
Applications of Racing Algorithms:
An Industrial Perspective

Sven Becker
�
, Jens Gottlieb

�
and Thomas Stützle

�

�
VEGA Informations-Technologien GmbH

Robert Bosch Str. 7, 64293 Darmstadt, Germany
sven.becker@vega.de�

SAP AG
Neurottstr. 16, 69190 Walldorf, Germany

jens.gottlieb@sap.com�
Darmstadt University of Technology, Computer Science Department,

Hochschulstr. 10, 64289 Darmstadt, Germany
stuetzle@informatik.tu-darmstadt.de

Abstract. Stochastic local search (SLS) methods like evolutionary algorithms,
ant colony optimisation or iterated local search receive an ever increasing atten-
tion for the solution of highly application relevant optimisation problems. Despite
their noteworthy successes, several issues still hinder their even wider spread. One
central issue is the configuration and parameterisation of SLS methods, which is
known to be a time- and personal-intensive process. Recently, several attempts
have been made to automate the tuning of SLS algorithms. One of the most
promising directions is the usage of the racing methodology, which is a statis-
tical method for selecting promising candidate configurations. We present results
of a study on the application of this methodology to the tuning of a complex SLS
method for an industrial vehicle scheduling and routing problem, and compare
the performance of two racing methods.

1 Introduction

Common to many stochastic local search (SLS) methods [1] like evolutionary algo-
rithms [2] and memetic algorithms [3], ant colony optimisation [4], or iterated local
search [5] is their high versatility for the effective solution of complex, real-world opti-
misation tasks. This versatility is due to the many design and parameter choices the gen-
eral SLS methods leave to the implementer. For example, memetic algorithms require
defining appropriate recombination, mutation, and local search operators, choosing the
population size and the selection method, and setting a large number of adjustable pa-
rameters like the probabilities for applying recombination or mutation. It is well known
that the choice of operators and the parameter settings can have a very strong influence
on the final SLS algorithm’s performance. So far, the problem of taking the right design
choices in the development stages of SLS algorithms have mainly been resolved by the
experience of the implementer and the algorithm configuration and parameter tuning
has often been done using a trial–and–error approach. Only recently, this problem has
been tackled by (semi-)automatic techniques for deciding on an algorithm’s configura-
tion and parameter settings. These techniques include the usage of experimental design
techniques [6–8] or racing algorithms [9].



Racing algorithms have been shown to be especially appealing since they can si-
multaneously handle design choices (type of recombination, local search etc.) and the
optimisation of (discretised) parameter settings, and they do not rely on strong assump-
tions on the distribution of the underlying data. Racing algorithms start with a set of
candidate configurations of the algorithm under development and test them on a se-
quence of problem instances. After each test run on a problem instance by all surviving
candidates, those candidate configurations are eliminated, against which enough (sta-
tistical) evidence is given [9]. This procedure is repeated until either a limit on the
available computation time is passed or only one candidate configuration remains. In
[9, 10], one particular racing method, called F-races, was proposed; the F in the name
stems from the usage of the (non-parametric) Friedman-test [11, 12].

So far, the usefulness of racing algorithms and, in particular, F-races has been as-
sessed for the design of SLS algorithms for academic combinatorial optimisation prob-
lems like the travelling salesman problem [9], the quadratic assignment problem [10], or
the university course timetabling problem [13]. F-races have not yet been tested under
more realistic, real-life settings. In this article, we evaluate the usefulness of racing algo-
rithms for the optimisation of design aspects and parameter choices for a complex SLS
algorithm for the highly-constrained real-life vehicle scheduling and routing problem
(VSRP). This application differs from the academic examples, because (i) the involved
algorithm has a large number of different operators and parameters, (ii) the benchmark
set comprises a very heterogeneous set of instances that differ strongly in the constraints
involved, the objective function, as well as their size, and (iii) the benchmark instances
require, due to their complexity, rather high computation times of at least several min-
utes. These considerations forbid an exhaustive evaluation of all possible parameter
and operator choices and, hence, the racing algorithms are used to optimise specific
aspects of the SLS algorithm. In this real-world environment, we compare two racing
algorithms: the F-race approach and a new straightforward variant based on removing
a predefined portion of the worst candidate configurations after each iteration.

