The Design of Application-Tailorable
Operating System Product Lines*

Daniel Lohmann, Wolfgang Schroder-Preikschat, and Olaf Spinczyk

Friedrich-Alexander University of Erlangen-Nuremberg,
Department of Computer Sciences,
Martensstr. 1, D-91058 Erlangen, Germany
http://wwwé.cs.fau.de

Abstract. System software for deeply embedded devices has to cope
with a broad variety of requirements and platforms, but especially with
strict resource constraints. To compete against proprietary systems (and
thereby to facilitate reuse), an operating system product line for deeply
embedded systems has to be highly configurable and tailorable. It is
therefore crucial that all selectable and configurable features can be en-
capsulated into fine-grained, exchangeable and reusable implementation
components. However, the encapsulation of non-functional properties is
often limited, due to their cross-cutting character. Fundamental system
policies, like synchronization or activation points for the scheduler, have
typically to be reflected in many points of the operating system com-
ponent code. The presented approach is based on feature modeling,
C++ class composition and overcomes the above mentioned problems
by means of aspect-oriented programming (AOP). It facilitates a fine-
grained encapsulation and configuration of even non-functional proper-
ties in system software.

1 Introduction

Due to the need for customized solutions, particularly the embedded systems do-
main calls for a large assortment of specialized operating system components.
Depending on the application case, not only are number and kind (in functional
terms) of the components varying, but also the same single component may ap-
pear in highly different versions. This is especially true for the broad field of deeply
embedded systems. Here, the phrase “deeply embedded” refers to systems forced
to operate under extreme constraints in terms of e.g. memory and/or CPU re-
sources, power consumption, and heat dissipation. The market of such systems is
huge and subject to an enormous cost pressure. In year 2000 about eight billion
microprocessors have been manufactured [32]. Only about two percent of them
went into the PC, laptop, workstation or server market, while 98 % were dedi-
cated to embedded systems. About five billions of all were 8-bit microprocessors.
From the point of view of procurement, this “old-fashioned” technology is the best

* This work was partly supported by the DFG, grant no. SCHR, 603/4.

G. Barthe et al. (Eds.): CASSIS 2005, LNCS 3956, pp. 99-[IT7] 2006.
© Springer-Verlag Berlin Heidelberg 2006

100 D. Lohmann, W. Schréder-Preikschat, and O. Spinczyk

compromise with respect to functionality and cost. The situation is not that differ-
ent today, as a look at automotive industry, chipcard technology, or the consumer
product market shows. Moreover, it can not be expected to change soon, given
that the envisioned scenarios of smart dust [20], ubiquitous computing [35] and
proactive computing [32] crucially depend on the bulk availability of very cheap,
self-organizing “intelligent” devices. Because of cost pressure—and in many cases
also because of misunderstandings about what the notion of “operating system”
stands for—one is faced with a situation in which the wheel is getting to be re-
invented fairly often. There is a zoo of commercial operating systems available at
the embedded systems market. Nevertheless, about 50 % of the embedded systems
products come with proprietary solutions [34]. OS-functionality such as thread-
ing and interrupt handling is developed from scratch—again and again. The rea-
son is, that is simply impossible to build a ”one-fits-all” system that fulfills the
requirements of all potential applications, while still being thrifty and economi-
cal with system resources. The solution is therefore to tailor down the operating
system so it provides exactly the functionality required by the intended appli-
cation, but nothing more. Understanding an (embedded) operating system as a
software product line [36] seems to be a promising way to go. Commonalities of
and differences between individual members of the operating system family, as
well as their interdependencies and conflicting combinations, can be adequately
expressed on the basis of feature models [12], with the features representing the
functional and non-functional system properties. This leads to a family-based [27]
design approach. Examples for family-based, configurable operating systems in
the domain are e.g. eCos by RedHat Inc. [I], the OSEK standard which is widely
used in automotive industry [2], or our PURE operating system product line [5]
for the domain of deeply embedded devices. Although the results achieved with
these systems motivate the reuse of system software components for a number of
reasons, operating system product line development is not yet exercised very well
in this market. Another example that underpins the increasing demand of soft-
ware product line engineering is the automotive domain. Automobile electronics
makes up about 80 % of all the innovations in a car. Furthermore, 90 % of these
innovations come up with software and not hardware. Thus, software is not only a
functional issue of the mechatronics product “automobile”, but also an economical
one of high strategic importance. On the one hand, there is a strong need to reuse
software solutions across the different variants and models of a car. On the other
hand, in a large number of cases, highly specialized software solutions need to be
built depending on the actual car variant or model. Resolving this contradiction
is challenging and calls for highly careful system software designs and implemen-
tations. Most crucial in this setting are non-functional properties that are ingredi-
ent parts of single components or cross-cut in the extreme case the entire system
software. These properties not only limit component reusability but also impair
software maintenance in general. Being able to deal with software variability—
not only in the realm of operating systems—becomes more and more eminent for
embedded systems. For operating systems, this is of particular concern because of
their qualified placement between “a rock and a hard place”, namely application

