic demands upon the system, while the second makes
unrealistic demands on the users. Given this situation, it is only natural to
pursue middle-road approaches that explore extensions of SQL and DBMS that
are realizable with current technology and make the task of writing mining
algorithms simple for common mortals. We next describe the ATLaS system
that is taking such middle-road path to Inductive DBMS.

As described by Arno Siebes in his invited talk [16], data mining success
stories in the real world, frequently employ the simplest mining methods, e.g.,
Naive Bayesian Classifiers (NBCs). NBCs are also significant for the very subject
of this paper, since they provide a unique example of on data mining algorithm
that current DBMS can support as well as full-fledged Inductive DBMS would.

Take for instance the well-known Play-Tennis example of Table 1: we want
to predict the value of Play as a ‘Yes’ or a ‘No’ given a training set consisting
of tuples similar to the three shown in Table 1.

RID Outlook Temp Humidity Wind Play

1 Sunny Hot High Weak No
2 Sunny Hot High Strong Yes
3 Overcast Hot High Weak Yes
... ... ... ... .. ...

Table 1. The relation PlayTennis

The first step is to convert the training set into column/value pairs whereby
the first two tuples in Table 1 are now represented by the eight tuples shown in
Table 2.

This verticalization can be implemented using a table function, which is
a very useful SQL:2003 construct now supported by most DSMS. From this
representation, we can now build a Bayesian classifier by simply counting the
occurrences of Yes and No with a statement as follows:

4



RID Column Value Dec

1 1 Sunny No
1 2 Hot No
1 3 High No
1 4 Weak No
2 1 Sunny Yes
2 2 Hot Yes
2 3 High Yes
2 4 Strong Yes
... ... ... ...

Table 2. A Column-oriented representation for PlayTennis

Example 1 Disassemble a relation into column/value pairs.

SELECT Column, Value, Dec, count(Dec) as mycount
FROM traningset
GROUP BY Col, Value, Dec

We can then add up the counts for each column, and use it to normalize the
values of mycount (by dividing by the total number of ‘Yes’ and ‘No’). Finally,
we take the absolute value of the log of the results and thus obtain a descriptor
table as follows:

DescriptorTbl(Col: int, Value: int, Dec: int, Log: real)

Now, the set of tuples submitted for prediction will also be collected in a
table called, say TestTuples having the same format as Table 2, except that the
column Dec is missing. Then, the Naive Bayesian classifier is implemented using
the results of the following query:

Example 2 Probabilities for each tuple to be predicted

SELECT t.RID, d.Dec, sum(d.Log)
FROM DescriptorTbl AS d, TestTuples AS t
WHERE d.Val=t.Val AND d.Col=t.Col

GROUP BY t.RID, d.Dec

Thus, for each test tuple, and each class label we multiply (sum the logs of)
the relative frequencies for each column value supporting this class label. The
final step would consist in selecting for each RID the class label with the least
sum, a step that in SQL requires finding first the min value and then the columns
where such min value occurs (such a min maximizes the probability since we use
absolute values of logarithms).

Observe that so far, we have only described the core descriptive and predictive
tasks and not discussed other tasks such as data preparation, testing the model
accuracy, and boosting it. However, these tasks can normally be expressed by
rather simple SQL queries on our basic relational representation. For instance, if
we want to build an ensemble of classifiers, we only need to add to the descriptor
table a new column containing the classifier name: then voting operations can be

5



reduced to counting the number of individual classifiers for each (i.e., grouped
by each) Dec value and then selecting the decision supported by most votes.
Here again relational tables are used to describe both the data and the induced
model.

The example of Naive Bayesian Classifiers illustrates the superior computa-
tional environment that DBMS can bring to the data mining process once their
query languages are capable of expressing such applications. Therefore, a very
natural middle-road approach can be that of preserving the basic relational rep-
resentation for the data sets and the induced models, but providing extensions
to SQL:2003 to turn it into a more powerful language—one that is capable of
expressing complex mining algorithms. In the past, aggregates extended with
more general group by constructs enabled SQL-compliant DSMS to support
decision support functions via OLAP and data cubes. More recently, in our
ATLaS project, we have shown that User-Defined Aggregates (UDAs) natively
defined in SQL can turn SQL into a powerful (Turing-complete [17]) language
for data mining applications [18].