The paper is structured as follows. Section 2 discusses the underlying ideas of the
racing methodology and Section 3 introduces the vehicle scheduling and routing prob-
lem and shortly describes the algorithm for its solution from a high-level perspective.
We present the benchmark instances and the experimental environment in Section 4.
Our experience with the racing methodology is discussed in detail in Section 5 and we
end with some concluding remarks in Section 6.

2 Racing Methodology

Racing algorithms were first applied to the model selection problem in memory-based
supervised learning [14, 15] and later adapted to the problem of tuning SLS algorithms
by Birattari et al. [9]. Racing algorithms can select in a fully automatic way a configu-
ration for an SLS method from a given set of candidate configurations

�
.

A racing algorithm works by sequentially processing a given set of instances � . Let
inst ����� denote the � th instance and let C ����� be the set of candidate configurations at
iteration � . Initially

� �����
	 �
, and then, at iteration � of the race, all candidate con-

figurations in C ����� are run once on instance inst ����� . When all results are available, the
candidates in C ����� that are shown to be statistically inferior are eliminated, resulting in



a possibly smaller set C ����� ��� . This procedure is iterated until either only one candi-
date remains, a maximum limit on the overall computation time of the racing procedure
expires, or the race is stopped interactively because the further progress is very low.

There are several possibilities for the technical implementation of races. The most
widely explored possibility is given by the F-race, introduced by Birattari et al. [9].
The F-race is based on non-parametric statistical tests using ranking and blocking (a
block corresponds to one instance). In the F-race, after each iteration � the Friedman-
test two-way analysis of variance by ranks [11, 12] is first used to detect whether there
exists sufficient statistical evidence that there is a difference among the outcomes of
C ����� (the corresponding null hypothesis ��� is that all candidate configurations perform
the same). If � � is not rejected, all candidates in C ��� � pass to C ����� � � . If � � is re-
jected, pairwise tests between the best configuration (e.g. the one with the lowest sum
of ranks) and all others are done and significantly worse candidates than the best one are
discarded. For this second test, the Wilcoxon matched-pairs signed-ranks test is adopted
[16]. The only parameter for the F-race is the significance level � for the two tests.

As an alternative to the F-race, we consider a method that deletes the worst � per-
cent of the remaining configurations after each iteration. This approach, which we call
DW-race, is probably the simplest approach for racing and, when compared to F-races,
it has the advantage that its overall computation time is exactly predictable and that
further progress of the race is forced until only one candidate configuration remains.
However, DW-race may (i) eliminate candidates that are not statistically worse than the
current best configuration and, therefore, it is somewhat more error-prone, and (ii) fail
to eliminate configurations against which enough statistical evidence has been gathered.

Overall, a race is a three step procedure, which can be outlined as follows.

1. Select a set of problem instances � on which the SLS method should be tuned.

2. Select a set of candidate configurations
�

for the SLS algorithm.

3. Run the race and select the best performing candidate configuration.

The first two steps are equally important as the run of the race. Regarding the first
step, the set of instances should be (i) representative of the final set of instances that
will be tackled and (ii) the more instances are available, the better usually is the qual-
ity of the finally selected configuration, because the bias towards specific instances is
reduced with more instances. The set of candidate configurations can be built based
on discrete choices like different possible operators in the SLS algorithm (e.g., local
search operators or mutation operators) and, simultaneously, varying parameter choices.
However, continuous parameters need to be discretised and for this step pre-knowledge
on a reasonable range of parameter settings may be useful. The number of candidate
configurations increases typically exponentially with the number of algorithm choices
under investigation in the application of a race. If choice � has 	�
 possible values, a
total of ��

�� � 	 
 candidates results, where � is the number of choices to be made (for
	 
 	������ 	 ����������� , this would result in ��
 candidates). If too many values for the
particular choices are allowed because of a fine-grained discretisation, this may result
in a very large number of candidates. To avoid these problems, races may also be run
with several levels of discretisation or in a hierarchical manner.