The Design of Application-Tailorable Operating System Product Lines 101

software at the top and computer hardware at the bottom. Software variability
was and is an important issue in operating systems, and it will ever be. Alone re-
lying on object-oriented approaches to cope with the diversity of problems coming
up when developing embedded-systems software is not enough. Specialization by
means of inheritance, e.g., soon may result in unmaintainable class hierarchies if
the combinational complexity increases [26}[18]. Not to mention the risk of perfor-
mance loss and large memory footprints in the case of an excessive exploitation
of interface inheritance and, thus, late binding [14]. Alternative as well as sup-
plementing approaches are required in order to benefit from object orientation if
one wants to develop system software that is reusable and tailorable at the same
time. Aspect-oriented programming (AOP) [2I] appears to be a proper paradigm
in order to maintain implementations of non-functional properties separate from
software components and, thus, improve reusability of the latter. The paper de-
scribes principles of the design and development of operating systems aiming at
a very high degree of customization not only with respect to lower-level hardware
but also higher-level user programs. Discussed are design rules, techniques, and
issues of tool support which are applicable not only in the course of developing em-
bedded operating systems from scratch, but also in the process of re-engineering
existing system software. Moreover, the approach presented may also be success-
fully applied in order to develop and maintain extensible as well as contractible
application software. Thus, the paper is about a fairly general approach that is
not only limited to the design and development of operating systems. Application
domain of the described principles is the field of deeply embedded systems. Fun-
damental concepts and techniques to produce highly reusable operating system
components are presented in section[2l Section[3is about a case study, the thread
abstraction layer (TAL) of the PURE family of embedded operating systems [5].
In section] we will briefly discuss the approach as followed by the PURE succes-
sor CiAO [30] to encapsulate non-functional properties and to isolate cross-cutting
concerns. Conclusions are drawn in section [0l

2 Operating System Engineering

Most important in the development of operating systems for the embedded sys-
tems domain is the postponement of all those design and implementation deci-
sions that will potentially restrict applicability of system functions or compo-
nents. This includes that, perhaps, certain decisions are never be made in the OS
itself, but are rather postponed to the application programmer. References to
implementations of some non-functional properties are examples of such design
decisions. The following subsections discuss the cornerstones of an operating sys-
tem development process that supports highly scalable and customizable designs
and implementations.

2.1 Incremental System Design

Predominant issue in the development process of deeply embedded operating
systems must be understanding the system software as a program family [27]

102 D. Lohmann, W. Schréder-Preikschat, and O. Spinczyk

and to follow a classical bottom-up approach. Strictly speaking, design deci-
sions are to be met bottom-up, but the design process is to be controlled in a
top-down manner. The idea is to design family members that are particularly
tailored to support specific application scenarios by sharing as many as possi-
ble system abstractions, i.e. reusable components. A highly distinct functional
hierarchy of “fine-grain sized” components is the outcome. The entire system
structure is a logical one in the sense that the design is hierarchical, and not its
implementation [I7]. Realizing a program family by an object-oriented imple-
mentation may result in highly flexible and yet efficient system structures. But
this will be true only if both design and implementation follow an incremen-
tal approach [I]. Starting point must be a minimal subset of system functions
which undergoes a stepwise functional enrichment by minimal system exten-
sions. These enrichments can be turned into efficient programs by means of
implementation inheritance. Note that this does not necessarily hold with inter-
face inheritance. The point of problem is late binding of those methods which are
subject to subsequent specialization in derived classes. This concept may result
in overhead-prone implementations and entail very large memory footprints, es-
pecially in the case of deep class hierarchies. The decision for late binding must
be postponed as far as possible in the design and implementation of object-
oriented program families. As a consequence, functional enrichment for creating
new object-oriented abstractions of a program family favors implementation in-
heritance over interface inheritance. Interface inheritance is the right choice only
when the family-based design requires multiple implementations of the same in-
terface to coexist. In certain cases it is sensible for such kind of requirement to
be considered a non-functional property of object-oriented (operating) system
software. In order not to limit reusability of a class implementing that kind of
interface, the non-functional property of interface inheritance needs to be sepa-
rated properly.

2.2 Variabilty Management

By consequently following the family-based approach of software development,
highly customizable operating systems are feasable. Variant building, however,
is only a first step in the development process. Without being able to organize
and manage the many possible variants of an operating system family in an ade-
quate and user-friendly manner, this approach will be doomed to failure. Feature
modeling appears to be a promising way to tackle the variability management
problem. This technique is understood as “the activity of modeling the common
and the variable properties of concepts and their interdependencies and orga-
nizing them into a coherent model referred to as a feature model.” [12] Goal is
to come up with directives for and a first structure of a design of a system that
meets the requirements and constraints specified by the features. Common is
a graphical representation of the feature model in terms of a feature diagram.
The diagram is of tree-like structure (fig. [l), with the nodes referring to specific
feature categories. Four feature categories are defined: mandatory, optional, al-
ternative, and or. A feature diagram describes the options and constraints that

The Design of Application-Tailorable Operating System Product Lines 103

At least one cumulative
feature f;, f, has to be
included, if the groups par-
ent feature C' is selected

Optional features f;
and/or f, may be in-
cluded, if their parent
feature C is selected

Mandatory features f;
and f» have to be included,
if their parent feature C' is
selected

Exactly one alternative
feature f, or f, has to be
included, if the groups par-
ent feature C' is selected

Fig. 1. Example of a Feature Diagram

shall exist within a system. It models the variable and fixed properties of a fam-
ily of programs which implement that system. The diagram shown in figure [
describes a specific concept C, e.g. the process management subsystem of an
operating system. If concept C' gets to be included in the final system configura-
tion, then any non-empty subset of features from the set {f1, fo} of or-features
is also included. The feature set with respect to C at this level of abstraction
is either {f1}, {f2}, or {f1, fo}. If feature fy is present, one feature from the
set {fs, fa} of alternative features must be included. Thus, the feature set of f;
consists of either f3 or fy. If feature f5 is selected, mandatory feature fs must
and optional feature fg may be included in the final configuration. For fs, this
leads to the feature set { f5} or {fs, f6}. This technique allows for a compact and
precise specification of interdependencies of functional as well as non-functional
properties of fairly complex systems [12]. Basing on a tool which aids the con-
struction process of a feature model and supports the mapping of features to
implementations, automated generation of highly specialized operating systems
becomes possible [6].