The ATLaS middle-road approach allows users to write data mining algo-
rithms in SQL extended with natively defined UDAs. For instance, we will now
write a simple UDA that computes the correct classification from a table storing
the results of Example 2. If we were restricted to standard SQL, things would be
more complex, since we would need to nest a statement that finds the minimum
into another statement that finds all the points where this occur. Moreover, to
break ties, we will have to find again the min (or max) among the such points
(ordered by lexicographically). Alternatively, we can use the following UDA:

Example 3 Defining the standard aggregate minpoint

AGGREGATE mincol(inCol Int, inValue Real) : Int
{ TABLE current( CrCol Int, CrValue Int);

INITIALIZE : {
INSERT INTO current VALUES (inCol, inValue);

}
ITERATE : {

UPDATE current SET CrCol=inCol, CrValue=inValue;
WHERE CrValue <= inValue

}
TERMINATE : {

INSERT INTO RETURN SELECT CrCol FROM current;
}

}

In this case, we have an internal table which only contains one tuple that
is always updated to the incoming inCol, inValue pair when inValue is less
or equal to the current minimum (but in a situation where we want to find
the top K values/points our table would instead contain K tuples). Observe
the stream-oriented computation is specified in the three steps: (i) when the
first tuple arrives (initialize), (ii) when the successive tuples arrive (iterate), and
(iii) after the input is exhausted (terminate). A number of commercial DBMS

6



support UDAs where the computations in these three states can be defined in an
external procedural language. However, as shown by our simple example, these
computations can be naturally defined in SQL itself, an approach that has three
important advantages:

– UDAs can be invoked from other UDAs,
– UDAs can access the database tables besides their internal tables, and
– any impedance mismatch problem is eliminated.

In a nutshell, we obtain a rich programming environment, which brings native
extensibility and Turing-completeness to SQL [17] which can be used in a number
of other applications besides data mining. For data mining, however, UDAs
afford the ability of expressing concisely and efficiently all data mining methods,
including Apriori [18].

For instance, a basic-decision tree classifier might start by computing the
gini index (or entropy gain) instead of the probabilities used for NBCs. Then, to
decide where to split, we will have to find where a minimum occurs. For instance,
for a multiway split we will count for each column and each value in the column
the number of Yes and No, and we use those to compute a gini index. If store
the pairs (column, gini-value) in a temporary table, the next step consists in
selecting the column where we have the least gini index by calling the UDA of
Example 3, above.

This would generate the first level of nodes in our decision tree. We can now
partition the training set according to these node numbers, and then we can call
the same UDA grouped by this node number. Thus, a classifier can be written
as a UDA consisting of fourteen ATLaS-SQL lines [18].

Not surprising, given the experience described in [15], writing an efficient
implementation of Apriori proved a tougher test, one that required forty-five
lines of ATLaS-SQL code. In terms of performance, the key issue proved to
be the support for data structures such as prefix trees, which we were able to
support via the use of in-memory tables and SQL reference data types that, for
in-memory tables, can be used to point to other tuples [18]. The performance
and scalability so obtained are comparable to those obtainable with the cache-
mining approach, and normally better than those of java-based data mining
libraries [19].

The ability of working directly with SQL represents a practical advantage of
this approach over others using new special algebras [20]. Moreover, the stream-
oriented definition mechanism of UDAs makes them particularly effective at
mining data streams, as discussed next.

