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Abstract. Using only a simple transition relation one cannot model
commands that may or may not terminate in a given state. In a more
general approach commands are relations enriched with termination vec-
tors. We reconstruct this model in modal Kleene algebra. This links the
recursive definition of the do od loop with a combination of the Kleene
star and a convergence operator. Moreover, the standard wp operator
coincides with the wlp operator in the modal Kleene algebra of com-
mands. Therefore our earlier general soundness and relative complete-
ness proof for Hoare logic in modal Kleene algebra can be re-used for
wp. Although the definition of the loop semantics is motivated via the
standard Egli-Milner ordering, the actual construction does not depend
on Egli-Milner-isotony of the constructs involved.

1 Introduction

Total correctness has been extensively studied, a.o. using relational methods.
One line of research (see e.g. [3, 8, 9, 12, 24]) provides strongly demonic semantics
for regular programs. There, however, one cannot model commands that may or
may not terminate in a given state. A second line of research (e.g. [4, 5, 13, 23, 25])
provides a weakly demonic semantics that allows such more general termination
behaviour. We reconstruct the latter approach in modal Kleene algebra. This
provides a new connection between the recursive definition of the do od loop and
a combination of the Kleene star with convergence algebra. Moreover, it turns out
that the standard wp operator coincides with the wlp operator of a suitable modal
algebra of commands. Therefore the general soundness and relative completeness
proof for Hoare logic in modal Kleene algebra given in [21] can be re-used for
wp (where now, of course, expressiveness has to cover termination). Although
the definition of the loop semantics is motivated via the standard Egli-Milner
ordering, its actual construction does not depend on Egli-Milner-isotony of the
constructs involved. A number of simple proofs are omitted due to lack of space;
they can be found in the technical report [22].

2 Weak and Modal Semirings

A weak semiring is a quintuple (S,+, 0, ·, 1) such that (S,+, 0) is a commutative
monoid and (S, ·, 1) is a monoid such that · distributes over + and is left-strict,



i.e., 0·a = 0. S is idempotent if + is. In this case the relation a ≤ b def⇔ a+b = b
is an order, called the natural order on S, with least element 0. Moreover, · is
isotone w.r.t. ≤. A semiring is a weak semiring where · is also right-strict, i.e,
a · 0 = 0.

An important idempotent semiring is REL, the algebra of binary relations un-
der union and composition over a set. Other interesting examples of weak idem-
potent semirings can be found within the set of endofunctions on an upper semi-
lattice (L,t,⊥) with least element ⊥, where addition is defined as (f + g)(x) =
f(x) t g(x) and multiplication by function composition. The set of disjunctive
functions (satisfying f(xt y) = f(x)t f(y)) forms a weak idempotent semiring.
The induced natural order is the pointwise order f ≤ g ⇔ ∀ x . f(x) ≤ g(x). The
subclass of strict disjunctive functions (satisfying additionally f(⊥) = ⊥) even
forms an idempotent semiring. These types of semirings include predicate trans-
former algebras and are at the centre of von Wright’s algebraic approach [27].

A (weak) test semiring is a pair (S, test(S)), where S is a(weak) idempotent
semiring and test(S) ⊆ [0, 1] is a Boolean subalgebra of the interval [0, 1] of S
such that 0, 1 ∈ test(S) and join and meet in test(S) coincide with + and ·. This
definition corresponds to the one in [18]. In REL the tests are partial identity
relations (also called monotypes or coreflexives), encoding sets of states. We use
a, b, . . . for general semiring elements and p, q, . . . for tests. By ¬p we denote the
complement of p in test(S) and set p → q = ¬p + q. Moreover, we sometimes
write p ∧ q for p · q and p ∨ q for p+ q. We freely use the Boolean laws for tests.
An important property is

p · a · q ≤ 0 ⇔ a · q ≤ ¬p · a . (1)

For (⇒) we note a · q = (p+ ¬p) · a · q = p · a · q + ¬p · a · q = ¬p · a · q ≤ ¬p · a
by q ≤ 1. For (⇐) we have a · q ≤ ¬p · a ⇒ p · a · q ≤ p · ¬p · a = 0 · a = 0.