2.3 Modularization of Non-functional Properties with AOP

Not in every case is it sensible to follow a development process that solely relies on
a universal family-based design and object-oriented implementation as described
above. Eminent problematic issues are the cross-cutting concerns given with many
non-functional properties. Trying to reflect these concerns in a hierarchical de-
sign may lead to an explosion of the resulting functional and/or class hierarchy.
For software maintenance reasons, a cross-cutting concern needs to be separated
from its points of action and implemented as a single module. When a specific fam-
ily member is going to be instantiated, all missing cross-cutting concerns will be

104 D. Lohmann, W. Schréder-Preikschat, and O. Spinczyk

applied to the relevant software components. Referring to non-functional prop-
erties then may become a configuration matter. Automated configuration may
take place by having a software transformation tool in charge of interweaving the
program module representing a specific cross-cutting concern with all the pro-
grams that refer to the corresponding non-funtional property. This kind of final
customization of selected software components from a program family can be best
achieved using AOP [21]. In this setting, an aspect program implements a specific
cross-cutting concern. These programs take care of the manifestation of a partic-
ular non-functional property by describing code transformations that need to be
applied to selected components. The transformation process is performed by an
aspect weaver. AOP turns out to become a powerful paradigm in the design and
development of system software in general. Several publication show that AOP
provides benefits for the development of configurable infrastructure software in
the broad sense, namely middleware [10L9,[37,[T9,28] and databases [28,[33] prod-
uct lines, as well as dynamically configurable web proxies by means of runtime
weaving [13]. Regarding operating systems, Coady et al. retroactively evaluated
the evolution of four partly non-functional OS concerns in the FreeBSD kernel
using the general-purpose AspectC language [8[7]. It was shown that an aspect-
oriented implementation would have led to significantly better evolvability. Due to
missing tool support (namely a weaver), her study did cover only a relatively small
part of the kernel code base and no heavily crosscutting concerns such as tracing
or kernel diagnostics. Not a general-purpose AOP language, but an AOP-inspired
language of temporal logic was used by Aberg et al. to integrate the Bossa sched-
uler framework into the Linux kernel [3]. C4 uses AOP concepts to implement a
“semantic patch system” for the application of kernel patches [15].

3 Case Study of a Thread Abstraction Layer

PURE [5] is a family of operating systems targeted at the highly resource-
constrained domain of deeply embedded devices and available for a large number
of 8 and 16 bit processor platforms. A branch of the PURE family that provides
elementary process management functions is the thread abstraction layer(TAL).
This layer is a refinement of the original PURE threads package and serves for
various experimental purposes related to fine-grain (operating system) software
product line development. The following two subsections give a brief overview
about the concepts and techniques that were used to make PURE software ex-
tensible as well as contractible. First, excerpts from the TAL feature model are
discussed to exemplify the concept of variability management having been ap-
plied to PURE. Second, the functional hierarchy of TAL is presented to illustrate
some of the internals of the design and to give also an idea on what fine-grain
operating system software product line development means in PURE.

3.1 Feature Modeling

The TAL feature model aims at describing commonalities of as well as differences
between the various possible variants of a system software component commonly

The Design of Application-Tailorable Operating System Product Lines 105

| context saving | | stack space supply | | flux |

o

| stack all registers | | stack non-volatile registers |

Fig. 2. Thread concept. This TAL feature is made of a hierarchy of or-features covering
functions that save/restore a thread context (contert saving), take care of expansion
directions and alignment restrictions of a stack (stack space supply), and manage a
thread of control of program execution (fluz).

known as a threads package. Focus was on the deeply embedded systems domain.
Above all this means that the system design resulting from the feature model
must be minimal in any respect: each level of abstraction introduced need to
be a minimal extension to the minimal subset of system functions existing so
far. Figure [2] shows the three main subfeatures of the thread concept, which are
defined as follows:

context saving. Spans functions needed to save and restore a thread context.
A stack-based approach is assumed. The feature is constituted by two or-
features that differentiate between three combinations of context saving func-
tions. A TAL configuration may encompass functions to stack all and/or only
non-volatile CPU registers. The latter are a subset of the former and make
thread switching more lightweight (in execution time and memory space).

stack space supply. Provides fundamental stack management functions concerned
with allocation, alignment restrictions, and expansion direction (top down or
bottom up) of a stack.

fluz. covers the functions needed to implement the flow of control represented
by a thread and its binding to program text. Figure 3 shows a refinement of
this subfeature.

As shown in figure @ the TAL thread concept consists of three or-features.
Thus, an application is provided with seven configuration options at this level,
depending on the number of thread subfeatures selected. This is in line with
the idea of program families: PURE applications are not forced to go with all
TAL functions, but rather is given choices from which they may or may not
make their decisions. Heart of TAL is flux (fig. Bl), which describes a hierarchy
of abstractions modeling a thread of control including its binding to program
text. The decisive idea is to postpone decisions on how to represent and manage
the context of a thread as far as possible. Figure [3 shows a feature hierarchy
which corresponds to an implementation that implies functional enrichment of a
minimal subset of threading functions. The fluz subfeatures model the evolution
steps from flyweight to lightweight threads. Their meaning is as follows:

106 D. Lohmann, W. Schréder-Preikschat, and O. Spinczyk

| control flow invocation |

function binding

o S o >
| control flow exchange | | implicit | | composite | | late |

context switching

Fig. 3. Flux concept. The feature diagram models functional enrichment of thread
abstractions, starting from a simple run-to-completion mode of operation (control flow
invocation) and an optional binding of user-defined code to a thread (function binding).

