Skip to main content

Earth and Planetary System Science Game Engine

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3942))

Abstract

The widespread use of on-line computer games makes this medium a valuable vehicle for information sharing, while scalability facilitates global collaboration between players in the game space. Game engines generally provide an intuitive interface allowing attention to be shifted to the understanding of scientific elements rather than hiding them between a wealth of menus and other counterintuitive user interfaces. These strengths are applied towards promoting the understanding of planetary systems and climate change. Unconventional interaction and visualization techniques are introduced as a method to experience geophysical environments. Players are provided with dynamic visualization assets, which enable them to discover, interrogate and correlate scientific data in the game space. The spirit of exploration is to give players the impetus to conceptualize how complex Earth and planetary systems work, understand their intrinsic beauty and the impact of humans, while providing a sense of responsibility for those systems.

An Erratum to this chapter can be found athttp://dx.doi.org/10.1007/11736639_174.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Molina, M.J., Rowland, F.S.: Stratospheric sink for chlorofluoromethanes: Chlorine atom catalysed destruction of ozone. Nature 249, 810–812 (1974)

    Article  Google Scholar 

  2. Houghton, J.: Global Warming: The Complete Briefing, 3rd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  3. Rowland, F.S.: Atmospheric changes caused by human activities: From science to regulation. Ecology Law Quarterly 27, 1261–1293 (2001)

    Google Scholar 

  4. Winchester, S.: Krakatoa: The Day the World Exploded. Harper Collins, New York (August 27, 1883) (2003)

    Google Scholar 

  5. Allen, W.L.: Global warming, bulletins from a warmer world. National Geographic 206 (2004)

    Google Scholar 

  6. Kolbert, E.: The climate of man. The New Yorker (2005); Part I April 25, 81.10:56–71, Part II May 2, 81.11:64–73, Part III May 9, 81.12:52–63

    Google Scholar 

  7. Titov, V.V., Murty, T.: (Asia’s Deadly Waves Simulation) New York Times Interactive Feature, http://www.nytimes.com/packages/khtml/2004/12/26/international/20041227_QUAKE_FEATURE.html

  8. Bank Street College of Education: (Asia’s Deadly Waves Lesson Plans) New York Times on the Web Learning Network, http://www.nytimes.com/learning/issues_in_depth/20050104.html

  9. Zender, C.S.: The Morning After. The Day After Tomorrow. The Orange County Weekly (2004)

    Google Scholar 

  10. Libarkin, J.C., Anderson, S.W., Science, J.D., Beilfuss, M., Boone, W.: Qualitative analysis of college students’ ideas about the Earth: Interviews and open-ended questionnaires. Journal of Geoscience Education 53, 17–26 (2005)

    Google Scholar 

  11. Jones, S.: Let the Games Begin, Gaming Technology and Entertainment Among College Students. Pew Internet and American Life Project, Pew Research Center (2003)

    Google Scholar 

  12. Oblinger, D.G.: The next generation of educational engagement. Journal of Interactive Media in Education, Special Issue on the Educational Semantic Web 8, 1–18 (2004)

    Google Scholar 

  13. ESA: Entertainment software association facts and research, game player data (2005), http://www.theesa.com/facts/gamer_data.php

  14. Lowenstein, D.: State of the industry address. Speech Delivered at the 11th Electronic Entertainment Expo (2005), http://www.theesa.com/archives/2005/05/e3_2005_state_o_1.php (downloaded September 2005)

  15. Information and Communications Technologies, OECD Information Technology Outlook. Organization for Economic Co-Operation and Development (OECD) (2004)

    Google Scholar 

  16. Information and Communications Technologies, OECD Communications Outlook. Organization for Economic Co-Operation and Development (OECD) (2005)

    Google Scholar 

  17. Fox, S., Anderson, J.Q., Rainie, L.: The Future of the Internet. Pew Internet and American Life Project, Pew Research Center (2005)

    Google Scholar 

  18. Gobert, J.: Harnessing technology to support on-line model building and peer collaboration. In: Proceedings of the Teaching Geoscience With Visualization: Using Images, Animations, and Models Effectively Conference, On the cutting edge, pp. 10–30 (2004)

    Google Scholar 

  19. Jackson, D.F.: Case studies of microcomputer and interactive video simulations in middle school Earth science teaching. Journal of Science Education and Technology 6, 127–141 (1997)

    Article  Google Scholar 

  20. Jackson, S.L., Hu, J.T., Soloway, E.: Scienceworks modeler: Scaffolding the doing of science. In: Conference Companion CHI 1994, pp. 249–250. ACM, New York (1994)