3 Vehicle Scheduling and Routing Problems

The vehicle routing problem (VRP) is a classical combinatorial optimisation problem
that is frequently used to study and develop new algorithmic ideas. It considers the de-
livery of goods from a depot to a set of customers, and its goal is to assign customers to
vehicles and to find routes for the vehicles such that total transportation costs are min-
imised and certain constraints like loading capacities or time windows of the customers
are met [17]. Although the VRP forms the core of many real-world applications, e.g. in
transportation management systems, real-world scenarios are typically more complex
since they involve multiple objective functions, many constraints and decisions to be
made. Here, we sketch the most important features of the vehicle scheduling and rout-
ing problem (VSRP), for which an optimisation algorithm is offered in SAP’s supply
chain management solution4, a commercial software that allows to plan and optimise
the whole supply chain, including demand planning, supply network planning, produc-
tion planning, transportation planning and vehicle scheduling.

The VSRP consists of a set of orders, each representing a transportation require-
ment from a source to a destination location. An order is described by its quantity
(volume, weight, etc.), some characteristics (material, frozen or non-frozen, etc.), ma-
terial availability date at the source and required delivery date at the destination, and
a non-delivery penalty that represents an order’s priority. There is a fleet of vehicles,
each having a certain cost structure (duration costs, fixed costs, distance costs, quantity
costs, stop costs) and driving capabilities (speed, reachability between locations). A ve-
hicle may have a fixed start or end location, and a time availability interval, potentially
interrupted by a set of breaks (weekends, legal holidays, etc.). Vehicles may have dif-
ferent loading capacities and limits on travelled distance or number of visited locations,
and some may be incompatible with orders of given characteristics (e.g. frozen goods
require special vehicles). Loading and unloading at locations may require additional
capacitive resources (e.g. docks, workers) that are available only during several time
windows, and goods with certain characteristics must not be shipped together on the
same vehicle (e.g. food and chemicals). There may be hub locations, where orders can
be unloaded by one vehicle and loaded again by another vehicle that brings the goods
to their final destination location.

The goal of the VSRP is to minimise total costs while satisfying all constraints. The
total costs are the weighted sum of different cost terms per vehicle, as indicated above,
and per order (earliness costs, lateness costs, non-delivery costs).

The VSRP generalises the VRP in many aspects, and therefore most algorithmic
techniques specifically tailored to the VRP are not directly applicable. SAP has devel-
oped an SLS algorithm for the VSRP, built on top of several constructive heuristics and
a suite of more than 20 atomic variation operators that focus on specific aspects of a
candidate solution: the choice of hubs, the assignment of orders to vehicles, the routing
per vehicle, and the scheduling of activities.

The SLS algorithm is population-based and heavily relies on local optimisation. As
selection pressure is used on the population level and certain random variation steps are
performed, this approach is called evolutionary local search. The population is rather
small, e.g. of size three up to eight, and each individual in the population has a certain
role. These roles represent different search behaviours. One role is called iterated local

4 See http://www.sap.com/scm for more details.



search (ILS), another depth-first search (DFS), and another random walk (RW). The
latter role intends to diversify search by frequent random perturbation steps. DFS and
ILS are conceptually similar, but DFS uses a more narrow search when compared to
ILS. Each of the three roles orchestrates the available variation operators sequentially,
with certain operator probabilities that reflect the role. One key difference in the three
roles is the frequency of perturbation moves. Since the key idea of ILS (in general) is
inherent in all roles, the overall SLS algorithm can also be seen as a population-based
iterated local search.

We omit a formal statement of the VSRP and more details about the employed ap-
proach for several reasons: (i) the available space does not allow to give more details,
(ii) it is not SAP’s goal to disclose too many details of its commercial software, and
(iii) our intention in this paper is to study racing algorithms on a real-world problem,
for which neither the formal problem description nor the detailed algorithm is needed.
Therefore, SAP’s optimisation approach for the VSRP is perceived as a black-box al-
gorithm with some parameters that shall be fine-tuned by racing algorithms.