A (weak) modal semiring is a pair (S, [ ]), where S is a (weak) test semiring
and the box [ ] : S → (test(S) → test(S)) satisfies

p ≤ [a]q ⇔ p · a · ¬q ≤ 0 , [(a · b)]p = [a]([b]p) .

The diamond is the de Morgan dual of the box, i.e., 〈a〉p = ¬[a]¬p.
The box generalises the notion of the weakest liberal precondition wlp to

arbitrary weak modal semirings. When amodels a transition relation, [a]pmodels
those states from which execution of a is impossible or guaranteed to terminate
in a state in set q. In REL one has (x, x) ∈ [R]q ⇔ ∀ y : xRy ⇒ (y, y) ∈ q. In
arbitrary weak semirings the box need not exist; for more details see [10].

The box axioms are equivalent to the equational domain axioms of [10]. In

fact the domain of element a is pa
def
= ¬[a]0. Hence pa provides an abstract

characterisation of the starting states of a. Conversely, [a]q = ¬p(a · ¬q). Most of
the consequences of the box axioms shown originally for strict modal semirings
in [10] still hold for weak modal semirings (see [20]), in particular,

[a](p · q) = [a]p · [a]q , 〈a〉(p+ q) = [a]p+ [a]q , (2)

[a+ b]p = [a]p · [b]p , 〈a+ b〉p = 〈a〉p+ 〈b〉p , (3)

[p]q = p→ q , 〈p〉q = p · q . (4)
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The latter implies [1]q = q = 〈1〉q as well as [0]p = 1 and 〈0〉p = 0. By (3) [a]
and 〈a〉 are isotone. Moreover, by (3) box is antitone and diamond is isotone,
i.e., a ≤ b ⇒ [b] ≤ [a] ∧ 〈a〉 ≤ 〈b〉. In a semiring (i.e., assuming right-strictness
of ·) we additionally get

[a]1 = 1 , 〈a〉0 = 0 . (5)

A (weak) modal semiring S is extensional if for all a, b ∈ S we have [a] ≤
[b] ⇒ b ≥ a. For example, REL is extensional. However, we can completely
avoid extensionality, which makes our results much more widely applicable.

3 Commands and Correctness

While the previous section showed how to model the wlp-semantics of partial
correctness in modal semirings, we now turn to total correctness. This requires
modelling the states from which termination of a command can be guaranteed.
The basic idea in [4, 5, 13, 23, 25] is to model a command as a pair (a, p) consist-
ing of a transition a between states and a set p of states from which termina-
tion is guaranteed. Parnas [25] requires p to be contained in the domain of a.
This allows distinguishing the “must-termination” given by p from the “may-
termination” given by the domain and excludes “miraculous” commands that
terminate without producing a result state. However, this entails that there is
no neutral element w.r.t. demonic choice, since the obvious candidate fail with
empty transition but full termination set does not satisfy Parnas’s restriction.
So there is not even an additive monoid structure. Nelson [23] dropped this
restriction; we will base our treatment on his more liberal approach.

Assume now a modal semiring S (i.e., right-strictness of · ). we define the set

of commands over S as COM(S)
def
= S×test(S). In a command (a, p) the element

a ∈ S describes the state transition behaviour and p ∈ test(S) characterises the
states with guaranteed termination; all states in ¬p have the “result” of looping
besides any proper states that may be reached from them under a. In this view
the weakest (liberal) precondition can be defined as

wlp.(a, p).q
def
= [a]q , wp.(a, p).q

def
= p · wlp.(a, p).q .

Then by (5) we get p = wp.(a, p).1, and hence, for command k, Nelson’s pairing
condition wp.k.q = wp.k.1 · wlp.k.q. The guard of a command,

grd.(a, p)
def
= ¬wp.(a, p).0 = p→ pa .

characterises the set of states that, if non-diverging, allow a transition under
a. A command is called total if its guard equals one. The above formula links
Parnas’s condition on termination constraints with totality:

grd.(a, p) = 1 ⇔ p ≤ pa .