control flow invocation. Describes the minimal subset of system functions needed
to instantiate and terminate a thread. The principle of operation of a thread
at this level of abstraction is run to completion. The spawning thread inherits
the processor state (stored by the working registers) to the spawned thread
and implicitly releases CPU control. Upon termination, the spawning thread
takes over the processor state again and receives back CPU control.

control flow exchange. A minimal system extension that allows for thread switch-
ing in a coroutine-like fashion. Thus, run to completion is no longer the only
principle of operation provided at this level of abstraction. Both threads, i.e.
spawner and spawnee, may resume each other by sharing the processor state
except the contents of the stack pointer register.

context switching. Another minimal system extension which adds functions to
save and restore the processor state of a thread. This abstraction requires the
context saving feature shown in figure Bl The key idea is that every thread
is responsible to manage its processor state on its own: the state needs to
be saved before resuming execution of another thread and will have to be
restored after having been resumed execution by some other thread. Thus,
no thread needs to know about the size and organization of the processor
state of another thread.

function binding. This flux subfeature models different ways of how to bind user-
defined functions to a thread. By default, the code executed by a thread always
is in-line with the basic block or scope that instantiated the thread. However,
if function binding is selected, the code to be executed by a thread may be
subject to (1) émplicit binding using a default function, (2) composite binding
using a template function, or (3) late binding using a virtual function.

If flux is going to be selected, TAL comes at least with control flow invocation.
All other flur subfeatures are optional so that no application program of TAL

The Design of Application-Tailorable Operating System Product Lines 107

slot = label(); // remember current thread of control
split(flux); // spawn additional thread of control
if (slot != label()) { // did a control flow switch occur?
ce // yes, spawnee takes on execution
latch(slot); // spawnee finishes and resumes spawner
} // spawnee never returns to here
// no, spawner continues execution

Fig.4. Flyweight thread instantiation (C-like). A new thread is spawned using
split (), which returns twice. In order to determine whether the spawner or the
spawnee returns, label() is used: the spawnee returns when label() after split()
delivers a value different from label() before split(). The spawnee returns first and
passes back CPU control to its spawner using latch().

will be forced to pay for functions that it does not need. In addition, the features
are organized in such a manner that the resulting implementations will follow
the incremental system design approach and, thus, appear as minimal system
extensions. To get an idea of how the minimal subset of TAL functions can be
used to instantiate threads that will operate according to run to completion,
see figure[dl Functions label(), split(), and latch() basically implement the
control flow invocation feature. The resulting assembly-level code generated from
this C fragment is shown in figure[fl TAL functions are implemented as inline
functions, mostly. The code sequence shown in figure Blis semantically equivalent
to the code sequence of figure[d it is the result of the compilation process using
the GNU C/C++ compiler. The two examples demonstrate what family-based
design of PURE actually implied, namely coming up with a large number of tiny
system functions. The motivation to start out with a minimal subset of threading
functions (as shown in figures [and [l) that only save/restore a very minimal

leal -4(%esp),%edx # slot = label()
pushl $1f # split(flux)
movl flux,%esp # " activate spawnee
1: # spawner resumes execution
leal -4(%esp),%keax # <aux> = label()
cmpl Yeax, %edx # if (slot == <aux>)
je 2f # goto 2
R # spawnee takes on execution
movl Yedx,%esp # latch(slot)
ret # " goto 1
2: # spawner continues execution

Fig. 5. Flyweight thread instantiation (x86-like). The example shows how run to com-
pletion is actually realized for the spawned thread: the spawner transforms into the
spawnee by assigning flux to the stack pointer register. The spawnee terminates by
(1) assigning the spawners stack pointer (slot) to the stack pointer register and (2)
restoring the spawners program counter (ret).

108 D. Lohmann, W. Schréder-Preikschat, and O. Spinczyk

CPU
| processor type | | register access | | train |
| ARM | | AVR | | m68k | | ppc | | sparc | | x86 |

Fig.6. CPU concept (excerpt). Mandatory feature processor type specifies the CPU
architecture that can be supported by a PURE family member. Optional feature reg-
ister access is root of a bunch of subfeatures related to processor state management.
Support for trap/interrupt handling is modeled by the optional feature train.

processor state consisting of program counter and stack pointer registers was
to have a compiler in charge of context switching. A compiler exactly knows
about the non-volatile processor state of a thread and that state may differ
from thread to thread. The idea was to be able to take advantage of compiler
pragmas that specify the size of the processor state to be saved/restored upon
thread switches in dependence on the actual scope where the thread switch takes
place.

Another important issue of TAL (and the encompassing operating system
kernel) is CPU management. Figure [6] shows an excerpt of the feature model
describing the CPU concept. Mandatory feature is the processor type, which

| interrupt synchronization |

| Sfunction binding | | locking | | transparent |

Fig. 7. Train concept (excerpt). Mandatory feature flange models the binding tech-
nique used to make trap/interrupt handlers physically known to the CPU. Basically,
this feature directly maps to the function binding feature of fluz (fig.[3). Optional fea-
ture interrupt synchronization describes the alternatives for the coordination of event-
triggered activities in PURE. Either “hard synchronization” using interrupt locking
or interrupt transparent non-blocking “soft synchronization” (without relying on ded-
icated CPU instructions) is supported.

The Design of Application-Tailorable Operating System Product Lines 109

in turn consists of a number of alternative features. Each of these alternatives
stands for the processor platform that is supported by TAL. Usually, for a given
system configuration, only one target platform will be supported. The optional
feature register access describes abstractions provided to read and write the
registers of the CPU indicated by processor type. Register access functions are
implemented by means of operator overloading using a C++ class instance for
each of the registers provided by a particular CPU. An overloaded assignment
operator performs write access, while the overloaded type cast operator performs
read access. The operators are implemented as inline assembly functions. They
are used, e.g., to implement thread context management already in a high-level
and problem-oriented programming language such as C++. The third subfeature
of concept CPU models the art of trap/interrupt (¢rain) handling for a selected
processor type. A refined feature model of train is shown in figure [l In that
subtree, mandatory feature flange describes the kind of function binding in order
to make problem-oriented trap/interrupt handlers known to the CPU. This is
realized by letting train logically share the same binding techniques with concept
fluz (see also fig. B)). A major part of train is made of interrupt synchronization,
which is an optional feature: not in every use case will interrupts raise race
conditions and, thus, need to be synchronized for coordination purposes. Two
alternatives are given:

1. Interrupt locking, i.e., interrupts are disabled and (re-) enabled to secure
critical code sections. This is the traditional case of coping with concurrency
issues due to hardware interrupts and is fairly easy to implement. However,
blocking of interrupts comes with the risk of loosing hardware events and,
thus, turns out not to be a good choice especially for embedded real-time
systems with high interrupt frequency.

2. Interrupt transparent synchronization [29], i.e., interrupts are never disabled
by an operating system kernel. This feature corresponds to a set of synchro-
nization abstractions that allow for interrupts at any time. Coordination is
achieved using a variant of non-blocking synchronization.

Interrupt transparent synchronization can be done with and without specific (e.g.
CAS-like) CPU instructions. As a consequence, the alternative feature trans-
parent consists of an ensemble of or-features, with each of these subfeatures
describing a specific synchronization technique.

Developing feature models to aid the design process of a family of operating
systems and for documentation purposes is one aspect. Using these models to
support the configuration and generation process of operating systems is another
aspect. With pure::variants [4] a feature-based configuration tool has been
developed that supports the workflow from the creation of a feature model up to
the automatic generation of user-customized operating systems for very specific
problem domains. The tool not only allows for creation but also verification of
feature models such that logically consistent system configurations will be the
outcome of the generation process.

110 D. Lohmann, W. Schréder-Preikschat, and O. Spinczyk

3 store clear ‘ store‘ ‘ clear‘ ‘ top ‘

all non-volatile

Fig. 8. Functional hierarchy of TAL. The levels serve the following purposes: 1 control
flow invocation, 2 control flow exchange, 3 context saving and stack space supply, 4 stack
space supply, 5 context switching, 5% function binding, 6 thread instantiation. Level %
supports level 1 only: its functions came into existence with the design of check(),
which showed commonalities with the already existing split(). These commonalities

then became subject to factorization which led to badge () and setup().

3.2 Functional Hierarchy and Component View

The TAL feature model is turned into an implementation using a very fine-grain
incremental system design approach. Result of this process is a functional hier-
archy (fig. B). Figure Bl makes explicit the levels of abstraction a TAL function
is assigned to. Level 5% is not really part of TAL, but rather of the application
program using TAL. This level stands for some user function abstraction (UFA)
that corresponds to the function binding feature of flur (fig. Bl). In addition,
level % stands for a level of abstraction that resulted from a refinement step in
the design process: when level 2 was designed, one figured out commonalities
in the implementation of split() and check(), which then where factorized
out and led to the additional level. Level 2 takes care of control flow exchange,
levels 3 and 5 cover context saving and switching issues, while level 4 and func-
tion top() of level 3 turn the feature stack space supply into implementation.
Level 6 is responsible for thread instantiation. TAL offers a very high degree of
customization at the cost of a fairly complex internal structure. The structural
complexity becomes manageable for an expert using e.g. feature-modeling and

The Design of Application-Tailorable Operating System Product Lines 111

main k:)

expert

uewAe|

Fig. 9. Component view of TAL

configuration tools such as pure: :variants. Nevertheless, a layman will be lost
for all the many puzzle bricks offered by TAL. For these sorts of customers, TAL
appears to be a black box that comes with a minimal export interface. Figure
shows this component view in some more detail. Actually, there are only three
“fallback functions” making up TAL to an easy to use threads package. These
functions are new() to allocate stack space for a thread, beget() to instan-
tiate a thread, and grant() to pass control between threads while maintaing
the processor state invariant for inactive threads. The user-defined code to be
executed by a thread (on behalf of beget ()) comes with the UFA instance as
provided by the user itself. In fact, TAL is an open component [16] that provides
a basis for operating system product line development in the small, in partic-
ular for a process management subsystem. For the large case, TAL becomes a
component whose export interface hides the internal complexity from the user.
This way, a high degree of reusability is achieved not only for the expert but
also for the layman. Since the export interface is made of customizable system
functions, even the layman is given some options for specialization.

4 Aspect Orientation of Operating Systems

The approach discussed so far is not only suited to model functional relation-
ships between abstractions or members of operating system families, but also
non-functional ones. Being able to model non-functional interdependencies, how-
ever, is only one issue, another issue is to implement them in a modular way to
generally improve software maintenance [23/25]. PURE proved that it must not
be a contradiction to come up with a highly modular operating system design
and implementation and at the same time keeping the many building blocks
manageable. Key to success was family-based design, feature modeling, and
aspect-oriented programming, as well as tool support. However, AOP came into
play at a fairly late point in time of the PURE development. It mainly served

112 D. Lohmann, W. Schréder-Preikschat, and O. Spinczyk

re-engineering purposes of selected pieces of the entire PURE software base.
PURE is not an aspect-oriented operating system, but benefits from AOP in
various respects. PURE re-engineering in terms of AOP was considered a first
experiment and showed that it would pay to consider aspect orientation as a
central design issue being followed from the very beginning. With the PURE suc-
cessor CiAQ(] [24,[25], we are now developing a new family of operating systems
that aims to achieve an even higher level of configurability. CiAO focuses on non-
functional properties of operating systems whereby these properties technically
appear as cross-cutting concerns which impair maintainability of a reasonable
large fraction of the system software. Emphasis is on the configuration of archi-
tectural features, i.e. to consider the duality of operating system structures [22]
as a non-functional system property.