    Chapter  Google Scholar 

  21. Chandler, M.A., Shopsin, M., Richards, S., Sohl, L.E.: The Basic Guide to EdGCM, Draft v.2.3.4. Columbia University, New York (2005)

    Google Scholar 

  22. Thompson, O.E., Johnson, D., Kalnay, E., Zhang, D., Cai, M., Suarez, M., Yanuk, D., Schaack, T.: Computationally intensive models in the classroom. Journal of Earth System Science Education 1, 1–13 (2001)

    Google Scholar 

  23. Arkin, P.A., Thompson, O.E., Bonner, W.D.: Diurnal variations of the summertime wind and force field at three midwestern locations. Monthly Weather Review 104, 1012–1022 (1976)

    Article  Google Scholar 

  24. Held, I.M., Suarez, M.J.: A two level primitive equation model designed for climatic sensitivity experiments. Journal of Atmospheric Sciences 35, 206–229 (1978)

    Google Scholar 

  25. GLOBE: GLOBE visualization data directory (2005), http://viz.globe.gov (downloaded March 16, 2005)

  26. Stainforth, D., Kettleborough, J., Martin, A., Simpson, A., Gills, R., Akkas, A., Gualt, R., Collins, M., Gavagham, D., Allen, M.: ClimatePrediction.Net: Design principles for public-resource modeling research. In: Proceedings of the 14th IASTED International Conference, Parallel and Distributed Computing and Systems, IASTED, pp. 32–38 (2002)

    Google Scholar 

  27. McPherson, A., Painter, J., McCormick, P., Ahrens, J., Ragsdale, C.: Visualizations of Earth processes for the American Museum of Natural History. Computer Graphics, 11–15 (1999)

    Google Scholar 

  28. Wilson, J.L.: The SimEarth bible. Osborne McGraw-Hill, Berkeley (1991)

    Google Scholar 

  29. McGinnis, S.: (Disaster Dynamics: Serious Games for Disaster Education) National Center for Atmospheric Research (NCAR), http://swiki.ucar.edu/dd/

  30. Erisman, J.W., Hensen, A., de Vries, W., Kros, H., van de Wal, T., de Winter, W., Wien, J.E., van Elswijk, M., Maat, M.: The Nitrogen Decision Support System: NitroGenius, ECN-C-02-012. Petten: Energy Research Center of the Netherlands (ECN) (2002)

    Google Scholar 

  31. Winn, W., Windschitl, M., Fruland, R., Lee, Y.: When does immersion in a virtual environment help students construct understanding. In: Proceedings of the International Conference of the Learning Sciences (ICLS 2002), International Society for the Learning Sciences (ISLS), pp. 497–503 (2002)

    Google Scholar 

  32. Kleiboer, M.: Simulation methodology for crisis management support. Journal of Contingencies and Crisis Management 5, 198–206 (1997)

    Article  Google Scholar 

  33. Ackermann, E.: 2 Perspective-taking and object construction: Two keys to learning. In: Kafai, Y., Resnieck, M. (eds.) Constructionism in Practice: Designing, thinking, and learning in a digital world, pp. 25–37. Lawrence Erlbaum, Associates, Inc., Mahwah (1996)

    Google Scholar 

  34. Kepes, G.: The Language of Vision. Paul Theobald, Chicago (1944)

    Google Scholar 

  35. Marr, D.: Vision: a computational investigation into the human representation and processing of visual information. W. H. Freeman, San Francisco (1982)

    Google Scholar 

  36. Zeki, S.: Inner Vision: An Exploration of Art and the Brain. Oxford University Press, Oxford (2000)

    Google Scholar 

  37. Healy, C.G., Evans, J.T.: Perception and painting: A search for effective, engaging visualizations. IEEE Computer Graphics and Applications 22, 10–15 (2002)

    Article  Google Scholar 

  38. Healy, C.G., Booth, K.S., Enns, J.T.: High-speed visual estimation using preattentive processing. ACM Transactions on Computer-Human Interaction 3, 107–125 (1996)

    Article  Google Scholar 

  39. Lum, E.B., Stompel, A., Ma, K.L.: Kinetic visualization: A technique for illustrating 3D shape and structure. In: Proceedings of IEEE Visualization 2002, pp. 435–442 (2002)

    Google Scholar 

  40. Lum, E.B., Stompel, A., Ma, K.L.: Using motion to illustrate static 3D shape - kinetic visualization. IEEE Transactions on Visualization and Computer Graphics 9, 115–126 (2003)