4 Benchmark Instances and Experimental Environment

The VSRP is used by SAP’s customers to model and solve their transportation planning
scenarios. Each customer’s transportation business has special requirements that are
mapped into a certain family of VSRP instances which share structural similarities.
VSRP instances of different customers may differ significantly. In our experiments, we
use a total of 47 real-world instances, taken from several customers. These instances are
representative in the sense that they cover many customers’ scenarios and all instances
differ in one or more aspects from the others.

The instances have different numbers of orders, ranging from 19 to 1101 orders.
The numbers of source locations and destination locations vary between 1 and 19, and
1 and 548, respectively. 23 instances involve time windows for loading and unload-
ing activities, and 6 instances require capacitive resources for loading and unloading.
17 instances involve at least one possible hub, whereas the remaining 30 instances do
not allow indirect shipment via hubs. This heterogeneous benchmark suite contains in-
stances with different objective functions, constraints, and decision variables.

The goal of our racing experiments is not to fine-tune the algorithm’s parameters
for a single customer’s instance family, but to find robust general parameter settings
that work well for all instances, or at least for an easily definable and sufficiently large
subset of instances.

The run time limits of single optimisation runs differ significantly between the
customers. One the one hand, some customers run the optimiser for a few minutes,
which allows several consecutive optimisation runs being evaluated, possibly manipu-
lated manually, and finally executed by the human transportation planner. On the other
hand, other customers make long optimisation runs over night, which are then processed
by the human planner in the next morning or after the weekend. In our experiments we
chose a run time limit of 10 minutes per single optimisation run, which is acceptable
for most customers and allows reasonable results even for the biggest and most difficult
instances under consideration.



5 Computational Experience

In this section we report our computational experience with the F-race and DW-race.
Given the overall complexity of the SLS algorithm and the high computation times
per instance, we focused on two classes of experiments, (pure) parameter optimisation
and structural optimisation including limited settings of parameters. For both cases, we
study an example that was known to have influence on the performance of the overall
SLS algorithm.

We use a modified racing algorithm that was applied to configure SLS algorithms for
the university course timetabling problem (UCTP) [13]. Basically, one iteration means
running all candidate configurations on all instances from the benchmark set under
consideration. The reason for this choice is the heterogeneity of the benchmark set and
to avoid a result biased by the order in which the instances are considered in the race.

The experiments are performed on 6 PCs with a same configuration (2.6 GHz Pen-
tium IV with 512 MB of RAM). Since these PCs are also used for other purposes and
their availability is not known a priori, distributed computing is used to make best use of
available time slots on these machines. Here, distribution means that a central instance,
the master, running on one PC, is dynamically fed with the optimisation runs speci-
fied by the racing algorithm. On each PC, a client reports availability of the machine
to the master, and the master assigns each required optimisation run to one available
client. Without this grid-like distributed computing environment, a single PC running
exclusively for this project would have required more than 100 days for the experiment
described in Section 5.1.

5.1 Parameter Optimisation: Frequency of Block-Inserts

The optimiser contains many atomic variation moves, one of which is the block insert
operator that assigns several unscheduled orders with identical characteristics and due
dates to a vehicle. This operator is faster than several consecutive single insert opera-
tions for the same orders, but it also causes some solutions being more difficult to obtain.
We are therefore interested in this trade-off and analyse the probability for applying this
operator. In principle, all values in the interval � ��� ��� are valid. However, in order to re-
duce the number of alternatives, we discretise this range, yielding the configuration set� 	���� ����� � ����� 	 ����� 
���� � � � �
� that represents the considered operator probabilities.

Our experience before starting racing experiments was that this operator worked
well on instances involving hubs, but its success on other instances was somehow in-
conclusive. We considered this knowledge by partitioning the set of all instances � into
��� and ����� , the subsets of instances involving hubs and not involving hubs, respec-
tively. Among the � ��� 	�	�� instances, 17 contain hubs, and 30 none. In order to study
the impact of hubs on the outcome of racing, three configuration problems were inves-
tigated separately: � � � � � � , � � � � ��� � , and � � � � � .

Results for F-Race. Table 1 shows the results for F-Races with different significance
levels for the statistical tests on the three instance sets. For each experiment, the number
of single optimisation runs, the amount of CPU time measured in days, the number
of iterations in the race, and the winning configuration is given. We performed only
one race for � 	���� �
� � since the other races on � � and � were already very CPU



��� ����� ��
runs days it win runs days it win runs days it win

0.1 204 1.4 2 0.2 810 5.6 6 0 2538 17.6 18 0
0.05 204 1.4 2 0.2 900 6.3 6 0 3478 24.2 26 0
0.02 680 4.7 16 0.2 960 6.7 6 0 3807 26.4 22 ���
	��
� 
��
0.01 1734 12.0 20 0.2 960 6.7 6 0 4136 28.7 22 ���
	��
� 
��
0.001 — 1890 13.1 15 0 —

Table 1. Results for F-Race, different values of � and instance sets.

intensive for � 	 � � � � . Races without a clear winner were terminated interactively
after observing that no more progress can be expected; the remaining configurations
are listed as winners in this case.

Some general trends are obvious and intuitive. Firstly, the lower � , the more opti-
misation runs and iterations are needed, because the test is less aggressive in detecting
differences among the configurations. Secondly, all races on � � terminated with the
same result, indicating that the best probability is 0.2; all races on � ��� determined 0
as the best probability. This confirms our past experience. However, if we consider the
races on � , the probability 0 is the winner for ��� � ��� � ��� � ��� � . For lower significance
levels, the racing algorithm does not indicate significant differences between the two re-
maining configurations, which were the winners of the separate races on � � and ����� ,
even after many days of computation time.

Figure 1 shows the average ranks (upper part) and p-values of tests (lower part)
during two typical F-races. The average rank of a configuration in an iteration is defined
as the average over all ranks of this configuration on all instances and optimisation
runs performed so far. The p-value gives the probability of wrongly rejecting the null
hypothesis if in fact it were true; if the p-value is smaller than the significance level,
the null hypothesis is rejected. On the instance set ����� , the configurations 0.8 and
1 are eliminated after the third iteration, and after six iterations the winner is found
by eliminating the other configurations except 0. The F-race on � shows why it took
so many iterations to detect the winning configuration 0: the two best configurations
are very close together regarding their average ranks, and it took very long until the
difference was proved to be significant. This also indicates why the F-races on � with
lower significance levels had to be stopped interactively. For significance levels ���
����� ������� � � � � , no significant difference could be found within the allowed time.

The more heterogeneous set of instances � makes it more difficult to find the best
configuration. If rather high values are chosen for � , the probability 0 wins, but for
lower significance levels both configurations perform quite well. Perhaps this race is
even unfair, because � � ��� � 	�� ��� � � 	 � � � � . In order to have a fair instance set, we
performed the following experiment five times. 13 instances from ����� are randomly
removed from � , and then F-race with � 	 ��� ��� is run on the resulting instance set
of size 34. In four of the experiments the result was inconclusive, with 0 and 0.2 be-
ing among the final candidates when stopping the race after 50 iterations. The average
number of optimisation runs was 5310, which requires a CPU time of 36.9 days per
experiment. Thus, if both structures (involvement of hub or not) are represented by the
same number of instances, the configuration problem becomes even more difficult.



1

2

3

4

5

6

1 2 3 4 5 6

A
ve

ra
ge

 r
an

k

Iterations

Instance set INH

0
0.2
0.4
0.6
0.8

1

1

2

3

4

5

6

5 10 15 20 25

A
ve

ra
ge

 r
an

k

Iterations

Instance set I

0
0.2
0.4
0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

p-
va

lu
e

Iterations

p-value
significance level α

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25

p-
va

lu
e

Iterations

p-value
significance level α

Fig. 1. Average ranks of the configurations (top) and the p-value of the F-test (bottom) during
F-Races with ��� � � � � on

��� �
(left) and

�
(right).

The above discussion shows that a heterogeneous instance set represents a challenge
for racing algorithms. The main reason is that a mixture of two different classes of
instances, for which different best parameter settings would be obtained, do not lead
to statistically significant differences among the configurations, differently from what
is observed for the two races on the two separated instance sets. The separation of the
instance set into two classes allows to set the investigated parameter by the following
simple rule: if an instance involves hubs, apply the insert block operator with probability
0.2, and do not use the operator otherwise.

Results for DW-Race. Analogously to the F-race, we also examined the results of the
DW-race in dependence of different delete rates and the three instance sets. With a fixed
deletion rate of � , one can determine the number of surviving candidates after iteration
� of the race as � � ��� � ��� � 	�� � � ��� � ��� � �
	 � ��� ��� , if the usual rounding procedure
is used. Using this approach, the results of the DW-race are given in Table 2. If the
instances are separated into the two classes � � and � ��� , the same configurations as for
the F-race were returned, however, taking in most cases more time than the F-race with
the standard significance level � 	�� � ��� . Surprisingly, for DW-race on set � , the same
winner configuration as in the F-race was returned only by the lowest delete rate. The
reason for this effect is that the two configurations with operator probabilities 0 and 0.2
result in rather similar ranks and are statistically distinguishable only after 26 iterations



��� ����� �
rate

runs days it win runs days it win runs days it win
0.15 629 4.4 9 0.2 930 6.5 9 0 1457 10.1 9 0.2
0.1 901 6.3 14 0.2 1410 9.8 14 0 2209 15.3 14 0.2
0.05 1683 11.7 29 0.2 2790 19.4 29 0 4371 30.4 29 0

Table 2. Results for DW-Race, different delete rates and instance sets.

in the F-race at the significance level � 	�� � ��� . Hence, in this case the DW-race takes
the (statistically) wrong decision because of forcing too early convergence of the race.

5.2 Structural Optimisation: Shape of the SLS method

In a second set of racings, we considered the configuration of the overall structure of
the SLS algorithm. As described in Section 3, the SLS algorithm works on a population
of individuals, where each individual belongs to one role of ILS, DFS, and RW. For
a first race, we considered configurations that differed in the number of individuals
for each role and that varied two parameter settings: the number of restart points for
the DFS strategy and the perturbation strength for ILS and RW, respectively. To keep
the computational effort within reasonable limits, in a first trial only 20 different such
configurations were defined and we limited the experiments to the instances in ����� .
As before, experiments were run with F-races and DW-races using various settings for
� and deletion rate, respectively.

The results of the F-race and the DW-race are given in Table 3. As can be seen, all
races return the same winner configuration, which uses only one ILS individual and a
perturbation of strength 2. In this experiment, a clear advantage of the F-race appears:
with � 	 � � ��� , after only 3 iterations one single configuration is declared as the win-
ner. In fact, a more careful examination of the progress of the race shows that only
configurations with at least one ILS individual survive the first iteration; this is consis-
tent with the fact that the winning configuration is the only that consisted purely of one
single ILS individual (that is, the configuration without any DFS and RW individuals).
Since the differences between the configurations are very strong, the F-race is able to
quickly eliminate the poor performing candidate configurations. The DW-race returns
the same winning configuration. However, to return this result in the same computation
time as the F-race, a very high deletion rate of ��� � is needed; however, as shown also
in the previous example, such a high deletion rate can be quite problematic and lead to
statistically unfounded (or even wrong) decisions.

F-race DW-race�
runs days it win

rate
runs days it win

0.1 900 6.25 3 (ILS,2) 0.5 925 6.42 4 (ILS,2)
0.05 900 6.25 3 (ILS,2) 0.25 1 725 11.98 8 (ILS,2)
0.01 1 475 10.24 7 (ILS,2) 0.1 3 350 23.26 14 (ILS,2)

Table 3. Results for F-race and DW-race in the structural optimisation.



