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Abstract. We consider the use of top-points for object retrieval. These points are
based on scale-space and catastrophe theory, and are invariant under gray value
scaling and offset as well as scale-Euclidean transformations. The differential
properties and noise characteristics of these points are mathematically well un-
derstood. It is possible to retrieve the exact location of a top-point from any coarse
estimation through a closed-form vector equation which only depends on local
derivatives in the estimated point. All these properties make top-points highly
suitable as anchor points for invariant matching schemes. By means of a set of
repeatability experiments and receiver-operator-curves we demonstrate the per-
formance of top-points and differential invariant features as image descriptors.

1 Introduction

Local invariant features are useful for finding corresponding points between images
when they are calculated at invariant interest points. The most popular interest points
are Harris points [1], extrema in the normalized scale-space of the Laplacian of the
image [2] used in the popular SIFT keypoint detector [3] or a combination of both [4].
For an overview of different interest points the reader is referred to [5].

We propose a novel, highly invariant type of interest point, based on scale-space and
catastrophe theory. The mathematical properties and behavior of these so-called top-
points are well understood. These interest points are invariant under gray value scaling
and offset as well as arbitrary scale-Euclidean transformations. The noise behavior of
top-points can be described in closed-form, which enables us to accurately predict the
stability of the points. For tasks like matching or retrieval it is important to take into
account the (in)stability of the descriptive data.

For matching it is important that a set of distinctive local invariant features is avail-
able in the interest points. An overview of invariant features is given in [6]. The choice
of invariant features taken in the top-points is free. Because of their simple and math-
ematically nice nature we have chosen to use a complete set of differential invariants
up to third order [7, 8] as invariant features. A similarity measure between these in-
variant feature vectors based on the noise behavior of the differential invariants is pro-
posed. By means of a set of repeatability experiments and receiver-operator-curves we
demonstrate the performance of top-points and differential invariant features as image
descriptors.
� The Netherlands Organization for Scientific Research (NWO) is gratefully acknowledged for

financial support.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part I, LNCS 3951, pp. 418–429, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Top-Points as Interest Points for Image Matching 419

2 Theory

We present an algorithm for finding interest points in Gaussian scale-space. As input
we may use the original image, but we may also choose to use its Laplacian, or any
other linear differential entity. The input for our algorithm will be referred to as u(x, y).

2.1 Scale-Space Approach

To find interest points that are invariant to scaling we have to observe the input function
at all possible scales. Particularly suitable for calculating the scale-space representa-
tion of the image (or any other linear differential entity of the image) is the Gaussian
kernel [9]

φσ(x, y) =
1

2πσ2 e−
1
2 (x2+y2)/σ2

. (1)

The input function can now be calculated at any scale by convolution with the Gaussian

u(x, y, σ) = (φσ ∗ u) (x, y). (2)

Derivatives of the input function can be calculated at any scale by

Du(x, y, σ) = (Dφσ ∗ u) (x, y), (3)

where D is any linear derivative operator with constant coefficients.

2.2 Catastrophe Theory

Critical points are points at any fixed scale at which the gradient vanishes. Catastrophe
theory studies how such points change as certain control parameters change, in our case
scale.

In the case of a generic 2D input function the catastrophes occurring in Gaussian
scale space are creations and annihilations of critical points with opposite Hessian sig-
nature [10, 11], i.e. extrema and saddles. The movement of critical points through scale
induces critical paths. Each path consists of one (or multiple) saddle branch(es) and
extremum branch(es). The point at which a creation or annihilation occurs is referred
to as a top-point1. A typical set of critical paths and top-points of an image is shown
in Fig. 1. In a top-point the determinant of the Hessian of the input function becomes
zero. A top-point is thus defined as a point for which

⎧
⎨

⎩

ux = 0 ,
uy = 0 ,
uxxuyy − u2

xy = 0 .
(4)

The extrema of the normalized Laplacean scale space as introduced by Lindeberg [2],
and used by Lowe [3] in his matching scheme, lie on the critical paths of the Laplacean
image. Multiple of such extrema may exist on the extremum branch of a critical path,
whereas there is only one top-point per annihilating extremum/saddle pair, Fig. 2a.

1 This misnomer is reminiscent of the 1D case [12], in which only annihilations occur generi-
cally, so that a top-point is only found at the top of a critical path.
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Fig. 1. Selection of critical paths and top-points of a magazine cover image

2.3 Invariance

Interest points are called invariant to transformation if they are preserved by the trans-
formation. From their definition (4), it is apparent that top-points are invariant under
gray value scaling and offset. Next to this the top-points are also invariant to scale-
Euclidean transformations (rotation, scaling, translation).