Nelson remarks that totality of command k is also equivalent to Dijkstra’s law
of the excluded miracle wp.k.0 = 0.
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We now define the basic non-iterative commands.

fail
def
= (0, 1) , skip

def
= (1, 1) , loop

def
= (0, 0) ,

(a, p) dc(b, q) def
= (a+ b, p · q) ,

(a, p) ; (b, q)
def
= (a · b, p · [a]q) .

The straightforward proof of the following theorem can be found in [22].

Theorem 3.1 The structure COM(S)
def
= (COM(S), dc, fail, ;, skip) over a semi-

ring S is an idempotent weak semiring, the command semiring over S. However,
it is not a semiring. The associated natural order on COM(S) is

(a, p) ≤ (b, q) ⇔ a ≤ b ∧ p ≥ q . (6)

By antitony of box we obtain for commands k, l

k ≤ l ⇒ wlp.k ≥ wlp.l ∧ wp.k ≥ wp.l ,

where ≥ is the pointwise order between test transformers. The second conjunct
is the converse of the usual refinement relation. If the underlying semiring is
extensional then the converse implication holds as well.

By standard order theory, if S is a complete lattice then COM(S) is a com-
plete lattice again with

t {(ai, pi) | i ∈ I} = (t {ai | i ∈ I},u {ai | i ∈ I}).

Likewise, if S has a greatest element > then chaos
def
= (>, 0) is the greatest ele-

ment of COM(S), whereas havoc
def
= (>, 1) represents the most nondeterministic

everywhere terminating command.

4 Modalities for Commands

We now want to make COM(S) into a weak modal semiring as well. From (6)
and p ≤ 1 it is immediate that (a, p) ≤ skip ⇔ a ≤ 1 ∧ p = 1. It is easy to check
that the elements of this shape are closed under ; and dc. Therefore it seems

straightforward to use the test commands p
def
= (p, 1) and to choose

test(COM(S))
def
= {p | p ∈ test(S)} .

Clearly, this yields a Boolean algebra with ¬ p = ¬p, 0 = fail and 1 = skip.
Using this, we can also introduce a guarded statement as

p→ k = p ; k . (7)

To check the first box axiom we calculate, using the definitions and [a]1 = 1
(we assume a semiring, i.e., right-strictness of · ),

(p, 1) ; (c, r) ; ¬(q, 1) = (p · c, p→ r) ; (¬q, 1) = (p · c · ¬q, p→ r) ,

so that, by (6) and shunting,
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(p, 1) ; (c, r) ; ¬(q, 1) ≤ (0, 1) ⇔ p · c · ¬q ≤ 0 ∧ p→ r ≥ 1
⇔ p ≤ [c]q ∧ p ≤ r ⇔ p ≤ wp.(c, r).q .

For the second box axiom we calculate, using the definitions, the second box
axiom, conjunctivity of [a] and the definitions again,

wp.((a, p) ; (b, q)).r = p · [a]q · [a · b]r = p · [a]q · [a]([b]r)
= p · [a](q · [b]r) = wp.(a, p).(wp(b, q).r) .

Altogether, we have shown

Theorem 4.1 Setting [k]q
def
= wp.k.q makes COM(S) a weak modal semiring.

Hence the general definitions for modal semirings tie in nicely with the wp
semantics. This equation explains the title of our paper: wp is nothing but wlp
in the weak modal semiring of commands.

Now the usual properties of wlp and wp come for free, since both are box
operators in modal semirings:

w(l)p.fail.r = 1 , w(l)p.skip.r = r ,
w(l)p.(k dc l).r = w(l)p.k.r ∧ w(l)p.l.r ,

w(l)p.(p→ l).r = p→ w(l)p.l.r .

The only command that does not have an abstract counterpart in all modal
semirings is loop. For it the box operators behave asymmetrically:

wlp.loop.r = 1 , wp.loop.r = 0 . (8)

Theorem 4.1 implies, moreover, that for k ∈ COM(S) we have pk = grd.k,
another pleasing connection with the general theory of weak modal semirings.
From this observation we obtain the usual guard laws for free:

grd.fail = 0 , grd.skip = 1 , grd.(p→ k) = p · grd.k ,
grd.(k dc l) = grd.k + grd.l , grd.(k ; l) = ¬wp.k.(¬grd.l) .

Additionally, grd.loop = 1.
Finally, we define Nelson’s biased choice operator d-c that will be used in the

definition of the if fi command in the next section:

k d-c l def
= k dc(¬grd.k→ l) .

Then d-c is the overwrite operation in COM(S) that in general weak modal semir-

ings is defined as a|b def
= a+¬pa ·b. A corresponding operator is used in B [1] and

Z [26], but also in calculating with pointer and object structures [14, 19]. This
operation satisfies a number of useful laws from which we get three properties
of biased choice for free:

a|0 = a = 0|a , k d-c fail = k = fail d-c k ,
a|(b|c) = (a|b)|c , k d-c(l d-cm) = (k d-c l) d-cm ,
p(a+ b) = pa+ pb , grd.(k d-c l) = grd.k + grd.l .

To ease reading we will simply write p instead of p in the remainder; the context
will make clear where the lifting would have to be filled in.
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5 Loops, Kleene Algebra and the Egli-Milner Order

So far we have not dealt with iteration. We show now that the semantics of Dijk-
stra’s do od loop can be defined in closed terms if we assume that the underlying
modal semiring S is a convergence algebra, that is, has additional operations ∗

of finite iteration and 4 that yields termination information.
Let us give the necessary definitions. A weak left Kleene algebra is a structure

(S,∗ ) such that S is an idempotent weak semiring and the star ∗ satisfies, for
a, b, c ∈ S, the left unfold and left induction axioms

1 + a · a∗ ≤ a∗ , b+ a · c ≤ c ⇒ a∗ · b ≤ c .

Hence a∗ · b is the least pre-fixpoint and the least fixpoint of the function λx . a ·
x + b. As a consequence, star is ≤-isotone. Symmetrically, a weak right Kleene
algebra (S,∗ ) satisfies the right unfold and right induction axioms

1 + a∗ · a ≤ a∗ , b+ c · a ≤ c ⇒ b · a∗ ≤ c .

A weak left (right) modal Kleene algebra is a weak left (right) Kleene algebra
in which S is modal. Finally, a left (right) modal Kleene algebra is a weak left
(right) modal Kleene algebra with a full underlying semiring. The law

a · c ≤ c · b ⇒ a∗ · c ≤ c · b∗ (9)

holds in every left Kleene algebra: For the right-hand side it suffices by left
induction to show that c + a · c · b∗ ≤ c · b∗. But c + a · c · b∗ ≤ c + c · b · b∗ =
c · (1 + b · b∗) ≤ c · b∗. Even in weak left modal Kleene algebras we have p∗ = 1
for all p ∈ test(S) and the following induction law [10].

Lemma 5.1 In a left modal Kleene algebra, q ≤ p · [a]q ⇒ q ≤ p · [a∗]p.

Proof. Assume q ≤ p · [a]q, i.e., q ≤ p ∧ q ≤ [a]q. The claim is equivalent to
q ≤ p ∧ q ≤ [a∗]q. The first conjunct is an assuption. For the second one we
calculate q ≤ [a]q ⇔ a · ¬q ≤ ¬q · a ⇒ a∗ · ¬q ≤ ¬q · a∗ ⇔ q ≤ [a∗]q. The first
and third steps follow from (1), the second one from (9). ut

Now we are ready to show

Theorem 5.2 The command semiring over a left Kleene algebra can be made

into a left modal Kleene algebra by setting (a, p)∗
def
= (a∗, [a∗]p).

Proof. For the left unfold axiom we calculate, using the definitions, the second
box axiom, (3) and the left unfold axiom for S,

(1, 1) dc(a, p) ; (a∗, [a∗]p) = (1 + a · a∗, p · [a]([a∗]p)
= (1 + a · a∗, [1 + a · a∗]p) = (a∗, [a∗]p) .

For the left induction axiom assume (b, q) dc(a, p) ; (c, r) ≤ (c, r), i.e., b+ a · c ≤
c ∧ q · p · [a]r ≥ r, which by left star induction for S and Lemma 5.1 implies

a∗ · b ≤ c ∧ [a∗](q · p) ≥ r . (∗)

Now we calculate, using the definitions, conjunctivity of [a∗] and (∗),

(a∗, [a∗]p) ; (b, q) = (a∗ · b, [a∗]p · [a∗]q) = (a∗ · b, [a∗](p · q)) ≤ (c, r) . ut
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Analogously one shows that under the same definition of star the command
semiring over a right Kleene algebra is a right Kleene algebra again.

A weak Kleene algebra is a structure (S,∗ ) that is both a left and a right
Kleene algebra over a weak semiring S; it is a Kleene algebra if S is a strict
semiring. The notion of a (weak) modal Kleene algebra is defined analogously.
Summarizing the above remarks we have

Theorem 5.3 The command semiring over a (modal) Kleene algebra can again
be made into a (modal) Kleene algebra by the above definition.

Let us now look at the semantics x of the loop do k od. It is supposed to
satisfy the recursion equation (cf. [23])

x = (k ; x) dc ¬grd.k→ skip . (10)

Given the Kleene algebra structures of commands it is tempting to define the
semantics of the loop do k od as the ≤-least solution, viz. by the standard expres-
sion k∗ ; ¬grd.k. However, for k = skip we obtain k∗ ; ¬grd.k = skip ; fail = fail,
whereas the semantics of do skip od should be loop.

So ≤ is not the adequate approximation order for recursions such as the
one for loops; it is in a sense “too angelic”. Instead, one uses the Egli-Milner
approximation relation v over COM(S), given by (see [23])

k vEM l ⇔ wp.k ≤ wp.l ∧ wlp.l ≤ wlp.k .

It is an order iff S is extensional. Equivalently, k vEM l ⇔ wp.k.1 ≤ wp.l.1 ∧
wp.k ≤ wlp.l ∧ wlp.l ≤ wlp.k. Thus, to allow S to be non-extensional, we define

(a, p) v (b, q)
def
= p ≤ q ∧ wp.(a, p) ≤ wlp.(b, q) ∧ a ≤ b .

Lemma 5.4 The relation v is an order with least element loop.

Proof. Antisymmetry follows from that of ≤, while reflexivity is immediate from
that of ≤ and wp.k ≤ wlp.k. For transitivity, assume (a, p) v (b, q) and (b, q) v
(c, r). From transitivity of ≤ we get a ≤ c and p ≤ r. Consider now an arbitrary
s ∈ test(S). First, wp.(a, p).s = p · [a]s = q · p · [a]s = q · wp.(a, p).s, since p ≤ q.
Now, wp.(a, p).s = q · wp.(a, p).s ≤ q · wlp.(b, q).s = wp.(b, q).s ≤ wlp.(c, r).s.
Finally, v-leastness of loop follows from ≤-leastness of 0 and (8). ut

The meaning of a recursive command then is the v-least fixpoint of the
associated function (provided it exists; v need not induce a cpo in general). A
treatment of full recursion will be the subject of a later paper. To actually find
a convenient representation of the v-least solution of (10) we need an additional
concept that captures termination information.

A convergence algebra [11] is a pair (S,4) where S is a left modal Kleene
algebra and the convergence operation 4 : S → test(S) satisfies, for all a ∈ S
and p, q ∈ test(S), the unfold and coinduction laws

[a](4a) ≤ 4a, [a]p · q ≤ p⇒ 4a · [a∗]q ≤ p .
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This axiomatises 4a · [a∗]q as the least pre-fixpoint and least fixpoint of the
function λp . [a]p · q; in particular, 4a is the least pre-fixpoint and the least
fixpoint of [a]. For the pre-fixpoints of [a] we have [a]p ≤ p ⇔ ¬p ≤ 〈a〉¬p.
Since q ≤ 〈a〉q means that every state in q has a successor in q, the complements
of the pre-fixpoints consist of states with the possibility of nontermination under
iterated execution of a. Hence the least pre-fixpoint 4a characterises the states
from which a does not admit infinite transition sequences. It corresponds to the
halting predicate of the modal µ [16]). Hence we call an element a Noetherian if
4a = 1. For p ∈ test(S) we have 4p = ¬p.