3 Inductive Data Stream Management Systems

There is a great deal of interest in managing high volumes of information that
is exchanged as data streams that, because of high arrival rates or immediate
response requirements, cannot be managed via DBMS. Therefore, Data Stream
Management Systems (DSMS) are being developed to manage streaming infor-
mation by supporting data streams applications via continuous queries [21]. In

7



particular, data stream mining applications have been the focus of much recent
interest [22–24] raising the issue of designing the best DSMS to support such
applications. Therefore, in this section, we introduce the notion of an Inductive
DSMS which falls naturally at the intersection of the two research areas. In most
general terms, we will define Inductive DSMS as DSMS designed to supports and
facilitate the task of data stream mining.

While many approaches are possible to the design of management systems
that support publish & subscribe OR data streams, a very popular research
approach consists in using query languages and operators similar to those of
databases [21, 25–28] and extend them with operators and constructs specifically
designed for data streams. Typical extensions include windows or other synoptic
structures, sampling, and load shedding [21, 25]. Moreover, Inductive DSMS are
often used to support mining algorithms that are similar to those of Inductive
DBMS, as demonstrated by the fact that stream mining algorithms are often
fast&light, one-pass adaptation of the original algorithms designed to work on
stored data. Therefore, approaching Inductive DSMS and Inductive DBMS as
two closely related technical topics is natural and likely to be beneficial from a
research viewpoint. In terms of practical issues, however, we see that the two
areas are different and face somewhat complementary concerns, which are briefly
discussed next.

The fact that DSMS are far from the level of maturity and standardiza-
tion achieved by DBMS represents a clear disadvantage for Inductive DSMS,
which however, also enjoy major advantages, because of the number of built-in
functions they support, and because cache mining might no longer represent an
appealing alternative for data streams. For instance, the typical approach used
for mining data streams consists in dividing the incoming data into windows.
By comparing the statistics of successive windows we can (i) detect concept
shift/drift, and when none is detected (ii) use bagging and boosting techniques
to improve the predictive accuracy of our model [23, 24]. DSMS support a rich
assortment of window constructs that can be utilized very effectively in these
tasks [29, 27, 21].

Sampling represents another basic function that is useful for mining data
streams [30] and is well-supported in DSMS [26]. For instance, sampling can be
used to find the center of clusters [31] or frequent item sets for mining association
rules [32]. Moreover, building classifier ensembles via multiple samples of the
data can result in improved accuracy [33]. Also, interesting techniques have been
proposed to improve the accuracy of aggregates and mining methods on sample
data using past information on the stream behavior [34]. In principle, a cache-
mining programmer could code these sampling techniques or import them from
some library, but in practice, an Inductive DSMS that supports windows and
sampling as built-ins could be hard to resist for our opportunistic data stream
miner.

The reasons for using an Inductive DBMS become even more compelling
as we move from the language level to the system level, since DSMS provide
unique functions such as load balancing, scheduling, and shedding, which are

8



designed to assure quality-of-service and prompt response in the presence of
multiple users and bursty arrivals [35]. By taking advantage of computing grids,
or distributed computing platforms, DSMS can provide highly reliable, non-
stop service [36]. Thus data mining applications seeking uninterrupted service,
reliability, robustness, and sharing by multiple applications will need Inductive
DSMS (unlike database mining applications that can live without the support
for transaction, recovery, and data independence provided by DBMS).

In summary, Inductive DBMS can deliver to the data stream miner great
practical benefits—possibly even greater than those of Inductive DBMS in tra-
ditional mining applications. Moreover this research area also offers interesting
opportunities, since techniques and solutions developed for Inductive DBMS can
be naturally transferred to Inductive DSMS and vice versa. In particular, we have
extended the middle-road approach to Inductive DBMS described in the previ-
ous section and applied to Inductive DSMS, by extending the UDAs of ATLaS
with powerful primitives for windows, sampling, and time-stamp management.
The Expressive Stream Language (ESL) so obtained, can express every non-
blocking function expressible by a Turing machine and it is supported efficiently
in our Stream Mill prototype [37]. In data streams applications, windows are
often used in conjunction with aggregates, to overcome their blocking behavior
and to summarize the past history of the data stream. Unlike other DSMS that
only support windows on built-in aggregates, ESL supports a vast assortment
of windows on arbitrary UDAs. For instance, a classifier UDA can be called
on tumbles, i.e., windows that partition the input stream into disjoint segment,
and the results produced by few recent tumbles can be used to build a classi-
fier ensemble [38]. A sliding window aggregate is instead one that recomputes
the value of the aggregate when new tuples arrive or leave the window, using
differential maintenance techniques. The development of such techniques for the
various mining methods represent an interesting topic of ongoing research. In the
following example we show how the DBscan algorithm can be concisely written
in ESL and applied to an incoming stream partitioned into tumble windows.

