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Abstract. Image restoration is a keen problem of low level vision. In this paper,
we propose a novel - assumption-free on the noise model - technique based on
random walks for image enhancement. Our method explores multiple neighbors
sets (or hypotheses) that can be used for pixel denoising, through a particle filter-
ing approach. This technique associates weights for each hypotheses according
to its relevance and its contribution in the denoising process. Towards accounting
for the image structure, we introduce perturbations based on local statistical prop-
erties of the image. In other words, particle evolution are controlled by the image
structure leading to a filtering window adapted to the image content. Promising
experimental results demonstrate the potential of such an approach.

1 Introduction

In spite of the progress made in the field of image denoising, it is still an open issue. In
fact, natural images contain various types of information such as texture, small details,
noise, fine structure and homogeneous regions. Such conditions make image filtering
a crucial and challenging task. Ideally, a denoising technique must preserve all image
element except noise.

Prior art in image denoising consists of methods of various complexity. Local fil-
ter operators, image decomposition in orthogonal spaces, partial differential equations
as well as complex mathematical models with certain assumptions on the noise model
have been considered. The sigma filter method [15]], the bilateral [22] filter, morpho-
logical operators [25] and the mean shift algorithm [S] are efficient local approaches to
image denoising. The first two approaches compute a weighted average over the pixel
neighborhood where weights reflect the spatial distance between pixels and also the
difference between their intensities. Such methods account to a minimal extend for the
image structure and introduce strong bias in process through the selection of the filter
bandwidth.

Image decomposition in orthogonal spaces like wavelets [17], splines, fourier descrip-
tors and harmonic maps is an alternative to local filtering. Images are represented through
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a class of invertible transformations based on an orthogonal basis. Filtering consists of
modifying the coefficients of the transformation space where often the most important
ones are eliminated. Reconstruction of the image using the new set of coefficients leads
to natural denosing. In their origin such methods failed to preserve boundaries a lim-
itation that has been addressed through more careful selection of the orthogonal basis
driven from the image structure [6L/13]. Such techniques have good performance when
dealing with edges but they fail to preserve small details and texture.

Partial differential equations[l1], higher order nonlinear operators [2l], and functional
optimization [19121}23]] have been also considered to address image denoising. The
anisotropic diffusion [20] was a first attempt to incorporate image structure in the denos-
ing process. Despite numerous advantages, theoretical justification [3] and numerous
provisions of such a method one can claim that it remains myopic and cannot deal with
image textures. The Mumford-Shah framework [19], the total variation minimization
[21]], the Beltrami flow [[12], and other cost functionals of higher order [2] make the as-
sumption that the image consists of a noise-free smooth component and the oscillatory
pattern which corresponds to the random noise. Within such a concept constraints at
limited scale are also introduced and image is reconstructed through the lowest poten-
tial of a cost function, that is often recovered in an iterative fashion through the calculus
of variations. In the most general case such cost functions are not convex and there-
fore the obtained solution could correspond to a local minimum. Such methods are also
myopic and still fail to account for texture patterns despite recent advances [24]].

In order to account for image structure [[18]] an effort to understand the behavior of
natural images when seen through a set of orientation and scale selective band-pass
operators was made [[14,/16]. Central assumption on this effort was that images exhibit
differentially Laplacian statistics [[16]. Such information is critical to an image denois-
ing approach since it suggests the optimal way to regularize the problem and design
the most efficient algorithm. Despite promising results, such simplistic modeling often
fails to capture dependencies in a larger scale as well as account for the presence of
repetitive patterns like texture.

To conclude, traditional state-of-the art techniques are often based on restoring im-
age values based on local smoothness constraints within fixed bandwidth windows
where image structure is not considered. Consequently a common concern for such
methods is how to choose the most appropriate bandwidth and the most suitable set
of neighboring pixels to guide the reconstruction process. In this context, the present
work proposes a denoising technique based on multiple hypotheses testing. To this end,
the reconstruction process is guided from multiple random walks where we consider
a number of possible neighboring sites in the image and through a multiple hypothe-
ses testing, we track the most suitable ones. Furthermore, image structure at a variable
local scale is considered through a learning stage that consists of recovering probabilis-
tic densities capturing co-occurrences of visual appearances at scale spaces. Kernels
of fixed bandwidth are used to approximate such individual complex models for the
entire visual spectrum. Random perturbations according to these densities guide the
“trajectories”of a discrete number of walkers, while a weighted integration of the in-
tensity through the random walks leads to the image reconstruction. Such a method is
presented in [Fig. ()]
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Fig.1. Overview of Random Walks, Constrained Multiple hypotheses Testing and Image
Enhancement

The reminder of this paper is organized in the following fashion; in section 2 we
present density estimation of co-occurence for encoding the structure present in the im-
age. Random walks and particle filters are presented in section 3. While section 4 is
devoted to the application of the particle filtering to denoising as well as some experi-
mental results and comparisons with the state of the art methods . Finally, we conclude
in section 5.

2 Statistics of Natural Images

Understanding visual content has been a constant effort in computer vision with appli-
cations to image segmentation, classification, retrieval and coding. Statistical modeling
of images aims to recover contextual information at a primitive stage of visual process-
ing chain. Co-occurrence matrices [[I1]] have been a popular method to classification
and segmentation of texture images.

Such a matrix is defined by a distance and an angle, and aim to capture spatial de-
pendencies of intensities. The formal mathematical definition of an element (m, n) for
a pair (d, 0) is the joint probability on the image that a m-valued pixel co-occurs with a
n-valued pixel, with the two pixels are separated by a distance d and an angle 6:

Cd,@(mv n) = p(x,y)eﬂ(mv n) (I(X) =m, I(y) =ny —X= dew)
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with I being the observed image and {2 its domain. In the case of image denoising, the
diagonal values of this matrix are of significant importance since implicitly they provide
information on the geometric structure of the image. Inspired by such a concept, an
intelligent denoising algorithm should be able to extract the most important correlations
of local structure from the entire image domain, that is an ill-posed problem. Let us
assume the absence of knowledge on the noise model. Then, in order to encode image
structure we should seek for an estimate of the pdf.

pys(d,0) = pdf({(d,0) where x € 2,1(x) = I(x + de®) = f})

To account for pixel values corrupted by noise, the constraint of exact matching could
be relaxed , leading to:

pr.s(d,0)=pdf ({(d,0) where x € 2,1(x) = f, [6(x,x + de'®) < ] and [d < s]})

where s is the scale considered for the pdf computation and 6(; ) is a metric that reflects
similarity between to pixels in the image. This metric can be a simple distance such as
the L! or the L? norm or more complex measures like correlation, histogram match-
ing, mutual information, etc. In our experiments, we integrated the local variance into
the pdf expression. In fact local variance (noted o(.)) is a simple primitive capable of
describing texture at small scales. The new formulation of pdf is then as follows:

Pf.o.s(d,0) =pdf ({(d, ) where x € 2,1(x) = f,
[6(x,x + de™®) < e1] 5 [n(0(x), 0(x + de'®)) < €] and [d < s]})

As far as scale is concerned, different methods can be used to self-determine the scale
like in the case of co-occurrence matrices. In the most general case we can assume
scales of variable length that are self-adapted to the image structure. One can pre-
estimate such pdf from the image using its empirical form.

However, p¢ .- (d, ) aims to capture information of different structure, it describes
spatial relation between similar patches in the image that may correspond to different
population. To estimate py s (d, #) non-parametric kernel-based density approximation
strategies [26] like parzen windows were used.

Let {x;}, denote a random sample with probability density function p. The fixed
bandwidth kernel density estimator consists of

ZKH X—xi)= Z ||H||1/2 (H71/2(x - xz-))

where H is a symmetric definite positive - often called a bandwidth matrix - that controls
the width of the kernel around each sample point x,. Gaussian kernels are the most
common selection of such an approach and that is what was considered in our case to
approximate p f”g’g(d, ). Once such pdf has been constructed from the image, we are
able for a given image position x and an observation (f = I(x),o ) to generate a number
of hypotheses for the most prominent position of the related image structure ([Fig. 2)].

One can now reformulate the problem of image denoising for a given pixel as a
tracking problem in the image domain. Thus, given a starting position (pixel itself),
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(i)

Fig.2. Two pdf distribution py,,(d, 6) for different values of f ans o (top (f = 39,0 = 11.67),
bottom (f = 96,0 = 3.55), and sample generation according to these pdf (red pixel) for two
different positions

the objective is to consider a feature vector that upon its successful propagation along
similar image structure, is able to remove and recover the original image value. To this
end, we define

— a feature vector, that defines the current state of the reconstruction process sy,
— a measure of quality of a given hypothesis (feature vector) with respect to the im-
age data.

with [st = (x4, 1 (x)} being the state vector at a given time ¢. This state vector cor-

responds to the candidate site that can be used with in the filtering process and the
reconstructed value induced by this site. The statistical interpretation of such an objec-
tive refers to the introduction of a probability density function (pdf) that uses previous
states to predict possible new positions and image features to evaluate the new positions.
The multiple hypotheses generation could be done in a number of fashions. Sequential
Monte Carlo sampling is a well known technique that associates evolving densities to
the different hypotheses, and maintains a number of them. Particle filters are popular
techniques used to implement such a strategy.

3 Bayesian Tracking, Particle Filters and Multiple Hypotheses
Testing

The Bayesian tracking problem can be simply formulated as the computation of the pdf
relative to the present state s; of a system, based on observations z;.; from time 1 to
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time t: p(s¢|21.¢). Assuming that one can have access to the prior pdf p(s;—1|2z1.4—1),
the posteriori pdf p(s¢|z1.¢) can be computed using the Bayes’ rule:

#t|$ St|21:t—1
p(si|z14) = P(ze|se)p(se|21: )7
p(Zt‘let—l)

where the prior pdf is computed via the Chapman-Kolmogorov equation

p(se|z14—1) = /p(st\slth)p(stfl\zlth)dstfl,

and
p(ztlonir) = / p(ztlse)p(se] 211 )dse

The recursive computation of the prior and the posterior pdf leads to the exact computa-
tion of the posterior density. Nevertheless, in practical cases, it is impossible to compute
explicitly the posterior pdf p(s;|z1.¢), and therefore an approximation method is to be
introduced.

Particle filters, which are sequential Monte-Carlo techniques, estimate the Bayesian
posterior probability density function (pdf) with a set of samples. Sequential Monte-
Carlo methods have been first introduced in [9,27]. For a more complete review of
particle filters, one can refer to [[10,[7].

Particle filtering methods approximate the posterior pdf by M random state sample
{s}*,m = 1..M } associated to M weights {w]", m = 1..M }, such that

M
p(stlz1:4) ~ Z wi"6(sy — s3").
m=1

Thus, each weight w}" reflects the importance of the sample s} in the pdf.
The samples s}* are drawn using the principle of Importance Density [8], of pdf
q(s¢|sT, z¢), and it is shown that their weights w]® are updated according to

m m p(zt|sgn)p(sgn\sﬁ1)

Wy X Wiy m|gm ey
q(sy"|si1, 2t)

This equation shows that particle weights are updated using two mainly informations :
the observation pdf which reflects the likelihood of seeing an observation z; knowing
the state s; and the transition model which control the evolution of a particle state. The
sampling importance resampling algorithm (SIR) consists in choosing the prior density
p(st|s:—1) as importance density ¢(s¢|s7?,, z). Doing so, equation (I}) becomes simply

wp o Wity p(als), @
To sum up particle filtering consists of three main steps:

— particle drawing according the transition law p(s}*|s}™ ;)
— computation of the likelihood of observations generated by the particle p(z}"|s}*)
— weight updating according to w}* o w;™ 1 p(z¢|s}")
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Fig. 3. Two different particle’s random walks( in red and yellow) starting from the same origin
pixel (in magenta) where origin pixel is on the border (left image) or in an homogeneous region
(right image)

After several steps a degeneracy issue occurs, such that all weights but few become null.
In order to keep as many samples as possible with respectful weights, a resampling is
necessary. Different resampling processes exist. The SIR algorithm consists in selecting
the most probable samples in a random way, potentially selecting several times the same
sample. An example of propagation of multiple hypotheses is shown in [Fig. ()] for
two different situations according to the position of the origin pixel.

4 Random Walks and Image Denoising

We now consider the application of such a schema to image denoising. Thus, given
an origin pixel (x) reconstruction is equivalent to recover a number of “random” po-
sitions (x = xg, X1, ..., X;) with similar properties to x to reconstruct the corrupted
origin value (I(x)). The set of the obtained trajectories of each particle and their cor-
responding weights will represent the filtering window”. To this end, the use of “con-
strained” multiple hypotheses will be considered. This approach requires the definition
of a perturbation model as well as a likelihood measure that reflects the contribution of
a trajectory to the denoising process.

4.1 Likelihood Measure

Measuring similarities between image patches has been a well studied problem in com-
puter vision. Within the proposed approach, filtering is done in a progressive fashion
and therefore a need exists to measure the contribution of a new element in the filtering
process. Parallel to that, each particle corresponds to a random walk where a certain
number of pixels have been selected and contribute to the denoising process. Therefore,
we define two metrics, one that accounts for the quality of potential additions and one
for the intra-variability of the trajectories.

— The L? error-norm between local neighborhoods centered at the current position x;
and at the origin pixel x.

1 2
Dszm(t) - |I(X+V) _I((X +V)
QW + 1) VE[W’WZ]X[W,W] 2 1)
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where W is the bandwidth which must be carefully selected to get a reliable mea-
sure of similarity while being computationally efficient.

— In order to account for the intra-variability of the trajectories, we consider the vari-
ance, centered at the origin value,

t

Dintra(t) - 1 Z (I(XT) - I(x))Q

7=0

that measures the “uniformity” of the trajectory and could also be determined within
a larger neighborhood (not at the pixel level). This terms insures edges and fine
structure enhancement since random walks with small intra-variability are favored.

These two metrics are considered within an exponential function to determine the im-
portance of a new sample given the prior state of the walk.
_(Dsim @) | Dintra(t)

( 20?1 + 202 ) (3)
The next step consists of defining an appropriate strategy for samples perturbation. This
step is based on the statistical model for image structure introduced in the second sec-
tion. The distribution p , determines the transition model between particle at position
x¢ and x;1. In fact similar patches have similar values of local mean and variance and
our transition model guide particle to those patches, since displacements that guarantee
this similarity are favored.

Wwr = €

4.2 Implementation and Validation

In this section we will be concerned about the application of the particle filtering process
to denoising. To this end, for each pixel x of the image, we generate N number of
particles by applying N perturbations to the initial position x. Then, each particle is
propagated using a perturbation driven from the conditional distribution of the image
statistics described in section (2). The process is repeated for (T) iterations. In each step
of the process, we associate to each random walk a weight according to the likelihood
measure defined in expression (B). We define then the walk value I /(x) as the average
value along the walk. It corresponds to the value used to reconstruct the original pixel
according the “random walk” m :

rm Zj—: Dsim (T)I(X:—n)
It (X) = Ot
ZT:O D sim(T)
Linear combination of the hypotheses weights and the corresponding denoised values
is used to produce the current state of the process:

A N A
L(x) =) wi'I"(x)
m=0

In order to avoid degeneration of samples, as well as use with maximum efficiency all
hypotheses, a frequent resampling process is used. In practice we use (N=30) particles,
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(d) (e) )

Fig. 4. Original image (a) and method noise of Total Variation (b), Anisotropic Diffusion (c),
Bilateral Filter (d), Random Walks (e), Non Local Mean (f)

Table 1. PSNR values for denoised image (The PSNR of the image corrupted by gaussian noise
of std=20 is equal to 22.15)

TV AD Bilateral NLmean  R.Walks
Barbara 26.18 26.45 26.75 29.46 28.77
Boat 27.72 28.06 27.82 28.70 28.53
FingerPrint 26.08 24.81 24.12 26.22 26.00
House 28.43 29.41 29.18 31.47 30.87
Lena 28.45 29.27 29.28 31.18 30.32

with (T=4) pixels contributing to each walk. To illustrate the random walks filtering an
overview of the hole process is presented in [Fig. (I)].