The top-points however are in theory not invariant to affine or projective transforma-
tions just like the interest point detectors mentioned earlier, but in practice they show to
be invariant under small affine or projective transformations.

2.4 Detection Versus Localization

Critical paths are detected by following critical points through scale. Top-points are
found as points on the critical paths with horizontal tangents.

The detection of top-points does not have to be exact, since, given an adequate initial
guess, it is possible to refine their position such that (4) holds to any desired precision. If
(x0, y0, t0) denotes the approximate location of a top-point we can calculate the position
of the true top-point (x0 + ξ, y0 + η, t0 + τ) in the neighborhood by:

⎡

⎣
ξ
η
τ

⎤

⎦ = −M−1
[

g
detH

]

, (5)

where

M =
[

H w
zT c

]

, (6)

g = ∇u, H = ∇g, w = ∂tg, z = ∇detH, c = ∂tdetH , (7)
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in which g and H denote the image gradient and Hessian matrix, respectively, and in
which all derivatives are taken in the point (x0, y0, t0), cf. [11] for a derivation. This
allows one to use a less accurate but fast detection algorithm.

2.5 Perturbative Approach in Scale Space

Given a set of measurements in scale space v ∈ R
n we can calculate the propagation

of errors in a function f : R
n → R

m if the measurements are perturbed with noise n,
w = v + n ∈ R

n. The following equation describes how the perturbation affects f ,
using Einstein summation convention for repeated indices:

fα(w) − fα(v) ≈ δfα ≡ ∂fα

∂wβ

∣
∣
∣
∣
w=v

nβ (8)

The covariance matrix of f can be expressed as:

< δfαδfβ >=
∂fα

∂vγ

∂fβ

∂vδ
< nγnδ > (9)

The noise matrix < nγnδ > is given in [13] for the case when v denotes a partial
derivative of the image obtained through convolution with a Gaussian derivative filter.

2.6 Stability

The stability of a top-point can be expressed in terms of the variances of spatial and
scale displacements induced by additive noise. Since top-points are generic entities in
scale space, they cannot vanish or appear when the image is only slightly perturbed.
We assume that the noise variance is “sufficiently small” in the sense that the induced
dislocation of a top-point can be investigated by means of a perturbative approach. By
using eqn. (9) and substituting f with eqn. (5) we are able to calculate the effects of

(a) (b)

Fig. 2. a. A set of critical paths with corresponding top-points (topmost bullets), and extrema of
the normalized Laplacian (remaining bullets). b. The ellipses schematically represent the vari-
ances of the scale-space displacement of each top-point under additive noise of known variance.
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noise on the position of top-points in the form of a covariance matrix. It can be shown
that the displacement depends on derivatives up to fourth order evaluated at the top-
point, and on the noise variance. For detailed formulas (and experimental verifications)
the reader is referred to [14].

The advantage of this approach is that variances of scale-space displacements can be
predicted theoretically and in analytically closed-form on the basis of the local differ-
ential structure at a given top-point, cf. Fig. 2b for a schematic illustration. The ability
to predict the motion of top-points under noise is valuable when matching noisy data
(e.g. one may want to disregard highly instable top-points altogether).

2.7 Local Invariant Features

For matching it is important that a set of distinctive local invariant features is available
in the interest points. It is possible to use any set of invariant features in the top-points.
Mikolajcyck and Schmid [6] give an overview of a number of such local descriptors.

For our experiments we have used a complete set of differential invariants up to third
order. The complete sets proposed by Florack et al. [8] are invariant to rigid transfor-
mations. By suitable scaling and normalization we obtain invariance to spatial zooming
and intensity scaling as well, but the resulting system has the property that most low
order invariants vanish identically at the top-points of the original (zeroth order) image,
and thus do not qualify as distinctive features. Thus when considering top-points of the
original image other distinctive features will have to be used. In [15] the embedding of
a graph connecting top-points is used as a descriptor. This proved to be a suitable way
of describing the global relationship between top-points of the original image. In this
paper we use the Laplacian of the input function as input for our top-point detector. For
this case the non-trivial, scaled and normalized differential invariants up to third order
are collected into the column vector given by (10), again using summation convention:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ
√

uiui/u
σuii/

√
ujuj

σ2uijuij/ukuk

σuiuijuj/(ukuk)3/2

σ2uijkuiujuk/(ulul)2

σ2εijujkluiukul/(umum)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (10)

Here εij is the completely antisymmetric epsilon tensor, normalized such that ε12 = 1.
Note that the derivatives are extracted from the original, zeroth order image, but evaluated
at the location of the top-points of the image Laplacian. This is, in particular, why the
gradient magnitude in the denominator poses no difficulties, as it is generically nonzero
at a top-point.

The resulting scheme (interest point plus differential feature vector) guarantees man-
ifest invariance under the scale-Euclidean spatial transformation group, and under linear
gray value rescalings.

2.8 Similarity Measure in the Feature Space

To compare features of different interest points a distance or similarity measure is
needed. The most often used measures in literature are the Euclidean and Mahalanobis
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distance. If x0 and x are two points from the same distribution which has covariance
matrix Σ, then the Mahalanobis distance is given by

d(x0, x) = (x − x0)T Σ−1(x − x0) (11)

and is equal to the Euclidean distance if the covariance matrix Σ is the identity matrix.
The advantage of the Mahalanobis distance is that it can be used to measure distances
in non-Euclidean spaces. The drawbacks however are that the covariance matrix has
to be derived by using a large training set of images, and that the covariance matrix is
the same for every measurement. By using the perturbative approach from sec. 2.5 and
using the set of differential invariants from (10) as functions fα and the set of third or-
der derivatives as vβ we can now calculate a covariance matrix for every single feature
vector. This enables us to use (11) to calculate the similarity between two feature vec-
tors using the covariance matrix Σx0 derived specifically for feature vector x0, where
d(x0, x) close to zero means very similar, and d(x0, x) 	 0 very dissimilar. Note that
this makes the similarity measure asymmetric: d(x0, x) 
= d(x, x0). Therefore we can-
not speak of a distance measure. This however does not pose problems since we are
only matching unidirectionally, viz. object to scene.

3 Experiments

3.1 Database

For the experiments we use a data set containing transformed versions of 12 different
magazine covers. The covers contain a variety of objects and text. The data set contains
rotated, zoomed and noisy versions of these magazine covers as well as images with
perspective transformations. For all transformations the ground truth is known, which
enables us to verify the performance of different algorithms on the database. Mikola-
jczyk’s data set used in [4, 6] is not suitable for our purposes, as we require ground
truth for genuine group transformations not confounded with other sources of image
changes, such as changes in field of view. To our knowledge Mikolajczyk’s data set
does not provide this.

3.2 Repeatability

Schmid et al. [5] have introduced the so-called repeatability criterion to evaluate the
stability and accuracy of interest points and interest point detectors. The repeatability
rate for an interest point detector on a given pair of images is computed as the ratio
between the number of point-to-point correspondences and the minimum number of
interest points detected in the images (×100%).

If the interest point in the perturbed image has moved less than a distance of ε pixels
away from the position where it would be expected when following the transformation,
we mark the point as a repeatable point (typically we set ε ≈ 2 pixels).

Experiments show the repeatability of top-points under image rotation (Fig. 4a) and
additive Gaussian noise (Fig. 4b). Image rotation causes some top-points to be lost
or created due to the resampling of the image. In the Gaussian noise experiment we
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Fig. 3. A selection of data set images. From left to right: unchanged, rotated, added noise, scaled,
changed perspective.
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Fig. 4. a. The repeatability rate of the top-points for different angles of rotation for different ε.
b. The repeatability rate of the top-points and SIFT interest points for additive Gaussian noise
expressed in signal to noise ratio.

demonstrate that by using the stability variances described in Sec. 2.6 the repeatability
of the top-points can be increased. The top-points are ordered on their stability vari-
ances. From this list 100%, 50% and 30% of the most stable top-points are selected
for the repeatability experiment respectively. From Fig. 4b it is apparent that discarding
instable points increases the repeatability significantly. We compare the repeatability of
our interest point detector to the SIFT interest point detector by Lowe [3]. In Fig. 4b can
be seen that when we apply a threshold on our stability measure (the SIFT keypoints
have already been thresholded on stability) we slightly outperform the SIFT interest
point detector for the noise case. Both algorithms perform worst for a rotation of 45
degrees. On the average taken over the entire database of 45 degree rotated images the
repeatability of the SIFT interest points is 78%. Our top-point interest point detector
showed a repeatability rate of 85% when thresholded on stability.

The high repeatability rate of the top-points enables us to match images under any
angle of rotation and under high levels of noise.

3.3 Receiver Operator Characteristics

For the performance evaluation of the similarity measure we use a similar criterion
as the one used in [6]. This criterion is based on Receiver Operating Characteristics
(ROC) of detection rate versus false positive rate. Two points are said to be similar if
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the distance between their feature vectors is below a threshold t. The value of t is varied
to obtain the ROC curves.

Given two images representing the same object the True Positive Rate TPR is the
number of correctly matched points with respect to the number of possible matches:

TPR =
#correct matches

#possible matches
(12)

The condition for calling a match correct is the same as in sec. 3.2. The False Positive
Rate FPR as defined in [6] is calculated as:

FPR =
#incorrect matches

(#object points)(#scene points)
(13)

where the object is the original image and the scene a transformed version of the original
image.

3.4 Performance of the Similarity Measure

To evaluate the performance of the similarity measure defined in sec. 2.8 we have calcu-
lated the ROC curves as described sec. 3.3 for a set of experiments. For comparison we
have included the ROC curves for the Mahalanobis and Euclidean distance measures.
The covariance matrix for the Mahalanobis distance was obtained by training on the
data set itself. In Fig. 5 the mean ROC curves for three experiments are shown. In ex-
periment a. the images in the database are matched to a 50% scaled down version of the
same images. In experiment b. the images in the database are matched to noisy versions
of the same images. In experiment c. the images in the database are matched to the 45
degree rotated versions of the same images. In all the experiments it is obvious that the
new similarity measure greatly improves the performance of the matching algorithm.

3.5 Performance of the Descriptors

To evaluate the performance of the differential invariant features defined in sec. 2.7
we have calculated the ROC curves as described sec. 3.3 for a set of experiments. For
comparison we have included the ROC curves of the SIFT algorithm for which a pre-
compiled program is publicly available. The SIFT features consist of a 128 feature long
vector containing information about the gradient angles in the neighborhood of the in-
terest points. The experiments in Fig. 6 show superior performance of our differential
invariant features over the SIFT features. The difference becomes even more evident if
only stable top-points are used.

In a different set of experiments we have tested the performance of both algorithms
under perspective change. For small perspective changes our algorithm performs slightly
better than the SIFT algorithm. However this performance rapidly decreases for larger
perspective changes. The SIFT features outperform our features in this case. This is prob-
ably due to the higher order information used in our feature vector which is more affected
by perspective or affine changes than the first order information used in the SIFT feature
vector.
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Fig. 5. a. mean ROC curve for 50% scaling. b. mean ROC curve for 5% additive Gaussian noise.
c. mean ROC curve for 45 degree rotation.
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Fig. 6. a. ROC curve for 45 degree rotation. b. ROC curve for 5% additive Gaussian noise.

4 Retrieval Example

A simple example of an object retrieval task is demonstrated here. We have a set of
magazine covers (of size 500 × 300 pixels) and a scene (of size 1000 × 700 pixels)
containing a number of the magazines, distributed, rotated, scaled, and occluded.

The task is to retrieve a magazine from the scene image. For the query images we find
approximately 1000 stable top-points per query image (which may be pre-computed
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off-line). For the scene image we find approximately 5000 stable top-points. In Fig. 8
the interest points are shown (above a certain scale), 782 points are matched correctly
for the left image and 211 for the down-scaled right image. The objects can now easily
be extracted from the scene by using a clustering algorithm as described in [3].

0.002 0.004 0.006 0.008
FPR

0.5

0.6

0.7

0.8

0.9

TPR

20

10

5

(a)

0.002 0.004 0.006 0.008
FPR

0.5

0.6

0.7

0.8

0.9

TPR

(b)

Fig. 7. ROC curves perspective change for 5, 10 and 20 degrees for: a. Our interest points and
differential invariants b. SIFT interest points and features.

Fig. 8. Matching interest points (white) of a query object and a scene containing two rotated,
scaled and occluded versions of the object. Interest points that do not match are shown in gray
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5 Summary and Conclusions

We have introduced top-points as highly invariant interest points that are suitable for
image matching. Top-points are versatile as they can be calculated for every generic
function of the image.

We have pointed out that top-points are invariant under scale-Euclidean transforma-
tions as well as under gray value scaling and offset. The sensitivity of top-points to
additive noise can be predicted analytically, which is useful when matching noisy im-
ages. Top-point localization does not have to be very accurate, since it is possible to
refine its position using local differential image structure. This enables fast detection,
without losing the exact location of the top-point.

The repeatability of the top-points has proven to be better than the widely used SIFT
interest points in a set of experiments. In the future we strive to compare our top-points
to other popular interest points like the Harris-Laplace points and descriptors like PCA-
SIFT and GLOH.

As features for our interest points we use a feature vector consisting of only six nor-
malized and scaled differential invariants. We have also introduced a similarity measure
based on the noise behavior of our feature vectors. Thresholding on this similarity mea-
sure increases the performance significantly.

A similarity measure was derived based on the noise behavior of the differential
invariant features. This measure significantly increases performance over the popular
Mahalanobis and Euclidean distance measures.

For scale-Euclidean transformations as well as additive Gaussian noise our algo-
rithm (6 features in vector) has proven to outperform the SIFT (128 features in vector)
approach. However for large perspective changes the SIFT algorithm performs better
probably due to the lower order derivatives used for the feature vector.
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