Density-Based Clustering In our application, we have a stream of points in
a two-dimensional space. In order to study the data and distribution changes,
we (i) partition the stream into windows of equal size, (ii) cluster the data in
each window, and (iii) compare the sizes of the different clusters in successive
windows, along with any appearance of new clusters or disappearance of old
ones. For clustering, we employ the density-based clustering algorithm DBScan
[39]. The density conditions is defined by the fact that within a radius of eps, we
find at least minPts points; thus, points that occur in a dense area are assigned
to the same cluster, while points that fall in a sparse area are instead classified
as outliers.

The partition of the incoming stream into windows and the execution of
DBscan on each window are accomplished by the following ESL statement that
calls the dbscan aggregate on input data stream:

Stream of Points(Xvalue, Yvalue, TimeStamp).

9



Example 4 Applying dbscan with minPts = 10 and eps = 50

/*call dbscan with minPts = 10 and eps = 50 */
SELECT dbscan(Xvalue, Yvalue, 0, 10, 50)

OVER(ROWS 999 PRECEDING SLIDE 1000 )
FROM Stream of Points

Here 10 and 50 are the example values we assign to two important parameters
for the DBScan Algorithm, eps and minPts, respectively. The third argument is
for book-keeping purposes. Observe that since the size of the slide is the same as
that of the window, this is known as a tumble. Therefore the Stream Mill system
will use the base definition of DBscan, shown below. Given the two parameters
eps and minPts, the DBScan algorithm works as follows: pick an arbitrary
point p and find its neighbors (points that are less than eps distance away). If
p has more than minPts neighbors then form a cluster and call DBScan on all
its neighbors recursively. If p does not have more than minPts neighbors then
move to other un-clustered points in the database. Note, this can be viewed as
a depth-first search.

AGGREGATE dbscan(iX Real, iY Real, Flag Int, minPt Int, eps Int): Int
{ TABLE closepnts(X2 real, Y2 real, C2 Int) MEMORY;

INITIALIZE: ITERATE: {
/* Find neighbors of the given point */
INSERT INTO CLOSEPNTS SELECT X1, Y1, C1 FROM points
WHERE sqrt((X1-iX)*(X1-iX) + (Y1-iY)*(Y1-iY)) < eps;

/* If there are more than minPt neighbors, form a cluster */
UPDATE clusterno SET Cno= Cno+1 /* new cluster number*/
WHERE Flag=0 AND SQLCODE=0 /* A new cluster */
AND minPt < (SELECT count(C2) FROM closepnts);

/* Assign these neighboring points to this cluster */
UPDATE points SET C1 = (SELECT Cno FROM clusterno)
WHERE points.C1=0 AND
EXISTS (SELECT S.X1 FROM closepnts AS S

WHERE points.X1=S.X2 AND points.Y1=S.Y2 )
AND minPt < (SELECT count(C2) FROM closepnts);

/* Call dbscan recursively */
SELECT dbscan(X2, Y2, 1, minPt, eps)
FROM closepnts, points
WHERE X1 = X2 AND Y1=Y2;
DELETE FROM closepnts;

}
}; /*end dbscan*/

This density-based clustering was part of a demo presented at the ACM
SIGMOD 2005 conference of the Stream Mill System that supports very pow-
erful continuous queries on data streams and applications that span both data
streams and databases using a client-server architecture [38]. Another data min-
ing application demonstrated on that occasion, was an ensemble-based classifier
where each window was used to build a separate classifier. Sliding windows that

10



are recomputed after each new tuple arrives in the window, are suitable when
incremental computation is feasible—as in the case of mining methods, such as
Naive Bayesian Classifiers that are based on count or other algebraic aggregates.
Two other important advantages of Stream Mill are (i) support for time series
applications, and [40], and (ii) inclusion of streaming XML data along with re-
lational streams [41], as needed e.g., to support PPML data. Indeed, Stream
Mill has already taken the first important steps toward becoming an Inductive
DSMS.

This example illustrates how the middle-road approach to data mining can
be generalized to work with data streams, and in fact the simpler one-one pass
algorithms that are prevalent with data streams can be expressed simply and
concisely using UDAs. However, other approaches to Inductive DBMS, such
as the mining-language approach, or the OLE DB DM approach, can also be
extended naturally to support Inductive DSMS and such extensions provide an
interesting topic for future research.

4 Conclusion

Ten years after being proposed in concept papers [1, 2], the notion of inductive
databases is coming of age in terms of research advances and commercial sys-
tems with progress occurring along three largely parallel and independent paths.
Progress along the high-road pathway, has been made with the introduction of
the first generation of mining languages [6], and with techniques for the optimiza-
tion of declarative mining queries based on association rules [9]. Progress along
the middle-road has delivered SQL extensions based on natively defined UDAs
that can be used to write data mining algorithms [18]. On the commercial front,
DBMS can now support the combination of descriptive/predictive data mining
via a predefined library mining methods [42].

Remarkably these advances are not mutually exclusive but they should in-
stead be integrated to produce more powerful Inductive DBMS. In particular,
the libraries of systems such as OLE DB DM should be made extensible, as to
accommodate the inclusion of new declarative mining methods and procedural
mining methods. As demonstrated by ATLaS, new mining methods can be added
to DSMS as UDAs operating on tables. While these UDAs could be written in
a foreign language, UDAs natively and concisely written in SQL are preferable,
because they are safe, easier to modify, and free of ‘impedance mismatch’ prob-
lems.

In order to get synergy between these different approaches, we must assure
their interoperability. Experience with data mining libraries [43, 19] indicates
that for flexibility and interoperability, we need to establish well-defined repre-
sentations between the various steps of the mining process. These representations
must, e.g., support import/export of data, metadata and mining models, so that
they can be cooperatively exchanged between different systems. The PMML-
based approach of OLE DB [42] represents an important first step in the right
direction, but it suffers from limitations in terms of power and generality. For
instance, while a single classifier can be imported/exported using PMML, it is

11



not clear how ensembles of such classifiers could be assembled and reimported to
perform a predictive task. While more general approaches to the representation
of mining artifacts are possible using XML, not all representations are equally
desirable. For instance, for large data sets, relational tables have proven to be
much more efficient than XML-based ones both in terms of data and query effi-
ciencies. On the other hand, logical rules are clearly the representation of choice
in dealing with knowledge. As describe in [44] logical rule are very effective at (i)
bringing the domain knowledge to bear upon specific mining task, (ii) driving
the mining process by calling procedurally defined UDAs to perform the spe-
cific mining tasks, and (iii) combining the results of knowledge extraction with
application-expert rules. From a research viewpoint, the success obtained in [45]
with a rule-based data mining environment suggests the need for two important
enhancements that were not available in the framework of systems [46] originally
used in those experiments. One is the ability of using induced rules as if they
were deductive rules, and the other is ability of using deductive rules to define
UDAs which compare in terms of efficiency with those written in ATLaS SQL
which approach those of UDAs written in a procedural language.

Finally, we have shown that the problem of mining data streams is so close
to that of mining databases that the two should be pursued together to exploit
the considerable opportunities their close relationship offers both in terms of
research and commercial applications.