For our treatment of loops we now assume a convergence algebra as the un-
derlying semiring. First we extend the convergence operation to commands and
define a particular command that captures termination information by setting,
for a ∈ S, p ∈ test(S) and k ∈ COM(S),

4(a, p)
def
= 4a , trm.k

def
= (0,4k) .

We define command k to be Noetherian, in signs NOE(k), if 4k = 1.

Lemma 5.5 1. trm.(a, p) is the v-least solution of the equation x = (a, 1) ; x.
2. trm.(a, p) (like all commands of the form (0, q)) is a left zero w.r.t. ; .

To tackle the semantics of the loop do k od, we slightly generalise and define
the command do k exit l od as the v-least solution of the recursion equation

x = (k ; x) dc ¬grd.k→ l . (11)

Let us calculate conditions for such a solution (y, t). Assume

(y, t) = ((a, p) ; (y, t)) dc ¬g→ (b, q)

where g
def
= grd.(a, p). Plugging in the definitions, we have to satisfy

y = a · y + ¬g · b , t = [a]t · p · (¬g → q) .

To get a v-least solution (y, t), we have to use the ≤-least solutions of these
equations, which by left star induction and convergence induction are

y = a∗ · ¬g · b , t = 4a · [a∗](p · ¬g → q) .

We show that (y, t) is indeed the v-least solution of (11). Consider an arbitrary
solution (z, u). In remains to verify that wp.(y, t) ≤ wlp.(z, u). First, for arbitrary
s, using the fixpoint property of (z, u), (3) and the second box axiom

wlp.(z, u).s = [a · z + ¬g · b]s = [a]([z]s) · [¬g · b]s = [a](wlp.(z, u).s) · [¬g · b]s .

Hence by the convergence induction axiom we have

4a · [a∗]([¬g · b]s) ≤ wlp.(z, u).s .

Now, by definition and the second box axiom,

wp.(y, t).s = t · [y]s = 4a · [a∗](p · ¬g → q) · [a∗ · ¬g · b]s
≤ 4a · [a∗ · ¬g · b]s = 4a · [a∗]([¬g · b]s) .

Next, we bring our least solution (y, t) into somewhat nicer form:
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(a∗ · ¬g · b,4a · [a∗](p · ¬g → q)

= {[ definition of dc ]}
(a∗ · ¬g · b, [a∗](p · ¬g → q)) dc(0,4a)

= {[ conjunctivity of [a∗] ]}
(a∗ · ¬g · b, [a∗]p · [a∗](¬g → q)) dc(0,4a)

= {[ definition of ; ]}
((a∗, [a∗]p) ; (¬g · b,¬g → q)) dc(0,4a)

= {[ definition of star and → ]}
((a, p)∗ ; (¬g→ (b, q)) dc(0,4a) .

Altogether we have shown

Theorem 5.6 do k exit l od = (k∗ ; ¬grd.k→ l) dc trm.k.

Note that this theorem does not depend on completeness of the underly-
ing semiring nor on Egli-Milner-isotony of the command-building operations in-
volved. Moreover, the form of the expressions in the semantics has arisen directly
from the star and convergence axioms.

For l = skip we obtain the semantics do k od = (k∗ ; ¬grd.k) dc trm.k. And
now, indeed, do skip od = loop. We have the following connection.

Lemma 5.7 do k exit l od = do k od ; l.

Moreover, we obtain the semantics of the if fi command which, according
to [23], should be the v-least solution of the equation x = k d-cx. Plugging in
the definition of d-c we can rewrite that into

x = (¬grd.k ; x) dc grd.k→ k

and the above theorem and lemma yield

if k fi = do¬grd.k exit k od = do¬grd.k→ skip od ; k .

In particular, if fail fi = loop.