4.1 Non-functional Properties Considered Harmful

Traditionally, operating system development is a field in which non-functional
properties are of fundamental relevance and imply a number of design decisions.
Examples of such properties are synchronization, protection, isolation, sharing,
and interaction. In general, these properties are fairly independent from the
actual application domain. They are domain unspecific and typical, e.g., for
general-purpose operating systems. Especially for embedded operating systems,
additional domain specific non-functional properties are of importance such as
energy, timeliness, and dependability. The term “non-functional” sometimes im-
plies fairly complex implementations in order to provide and enforce a certain
property. But this is not really the problem. Dependability is an example of
highly elaborated designs and implementations, while synchronization may re-
sult in very simple solutions (e.g., in case of interrupt locks). The problems with
non-functional properties are the possibly many (explicit/implicit) references to
their implementations spread across the software of the intrinsic functions of a
specific (sub-) system. It is a problem of program fragments repeatedly being
closely related to functional code for reflecting certain configuration decisions.
When being intermixed with the intrinsic functional implementation, these cross-
cutting concerns impair reusability to a vast extent. They link implementations
to applications, although the pure functional code may be highly independent
therefrom. Most non-functional properties are emergent properties. They are
neither visible in the code nor structure of single components, but “suddenly”
emerge from the orchestration of many components into a complete system.
Properties that manifest in the integrated system only are indeed cross-cutting,
as they result from certain (unknown) characteristics of every single component.
Due to their inherent emergence it is, however, not possible to tackle them by de-
composition techniques. They need to be understood holistically, that is, on the
global scope of software development. One could say they need to be addressed
by “holistic aspects”, meaning that the realization of non-functional concerns
does not cross-cut (just) the code, but the whole process of software develop-
ment. In a number of cases, program fragments representing the non-functional

1 CiAO is Aspect-Oriented

The Design of Application-Tailorable Operating System Product Lines 113

properties are as simple as conditional expressions or they solely wrap around
the respective function. In other cases, tons of such software prevents one from
realizing the gist of the matter. A first step in order to lessen the problems is
to cleanly separate non-functional properties by design: separation of concerns
need to be a must. Ideally, as a following step the code implementing or ref-
erencing these concerns should be automatically generated and inserted at the
respective places of the system software. Thus, at a fairly late point in time the
implementation of an intrinsic function gets adjusted for a specific configuration.

4.2 Separation of Cross-Cutting Concerns

Central topic of CiAO is to consequently isolate cross-cutting non-funtional prop-
erties both by design as well as by means of language support. CiAO strongly fol-
lows an aspect-oriented design and is implemented in AspectC++ [3I], an
aspect-oriented extension to C++. As an idea sketch of AspectC++4, a synchro-
nization aspect is being considered in the following. In CiAO, as was in PURE (and
is in almost any other operating system), synchronization is a typical cross-cutting
concern. Its implementation is separated from the functional code by means of
the AspectC++ pointcut concept. A pointcut is a set of points in the code (so
called join points), which are affected by the same cross-cutting concern. In As-
pectC+—+ these sets can be defined in a very flexible way by using a declarative lan-
guage consisting of predefined pointcut functions, wildcards for matching names,
and algebraic operations to combine pointcuts. The pointcut definition shown in
figure [[0] enumerates the (non-preemptive) scheduling functions block(), ready
(Thread*), and yield (), each of which representing a critical section when being
reused in order to support preemptive mode of operation. Calls to these functions
need to be synchronized. In addition to the pointcut definitions, actions need to
be defined that are to be executed when any of the join points in the pointcut is
reached at run time. Any of these actions is called an advice. Figure [0 shows the
definition of the two actions needed to take care of synchronization of the criti-
cial scheduling functions. The first advice definition means that before the body
of any function described by critical () is executed, entrance to the critical sec-
tion is requested by calling enter (). Similarily the second advice causes the call on

pointcut critical() = execution("void block()") ||
execution("void ready(Thread*)") ||
execution("void yield(O");
aspect Synchronization {
advice critical(): before() { enter(); }
advice critical(): after() { leave(); }

};

Fig.10. Modularization of a non-functional property “synchronization” in the AOP
language AspectC++. The AspectC++ aspect weaver translates aspect into a C++
class. In addition, it looks for critical() join points in a given source code and, once
matched, inserts the advice code before/after them, accordingly.

114 D. Lohmann, W. Schréder-Preikschat, and O. Spinczyk

Table 1. Memory footprint (in bytes, x86) of members of the PURE nucleus family

text|data| bss|total
exclusive processor usage 434 0] 0] 434
interruptive mode of operation 812| 64(392|1268
cooperative scheduling 1620 0| 28]1648
non-preemptive scheduling 1671 0| 28(1699
coordinative interrupt propagation|1882 8(416|2306
preemptive scheduling 3642 8(428(4062