Acknowledgements

I would like to thank Francesco Bonchi and Yan-Nei Law for their comments
and suggested improvements on the first version of the manuscript. In addition
to their many helpful comments, Haixun Wang, Yijian Bai and Hetal Thakkar
must also be credited with building ATLaS and Stream Mill.

References

1. Tomasz Imielinski. A database perspective on knowledge discovery. In The First
International Conference on Knowledge Discovery and Data Mining (KDD-95),
1995.

2. Tomasz Imielinski and Heikki Mannila. A database perspective on knowledge
discovery. Communication ACM, 39(11):58–64, 1996.

3. T. Imielinski and A. Virmani. MSQL: a query language for database mining. Data
Mining and Knowledge Discovery, 3:373–408, 1999.

4. J. Han, Y. Fu, W. Wang, K. Koperski, and O. R. Zaiane. DMQL: A data mining
query language for relational databases. In Workshop on Research Issues on Data
Mining and Knowledge Discovery (DMKD), pages 27–33, Montreal, Canada, June
1996.

5. R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association
rules. In VLDB, pages 122–133, Bombay, India, 1996.

6. Marco Botta, Jean-François Boulicaut, Cyrille Masson, and Rosa Meo. Query
languages supporting descriptive rule mining: A comparative study. In Database
Support for Data Mining Applications, pages 24–51, 2004.

12



7. Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, and Dino Pedreschi. Exam-
iner: Optimized level-wise frequent pattern mining with monotone constraint. In
ICDM, pages 11–18, 2003.

8. Sau Dan Lee and Luc De Raedt. An algebra for inductive query evaluation. In
ICDM, pages 147–154, 2003.

9. Francesco Bonchi and Claudio Lucchese. Pushing tougher constraints in frequent
pattern mining. In PAKDD, pages 114–124, 2005.

10. Baptiste Jeudy and Jean-François Boulicaut. Constraint-based discovery and in-
ductive queries: Application to association rule mining. In Pattern Detection and
Discovery, pages 110–124, 2002.

11. IBM. Db2 intelligent miner, http://www-306.ibm.com/software/data/iminer.
12. ORACLE. Oracle data miner release 10gr2,

http://www.oracle.com/technology/products/bi/odm.
13. Z. Tang, J. Maclennan, and P.P. Kim. Building data mining solutions with ole db

for dm and xml for analysis. SIGMOD Record, 34(2):80–85, 2005.
14. Data Mining Group (DMG). Predictive model markup language (pmml),

http://sourceforge.net/projects/pmml.
15. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with

relational database systems: Alternatives and implications. In SIGMOD, 1998.
16. Arno Siebes. Where is the mining in kdid? (invited talk). In Fourth Int. Workshop

on Knowledge Discovery in Inductive Databases (KDID 2005), Porto, Prtugal,
2005.

17. Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Data models and query language
for data streams. In VLDB, pages 492–503, 2004.

18. Haixun Wang and Carlo Zaniolo. Atlas: a native extension of sql for data minining.
In Proceedings of Third SIAM Int. Conference on Data Mining, pages 130–141,
2003.

19. Weka 3—data mining with open source machine learning software in java
http://www.cs.waikato.ac.nz.

20. Theodore Johnson, Laks V. S. Lakshmanan, and Raymond T. Ng. The 3w model
and algebra for unified data mining. In VLDB 2000, Proceedings of 26th Inter-
national Conference on Very Large Data Bases, pages 21–32. Morgan Kaufmann,
2000.

21. B. Babcock, S. Babu, M. Datar, R. Motawani, and J. Widom. Models and issues
in data stream systems. In PODS, 2002.

22. G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In
SIGKDD, pages 97–106, San Francisco, CA, 2001. ACM Press.

23. Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting
data streams using ensemble classifiers. In KDD, pages 226–235, 2003.

24. Fang Chu, Yizhou Wang, and Carlo Zaniolo. An adaptive learning approach for
noisy data streams. In ICDM, pages 351–354, 2004.

25. Lukasz Golab and M. Tamer Ozsu. Issues in data stream management. ACM
SIGMOD Record, 32(2):5–14, 2003.

26. Theodore Johnson, S. Muthukrishnan, and Irina Rozenbaum. Sampling algorithms
in a stream operator. In SIGMOD Conference, pages 1–12, 2005.

27. D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: A new model and architecture for data
stream management. VLDB Journal, 12(2):120–139, 2003.

28. C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck. Gigascope:
High performance network monitoring with an sql interface. In SIGMOD, page
623. ACM Press, 2002.

13



29. A. Arasu, S. Babu, and J. Widom. Cql: A language for continuous queries over
streams and relations. In DBPL, pages 1–19, 2003.

30. Mohamed Medhat Gaber, Arkady B. Zaslavsky, and Shonali Krishnaswamy. Min-
ing data streams: a review. SIGMOD Record, 34(2):18–26, 2005.

31. Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams: Theory and practice. IEEE Trans. Knowl.
Data Eng., 15(3):515–528, 2003.

32. Hannu Toivonen. Sampling large databases for association rules. In T. M. Vijayara-
man, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda, editors, VLDB’96,
Proceedings of 22th International Conference on Very Large Data Bases, September
3-6, 1996, Mumbai (Bombay), India, pages 134–145. Morgan Kaufmann, 1996.

33. Kagan Tumer and Joydeep Ghosh. Error correlation and error reduction in en-
semble classifiers. Connect. Sci., 8(3):385–404, 1996.

34. Yan-Nei Law and Carlo Zaniolo. Improving the accuracy of continuous aggregates
and mining queries. In Submitted for Publication, 2005.

35. Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik, Mitch Cherniack, and Michael
Stonebraker. Load shedding in a data stream manager. In VLDB, pages 309–320,
2003.

36. Yanif Ahmad, Bradley Berg, Ugur Çetintemel, Mark Humphrey, Jeong-Hyon
Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaemmanouil, Alex Rasin, Nes-
ime Tatbul, Wenjuan Xing, Ying Xing, and Stanley B. Zdonik. Distributed op-
eration in the borealis stream processing engine. In SIGMOD Conference, pages
882–884, 2005.

37. Stream mill home. http://wis.cs.ucla.edu/stream-mill.
38. Chang Luo, Hetal Thakkar, Haixun Wang, and Carlo Zaniolo. A native extension

of sql for mining data streams. pages 873–875, 2005.
39. Hans-Peter Kriegel Martin Ester, J. Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In KDD
1996, pages 226–231, 1996.

40. Y. Bai, L. Chang, H. Thakkar, X. Zhou, and C. Zaniolo. Efficient support for
time series queries in data stream management systems. In K. Shaw N. Chaudhry
and M. Abdelguerfi (eds), editors, Stream Data Management” Kluwer: Chapter 6.
Kluwer Academic Publishers, 2005.

41. Xin Zhou, Hetal Thakkar, and Carlo Zaniolo. Unifying the processing of xml
streams and relational data streams. The 22nd International Conference on Data
Engineering April 3-7, Atlanta, GA, 2006, 2005.

42. ZhaoHui Tang, Jamie Maclennan, and Pyungchul (Peter) Kim. Building data min-
ing solutions with ole db for dm and xml for analysis. SIGMOD Record, 34(2):80–
85, 2005.

43. Clementine http://www.spss.com/clementine/index.htm.
44. F. Giannotti, G. Manco, D. Pedreschi, and F. Turini. Experiences with a logic-

based knowledge discovery support environment. In ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery (DMKD), 1999.

45. Fosca Giannotti, Giuseppe Manco, Dino Pedreschi, and Franco Turini. Experiences
with a logic-based knowledge discovery support environment. In AI*IA, pages 202–
213, 1999.

46. Faiz Arni, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zaniolo. The
deductive database system ldl++. TPLP, 3(1):61–94, 2003.

14