6 Hoare Calculus for WP

Since we have seen that wp is wlp in an appropriate weak modal semiring, we
can use the general soundness and relative completeness proof for propositional
Hoare logic from [21], since that proof nowhere uses strictness of the underlying
semiring. This yields fairly quickly a sound and relatively complete proof sys-
tem for wp. In an arbitrary weak modal semiring, soundness of a Hoare triple
{p} a {q} with tests p, q is defined as p ≤ [a]q. The proof in [21], an abstract
representation of the standard proof (see e.g. [2]) shows that relative complete-
ness is achieved if the triple {[a]q} a {q} is derivable for every command a and
every test q (where one has to assume sufficient expressiveness, i.e., that the
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assertion logic is rich enough to express all tests [a]q). For the atomic commands
this yields the axioms

{1} fail {q} {0} loop {q} {q} skip {q} {4k} trm.k {q}

An appropriate rule for demonic choice is

{p} k {r} {q} l {r}

{p · q} k dc l {r}

For the loop we observe that, except for the termination part, do k od behaves
like while grd.k do k. For that, the usual while rule

{q ∧ p} k {q}

{q} while pdo k {¬p ∧ q}

is sound and relatively complete. Combining this with the rule for choice we
obtain, after some simplification, the sound and relatively complete rule

{p} k {p}

{4k · p} do k od {p · ¬grd.k}

From that one can derive the rule

{p} k {p} NOE(k)

{p} do k od {p · ¬grd.k}

7 Extensions: Angelic Choice and Infinite Iteration

In this section we give two extensions of the basic language of commands.
First, in COM(S) an angelic choice operator can be defined as

(a, p) bc(b, q) def
= (a+ b, p+ q) .

It is clearly idempotent, associative and commutative.

Lemma 7.1 The operators bc and dc distribute over each other; in particular, bc
is ≤-isotone. Moreover, k dc l ≤ k bc l with wlp.(k bc l) = wlp.(k dc l) and

wp.(k bc l).r = wp.k.r · wlp.l.r + wp.l.r · wlp.k.r .

The second extension concerns infinite iteration. A weak omega algebra [6,
20] is a structure (S, ω) consisting of a left Kleene algebra S and a unary omega
operation ω that satisfies, for a, b, c ∈ S, the unfold and coinduction laws

aω = a · aω , (12)

c ≤ a · c+ b⇒ c ≤ aω + a∗ · b . (13)

This axiomatises aω + a∗ · b as the greatest fixpoint of the function λx . a · x+ b.
In particular, aω is the greatest fixpoint of λx . a · x. Every weak omega algebra
S has a greatest element > = 1ω.
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As in the case of Kleene algebras, we want to make the command semiring
COM(S) over a weak omega algebra into a weak omega algebra, too. Let us find
solutions to the recursion equation

(y, t) = ((a, p) ; (y, t)) dc(b, q) .

From the definitions we get the equations

y = a · y + b , t = p · [a]t · q .

To get a ≤-greatest solution in COM(S) we have to take the ≤-greatest solution
for y and the ≤-least solution for t, which are, by omega coinduction and con-
vergence induction,

y = aω + a∗ · b , t = 4a · [a∗](p · q) .

Setting (b, q) = fail, we obtain

Lemma 7.2 Over a weak omega algebra S that is also a convergence algebra,
the semiring COM(S) can be made into a weak omega algebra by setting

(a, p)ω
def
= (aω,4a · [a∗]p) .

8 Conclusion and Outlook

The modal view of the weakly demonic semantical model has led to a number of
new insights. In particular, the possibility of combining the “angelic” semantics
provided by the star operation with termination information through a demonic
choice to get the appropriate demonic semantics seems to be novel.

The techniques of the present paper have in [15] been adapted to give an
algebraic semantics for the normal designs as used in Hoare and He’s Unifying
Theories of Programming [17].

Future work will concern an analogous treatment of full recursion as well as
applications to deriving new refinement laws.

Acknowledgements: We are grateful to J. Desharnais, W. Guttmann, P. Höf-
ner and the anonymous referees for helpful discussions and remarks.
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20. B. Möller: Lazy Kleene algebra. In D. Kozen (ed.): Mathematics of Program Con-

struction. Lecture Notes in Computer Science 3125. Berlin: Springer 2004, 252–273
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