leave () after the critical section is left. Both advice definitions are encapsulated
in a named modular unit, which is an aspect. Besides the advice definitions, aspects
can (similar to classes) store and manage state information, which is also acces-
sible by the advice code bodies. The AspectC++ compiler (resp. aspect weaver)
expands the advice code at the specified join points, it interweaves component
code and code that manifests a certain non-functional property. The two advice
functions enter () and leave () implement the interrupt synchronization feature
shown in figure[7] either by means of interrupt locking or in an interrupt transpar-
ent manner. Moreover, by using pure: : variants, the synchronization aspect will
be implicitly applied when that feature is going to be selected during the configu-
ration process of the system software. That is to say, pure: :variants automati-
cally calls the AspectC++ compiler with the synchronization aspect as additional
input when interrupt synchronization needs to be a feature of the resulting sys-
tem. The AOP approach was motivated by experiences having been made with
PURE. By turning the design of the PURE family into an object-oriented imple-
mentation using C++ and by enforcing domain-specific configuration decisions
with AOP on the basis of AspectC++, a highly efficient software product line
was the outcome. Table[Ilshows some of the results, giving the memory footprints
of individual products of the nucleus family of PURE. In this example, the nu-
cleus member providing preemptive scheduling has been automatically generated
by (1) reusing the two branches “non-preemptive scheduling” and “coordinative
interrupt propagation” and (2) applying the synchronization aspect to that mix-
ing. Thus, a new family member was generated automatically from an already
existing system software product line by using AOP techniques. Non-preemptive
scheduling functions which are critical in a preemptive environment remain fully
reusable. Every single point of invocation of these functions is considered a join
point where synchronization code is automatically inserted in order to make pre-
emptive scheduling work.

5 Conclusion

Developing and maintaining software product lines of (embedded) operating sys-
tems largely benefits from aspect-oriented programming. By relying on an aspect
language such as AspectC++, many non-functional properties can be expressed
as aspects and, thus, separated from functional code. This significantly improves

The Design of Application-Tailorable Operating System Product Lines 115

reusability of that code. Typical cases of domain unspecific non-functional prop-
erties of an operating system are synchronization, protection, isolation, and shar-
ing. For the domain of embedded systems, non-functional properties such as
energy, timeliness, and dependability additionally need to be taken into account.
An aspect weaver will take care of interweaving aspect code with functional code.
Application of such a tool depends on configuration decisions related to the spe-
cific problem domain for which a specialized system software solution is going to
be created. By considering the aspect weaver an ingredient part of an operating
system workbench that supports feature-based configuration (e.g., by means of
tools such as pure: :variants), giving functional code non-functional properties
becomes an automated process. The PURE development shows that design and
implementation of highly reusable and yet specialized operating system abstrac-
tions or functions must not be a contradiction in terms. Key to success was to
understand an operating system as a software product line. The outcome was a
solution that scales with the demands of many embedded systems. As indicated
by the TAL case study, PURE demonstrates that feature-based development of
an operating system family is a very promising approach in order to master the
increasing functional complexity of embedded systems in spite of utmost resource
scarceness. AspectC++ evolved as a logical consequence from the PURE devel-
opment and mainly was applied to selected PURE components in the course of
re-engineering. With CiAO, the PURE successor, an aspect-oriented operating
system is being developed now in which aspect orientation (and in particular
AspectC++) plays the central role from the very beginning. Goal is to come
up with an aspect-oriented operating system that, on the one hand, fulfills the
many very specific requirements of deeply embedded systems and, on the other
hand, improves reusability as well as maintainability of the respective system
software better than PURE was able to do.

References

1. eCos homepage. http://ecos.sourceware.org/.

2. OSEK/VDX standard. http://www.osek-vdx.org/.

3. R. A. Aberg, J. L. Lawall, M. Siidholt, G. Muller, and A.-F. L. Meur. On the
automatic evolution of an os kernel using temporal logic and aop. In 18th IEEE Int.
Conf. on Automated Software Engineering (ASE ’03), pages 196-204, Montreal,
Canada, Mar. 2003. IEEE.

4. D. Beuche. Variant management with pure::variants. Technical report, pure-
systems GmbH, 2003. http://www.pure-systems.com/.

5. D. Beuche, A. Guerrouat, H. Papajewski, W. Schroder-Preikschat, O. Spinczyk,
and U. Spinczyk. The PURE family of object-oriented operating systems for deeply
embedded systems. In 2nd IEEE Int. Symp. on OO Real-Time Distributed Com-
puting (ISORC 99), pages 45-53, St Malo, France, May 1999.

6. D. Beuche, O. Spinczyk, and W. Schroder-Preikschat. Fine-grained application-
specific customization for embedded software. In Proceedings of the International
IFIP TC10 Workshop on Distributed and Parallel Embedded Systems (DIPES
2002), pages 141-151, Montreal, Canada, Aug. 2002. Kluwer Academic Publishers,
ISBN 0-140207156-6.

116

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

D. Lohmann, W. Schréder-Preikschat, and O. Spinczyk

Y. Coady and G. Kiczales. Back to the future: A retroactive study of aspect
evolution in operating system code. In M. Aksit, editor, 2nd Int. Conf. on Aspect-
Oriented Software Development (AOSD ’03), pages 50-59, Boston, MA, USA, Mar.
2003. ACM.

Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to improve the
modularity of path-specific customization in operating system code. In ESEC/FSFE
’01, 2001.

A. Colyer and A. Clement. Large-scale AOSD for middleware. In K. Lieberherr,
editor, 3rd Int. Conf. on Aspect-Oriented Software Development (AOSD ’04), pages
56-65, Lancaster, UK, Mar. 2004. ACM.

A. Colyer, A. Clement, R. Bodkin, and J. Hugunin. Using AspectJ for component
integration in middleware. In 18th ACM Conf. on OOP, Systems, Languages, and
Applications (OOPSLA ’03), pages 339-344, New York, NY, USA, 2003. ACM.
J. Cordsen and W. Schroder-Preikschat. Object-Oriented Operating System Design
and the Revival of Program Families. In 2nd Int. W’shop on Object Orientation in Op-
erating Systems (I-WOOOS ’91), pages 24-28, Palo Alto, CA, October 17-18, 1991.
K. Czarnecki and U. W. Eisenecker. Generative Programming. Methods, Tools and
Applications. AW, May 2000.

M. Devillechaise, J. Menaud, G. Muller, and J. Lawall. Web cache prefetching as
an aspect: Towards a dynamic-weaving based solution. In M. Aksit, editor, 2nd
Int. Conf. on Aspect-Oriented Software Development (AOSD ’03), pages 110-119,
Boston, MA, USA, Mar. 2003. ACM.

K. Driesen and U. Holzle. The direct cost of virtual function calls in C++4. In 11th
ACM Conf. on OOP, Systems, Languages, and Applications (OOPSLA ’96), Oct.
1996.

M. Fiuczynski, R. Grimm, Y. Coady, and D. Walker. patch (1) considered harmful.
In 10th W’shop on Hot Topics in Operating Systems (HotOS ’05). USENIX, 2005.
A. Gal, W. Schroder-Preikschat, and O. Spinczyk. Open components. In Proceed-
ings of the First OOPSLA Workshop on Language Mechanisms for Programming
Software Components, pages 75—78, Tampa, Florida, Oct. 2001.

A. N. Habermann, L. Flon, and L. Cooprider. Modularization and Hierarchy in a
Family of Operating Systems. CACM, 19(5):266-272, 1976.

W. Harrison and H. Ossher. Subject-oriented programming—a critique of pure ob-
jects. In 8th ACM Conf. on OOP, Systems, Languages, and Applications (OOPSLA
’98), pages 411-428, Sept. 1993.

F. Hunleth and R. Cytron. Footprint and feature management using aspect-
oriented programming techniques. In 2002 Joint LCTES & SCOPES Conferences
(LCTES/SCOPES ’02), pages 38-45, Berlin, Germany, June 2002. ACM.

J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: Mobile
networking for "smart dust”. In International Conference on Mobile Computing
and Networking (MOBICOM ’99), pages 271-278, 1999.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Aksit and S. Matsuoka, editors,
11th Eur. Conf. on OOP (ECOOP ’97), volume 1241 of LNCS, pages 220-242.
Springer, June 1997.

H. C. Lauer and R. M. Needham. On the duality of operating system structures.
ACM OSR, 13(2):3-19, Apr. 1979.

D. Lohmann, W. Schroder-Preikschat, and O. Spinczyk. Functional and non-
functional properties in a family of embedded operating systems. In 10th IEEFE Int.
W’shop on Object-oriented Real-time Dependable Systems (WORDS ’05), pages
413-420, Sedona, AZ, USA, Feb. 2005.

24

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

The Design of Application-Tailorable Operating System Product Lines 117

D. Lohmann and O. Spinczyk. Architecture-Neutral Operating System Compo-
nents. 28rd ACM Symp. on OS Principles (SOSP ’03), Oct. 2003. WiP presentation.
D. Lohmann, O. Spinczyk, and W. Schroder-Preikschat. On the configuration of
non-functional properties in operating system product lines. In 4th AOSD W’shop
on Aspects, Components and Patterns for Infrastructure Software (AOSD-ACP4IS
05), pages 19-25, Chicago, IL, USA, Mar. 2005. Northeastern University, Boston
(NU-CCIS-05-03).

S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. MIT Press, Cambridge, MA, USA, 1993.

D. L. Parnas. On the design and development of program families. IEEE TOSE,
SE-2(1):1-9, Mar. 1976.

A. Rashid and N. Leidenfrost. Supporting flexible object database evolution with
aspects. In G. Karsai and E. Visser, editors, 3rd Int. Conf. on Generative Pro-
gramming and Component Engineering (GPCE ’04), volume 3286 of LNCS, pages
75-94. Springer, Oct. 2004.

F. Schén, W. Schroder-Preikschat, O. Spinczyk, and U. Spinczyk. On interrupt-
transparent synchronization in an embedded object-oriented operating system. In
3rd IEEFE Int. Symp. on OO Real-Time Distributed Computing (ISORC "00), pages
270277, Newport Beach, CA, USA, Mar. 2000.

O. Spinczyk and D. Lohmann. Using AOP to develop architecture-neutral op-
erating system components. In 11th SIGOPS FEuropean W’shop, pages 188-192,
Leuven, Belgium, Sept. 2004. ACM.

O. Spinczyk, D. Lohmann, and M. Urban. Advances in AOP with AspectC++.
In H. Fujita and M. Mejri, editors, New Trends in Software Methodologies, Tools
and Techniques (SoMeT ’05), number 129 in Frontiers in Artificial Intelligence and
Applications, pages 33-53, Tokyo, Japan, Sept. 2005. IOS Press.

D. Tennenhouse. Proactive computing. CACM, pages 43-45, May 2000.

A. Tesanovié¢, K. Sheng, and J. Hansson. Application-tailored database systems:
a case of aspects in an embedded database. In 8th Int. Database Engineering and
Applications Symp. (IDEAS ’04), Coimbra, Portugal, July 2004. IEEE.

C. Walls. The Perfect RT'OS, 2004. embedded world 2004.

M. Weiser. The computer for the 21st centrury. Scientific American, 265(3):94-104,
1991.

D. M. Weiss and C. T. R. Lai. Software Product-Line Engineering: A Family-Based
Software Development Process. Addison-Wesley, 1999.

C. Zhang and H.-A. Jacobsen. Quantifying aspects in middleware platforms. In 2nd
Int. Conf. on Aspect-Oriented Software Development (AOSD ’08), pages 130139,
New York, NY, USA, 2003. ACM Press.

	Introduction
	Operating System Engineering
	Incremental System Design
	Variabilty Management
	Modularization of Non-functional Properties with AOP

	Case Study of a Thread Abstraction Layer
	Feature Modeling
	Functional Hierarchy and Component View

	Aspect Orientation of Operating Systems
	Non-functional Properties Considered Harmful
	Separation of Cross-Cutting Concerns

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