Towards objective validation of the method, we used natural images corrupted by a
synthetic gaussian noise (0,,=20). We compared our approach to well known filtering
techniques such as the bilateral filter [22]], the Non Local Mean [4] approach, the total
variation [21]] and the anisotropic filtering [20] using an edge stopping function of the
type (1+|VI |2 /K?)~1. The parameters of different methods were tuned to get a good
balance between texture preserving and noise suppression. As for qualitative criteria,
we used the “method noise” criterion, which corresponds to the difference between
the noisy image and the filtered one [Fig. (@)]. Ideally, the “method noise” should be
free of all image information and must look like random noise. In case of the total
variation, the anisotropic diffusion and the bilateral filter [Figs. @b), @c) and (@d)]
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(ii)

Fig. 5. Results of random walks filtering on natural images corrupted by additive gaussian noise;
(i) Input image, (ii) Denoised Image

the method noise contains much more image details than our technique and the Non
local mean. They fail to preserve the image texture because they are not based on patch
comparison. Our Method has similar performance to the Non local mean filtering in
terms of detail preservation. This is not surprising since particle weight is dependent on
patch similarity. Thus, in homogeneous zones particles evolve in an isotropic fashion
which is equivalent with considering a window with a fixed bandwidth. In textured
regions, particles transitions rely on image structure where trajectories describing these
structure are favored.

As far as quantitative validation is concerned we used the Peak Signal to Noise
Ration criterion defined by

2552 1 NG
PSNR =10logio o MSE = 192 xGZQ(IO(X) 1(x))

where I is the noise free ideal image and I its estimation by the denoising process.

In table [Il we report experimental validation results for our method on image used
ofently to evaluate performance of image denoising algorithms. Parameters of each
method were selected to reach its best PSNR value. For our technique the following set
of parameter (N=30, T=4, 0,=0,=15, W=4) provides the best results. We can see that
quantitative validation is in harmony with the qualitative one. The NLmean achieves
the best result since it scans large width window (15 x 15 in our tests) to find similar
patches. Our approach aims to introduce a technique where similar patch selection is
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guided by image structure. However, in the case of strong noise structures are not easily
tractable which limits the performance of the method when compared to the Non local
mean.

5 Conclusions

In this paper we have proposed a novel technique for image filtering. The core contribu-
tion of our method is the selection of an appropriate walk in the image domain towards
optimal denoising. Such concept was implemented in a non-exclusive fashion where
multiple hypotheses are maintained. The use of monte-carlo sampling and particle fil-
ters were considered to inherit such a property in the method. Furthermore, inspired
by co-occurrence matrices we have modeled global image structure towards optimizing
the selection of trajectories of the multiple hypotheses concept. To further adapt the
method to the image structure such modeling was updated on line using local structure.
Promising experimental results demonstrate the potentials of our approach.
Computational complexity is a major limitation of the method. The use of smaller
number of hypotheses could substantially decrease the execution time. Improving the
learning stage and guiding the particles to the most appropriate directions is a short term
research objective. To this end, we would like to provide techniques capable of selecting
the scales of each operator. Furthermore, we would like to consider kernels of variable
bandwidth when recovering the non-parametric form of the learned distribution that are
more efficient to capture image structure. More long term research objectives refer a
better propagation of information within trajectories. Particle filters is a fairly simple
approach that mostly propagates the mean value and the weights. The propagation of
distributions can better capture the importance of the trajectories as well as the effect
of new additions. In addition to that, geometric constraints on the ”*walks™ could also
improve the performance of the method in particular when texture is not present.
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