Based on this initial race, others were run, the results of which we summarize next.
Additional configurations. Additional candidate configurations with only ILS in-

dividuals (one or two) and a range of parameter settings for the perturbation strength
were added to the configurations of the first race; the results of this race are summarised
in Table 4. In this new race, for all significance levels, the winning configuration was
ILS,1, that is a configuration with only one ILS individual and perturbation strength
one – this configuration was not considered in the first race. Interestingly, in the F-race
already after the second iteration every algorithm that uses at least one DFS or RW
individual was eliminated, leaving only pure ILS configurations that only differed in
the perturbation strength and the number of ILS individuals. However, the differences
among the various ILS configurations appear to be not too large and, hence, the race still
takes quite a few iterations to remove the other candidates. The very rapid elimination
of many competing configurations also explains the relatively short computation times
for the F-race when taking into account the number of iterations until it was stopped.
To reach a similar computation time limit, for the DW-race a rather high deletion rate
of 0.25 needs to be used.

Convergence limit. In this race, 30 configurations were examined that, in addition
to the population composition of ILS, DFS, and RW individuals, differed mainly in the
number of unsuccessful local search moves examined (convergence limit) before the
local search is stopped and the probability of making a large step for RW individuals.
Similar to the previous two races, here only the three configurations that only used ILS
individuals survived the first iteration of the F-race; DW-race was not run because of its
inferior performance in the previous races. Among the remaining three configurations,
the order of elimination suggested that the smaller the convergence limit is chosen, the
higher is the survival probability.

Higher computation times. Here, the same configurations as in the race on the
convergence limit were examined, but this time the SLS algorithms were run for 30
minutes instead for 10 minutes. The motivation for this additional race is that the con-
figurations with a stronger diversification through RW individuals or the intensification
through DFS individuals may profit from the higher computation times. However, as for
the previous race, after the first iteration all candidate configurations that did not make
exclusive use of ILS individuals were eliminated. A difference to the previous race was
that the influence of the convergence limit was diminished; for example, for the signifi-
cance level � 	 � � ��� all ILS configurations that differed only in the convergence limit
remained in the race.

Overall, for the combined structural and parameter optimisation as done here, the
F-race is clearly superior to the DW-race. After only a few iterations, inferior candi-

F-race DW-race�
runs days it win

rate
runs days it win

0.1 2 250 15.63 21 (ILS,1) 0.5 1 175 8.16 5 (ILS,1)
0.05 2 650 18.40 24 (ILS,1) 0.25 2 275 15.80 10 (ILS,1)
0.02 2 850 19.79 23 � (ILS,2),(ILS,1),(2ILS,2) � 0.1 5 625 39.06 27 (ILS,1)

Table 4. Results of F-race and DW-race for additional configurations in the structural optimisa-
tion.



date configurations are deleted. Interestingly, the previously chosen configuration of
the optimiser was also among those eliminated, indicating that still significantly better
performance may be reached by fine-tuning the overall structure of the SLS algorithm.

5.3 General Remarks

In addition to the comparison between the F-Race and DW-Race, several issues were
found to be important when running racing algorithms in a real-world environment.
Firstly, the rank-based approach for evaluating configurations is essential, especially
with such a heterogenous instance suite as ours. This is the case because the instances
have quite different ranges of objective function values, their distribution is unknown,
and even may have some anomalies. Secondly, the racing method can be examined,
analysed and modified interactively. Interactive features are appropriate when, for ex-
ample, it becomes obvious that the race should be restarted with additional configura-
tions or to stop the race when further progress appears to be very minor; see also [13]
for the usage of interactive racings. Thirdly, since in our setting each single optimisa-
tion run is rather time-consuming, a true re-start of the race is very costly. Therefore,
we used a database that stores the results of already executed optimisation runs per
instance, configuration, and seed. New trials are only started if there is no correspond-
ing database entry. This saves much time and even allows to run racings on the same
configuration problem, without too much additional CPU costs. Fourthly, by the usage
of survival analysis (e.g. by analysing commonalities among the surviving candidates
like only using ILS individuals), one may generate profiles of the main components re-
sponsible for high quality configurations, which can then allow to refine the algorithm.
Finally, the usage of distributed computing, like grid computing or the architecture we
used here, is essential to speed-up the experiments. The usage of this type of parallel
processing has the advantage that the speed-up of the experiments is essentially linear
with the number of computers available. For realistic settings, where individual trials
of an SLS algorithm on an instance can take several minutes or even longer, and many
configurations are examined, such a parallelisation is essential to keep the overall com-
putation times within manageable limits.

6 Conclusions

We presented results of an experimental study of racing algorithms on real-world vehi-
cle scheduling and routing problems and a commercial SLS algorithm. This applicaton
of racing differs from previous studies in several aspects: the high computation time per
run, the high complexity of a real-world problem – due to multiple objective functions,
many structurally different constraints and decisions to be made – and the heterogeneity
of the benchmark suite.

While the computation time of a DW-race is predictable accurately, the CPU time
required by a F-race depends on the differences identified in the configurations. If strong
differences in performance are observed for the configurations, F-races tend to quickly
reduce the set of candidates, as done in the structural optimisation task. A further ad-
vantage of F-races is that they are based on sound statistical tests, which may allow to
delete significantly worse configurations early in the race and prevents deleting config-
urations that are not significantly inferior.



One of the most promising results for the usefulness of racing algorithms is that the
best configurations identified in an automatic way in this study improved over the pre-
vious version of the commercial software, at least for the considered instances, despite
the previous efforts to experimentally fine-tune the software. These positive results to-
gether with the increasing availability of cheap computation time, for example, through
small PC clusters or grid computing, will further increase the applicability of auto-
mated techniques for the configuration of algorithms in applications of high industrial
relevance.

References

1. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications. Morgan
Kaufmann, USA (2004)

2. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, USA
(1996)

3. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In Glover, F., Kochen-
berger, G., eds.: Handbook of Metaheuristics. Kluwer Academic Publishers, Norwell, MA,
USA (2002) 105–144

4. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA, USA (2004)
5. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In Glover, F., Kochenberger,

G., eds.: Handbook of Metaheuristics. Kluwer Academic Publishers, Norwell, MA, USA
(2002) 321–353

6. Xu, J., Chiu, S., Glover, F.: Fine-tuning a tabu search algorithm with statistical tests. Inter-
national Transactions in Operational Research 5 (1998) 233–244

7. Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: Using experimental design to find effec-
tive parameter settings for heuristics. Journal of Heuristics 7 (2001) 77–97

8. Adenso-Dı́az, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental de-
signs and local search. Operations Research (In press)

9. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring
metaheuristics. In Langdon, W.B., et al., eds.: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002), Morgan Kaufmann, USA (2002) 11–18

10. Birattari, M.: The Problem of Tuning Metaheuristics. PhD thesis, IRIDIA, Université Libre
de Bruxelles, Belgium (2004)

11. Siegel, S., Jr., N.J.C., Castellan, N.J.: Nonparametric Statistics for the Behavioral Sciences.
second edn. McGraw Hill, NewYork, NJ, USA (2000)

12. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. second
edn. Chapman & Hall / CRC, Boca Raton, Florida, USA (2000)

13. Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An effective hybrid approach for
the university course timetabling problem. Journal of Scheduling (Submitted)

14. Maron, O., Moore, A.W.: Hoeffding races: Accelerating model selection search for classifi-
cation and function approximation. In Cowan, J.D., Tesauro, G., Alspector, J., eds.: Advances
in Neural Information Processing Systems. Volume 6., Morgan Kaufmann Publishers, Inc.
(1994) 59–66

15. Moore, A.W., Lee, M.S.: Efficient algorithms for minimizing cross validation error. In:
International Conference on Machine Learning, Morgan Kaufmann Publishers, Inc. (1994)
190–198

16. Conover, W.J.: Practical Nonparametric Statistics. third edn. John Wiley & Sons, New York,
NY, USA (1999)

17. Toth, P., Vigo, D., eds.: The Vehicle Routing Problem. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA (2002)