    Article  Google Scholar 

  41. Zeki, S., Lamb, M.: The neurology of kinetic art. Brain 117, 607–636 (1994)

    Article  Google Scholar 

  42. Bruckschen, R., Kuester, F., Hamann, B., Joy, K.I.: Real-time out-of-core visualization of particle traces. In: Proceedings of the Parallel and Large Scale Data Visualization and Graphics Symposium, pp. 45–50. IEEE, Los Alamitos (2001)

    Chapter  Google Scholar 

  43. Kuester, F., Bruckschen, R., Hamann, B., Joy, K.I.: Visualization of particle traces in virtual environments. In: Proceedings of the Virtual Reality Software and Technology Conference (VRST 2001), ACM SIGCHI and SIGGRAPH, pp. 151–157 (2001)

    Google Scholar 

  44. Sabo, M.: Improving advanced particle system by adding property milestones to particle life cycle. In: CESCG (2004)

    Google Scholar 

  45. Kruger, J., Westermann, R.: GPU simulation and rendering of volumetric effects for computer games and virtual environments. In: Proceedings of EUROGRAPHICS (2005)

    Google Scholar 

  46. Johnston, D.: 3D game engines as a new reality. In: Proceedings of the 4th Annual CM316 Conference on Multimedia Systems, Southampton University, UK (2004), http://mms.ecs.soton.ac.uk/mms2004 (dj301.pdf downloaded November 2005)

  47. Kim, S.J., Kuester, F., Kim, K.H.K.: A global timestamp-based scalable framework for multi-player online games. In: Proceedings of the Fourth International Symposium on Multimedia Software Engineering (MSE 2002), pp. 2–10. IEEE, Los Alamitos (2002)

    Google Scholar 

  48. Fritsch, D., Kada, M.: Visualization using game engines. In: Proceedings of the XXth Congress, Commission 5, 35.B5, IAPRS, pp. 627–631 (2004)

    Google Scholar 

  49. Perbet, F., Cani, M.P.: Animating prairies in real-time. In: Proceedings of the Symposium on Interactive 3D Graphics (I3D 2001), pp. 103–110. ACM, New York (2001)

    Chapter  Google Scholar 

  50. Chenney, S.: Flow tiles. In: Proceedings of the Symposium on Computer Animation (SCA 2004), ACM SIGGRAPH/EUROGRAPHICS, pp. 233–242 (2004)

    Google Scholar 

  51. Shi, L., Yu, Y., Wojtan, C., Chenney, S.: Contollable motion synthesis in a gaseous medium. The Visual Computer 21, 474–487 (2005)

    Article  Google Scholar 

  52. Harris, M.J.: Real-time cloud rendering for games. In: Programming Track, Proceedings of the Game Developers Conference, GDC, pp. 1–5 (2002)

    Google Scholar 

  53. Umenhoffer, T., Szirmay-Kalos, L.: Real-time rendering of cloudy natural phenomena with hierarchical depth imposters. In: Proceedings of EUROGRAPHICS (2005)

    Google Scholar 

  54. UCI Calit2 Center of GRAVITY: Earth and planetary system science web site (2006), http://cg.calit2.uci.edu/projects/epssge

  55. Dianski, N.A., Volodin, E.M.: Simulation of present-day climate with a coupled atmosphere-ocean general circulation model. Izvestiya. Atmospheric and Oceanic Physics (English Translation) 38, 732–747 (2002)

    Google Scholar 

  56. Collins, W.D., Bitz, C.M., Blackmon, M.L., Bonan, G.B., Bretherton, C.S., Carton, J.A., Chang, P., Doney, S.C., Hack, J.J., Henderson, T.B., Kiehl, J.T., Large, W.G., McKenna, D.S., Santer, B.D., Smith, R.D.: The community climate system model: CCSM3. Journal of Climate Special Issue on CCSM (2005)

    Google Scholar 

  57. Unidata: Network Common Data Form (NetCDF), NetCDF-3.6.0-p1 library (2005), http://www.unidata.ucar.edu/software/netcdf/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuester, F., Brown-Simmons, G., Knox, C., Yamaoka, S. (2006). Earth and Planetary System Science Game Engine. In: Pan, Z., Aylett, R., Diener, H., Jin, X., Göbel, S., Li, L. (eds) Technologies for E-Learning and Digital Entertainment. Edutainment 2006. Lecture Notes in Computer Science, vol 3942. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11736639_64

Download citation

  • DOI: https://doi.org/10.1007/11736639_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33423-1

  • Online ISBN: 978-3-540-33424-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics