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Abstract. This article presents a novel method for acquiring high-quality solid
models of complex 3D shapes from multiple calibrated photographs. After the
purely geometric constraints associated with the silhouettes found in each image
have been used to construct a coarse surface approximation in the form of a visual
hull, photoconsistency constraints are enforced in three consecutive steps: (1) the
rims where the surface grazes the visual hull are first identified through dynamic
programming; (2) with the rims now fixed, the visual hull is carved using graph
cuts to globally optimize the photoconsistency of the surface and recover its main
features; (3) an iterative (local) refinement step is finally used to recover fine
surface details. The proposed approach has been implemented, and experiments
with six real data sets are presented, along with qualitative comparisons with
several state-of-the-art image-based-modeling algorithms.

1 Introduction

This article addresses the problem of acquiring high-quality solid models! of com-
plex three-dimensional (3D) shapes from multiple calibrated photographs, a process
dubbed image-based modeling. A popular approach to image-based modeling is to ac-
quire multiple depth maps with a laser range scanner, register them, and merge them
into a single 3D model [4, 8, 14]. The relative accuracy of laser-based systems can be
as high as 1/10,000 [14]. Comparable (and even higher) accuracy levels have been
achieved using “ordinary” cameras in the close-range photogrammetry domain [22].
However, photogrammetric methods typically measure a rather sparse set of point (a
few hundreds) and require markers. The accuracy levels currently achieved by auto-
mated, marker-less approaches to image-based modeling from calibrated photographs
(e.g., [7,10,11,15,18,23,20]) are much lower. They are rarely quantified, often be-
cause of a lack of ground truth data, but it is probably fair to say that relative accuracies
of about 1/200 are the state of the art. As a step toward higher accuracy, we present
in this paper a method that combines the geometric and photometric constraints asso-
ciated with multiple calibrated photographs to recover accurate solid object models in
the form of carved visual hulls (see [7,23,20] for related approaches). The proposed
algorithm has been implemented, and experiments with six real data sets are presented.
As in previous studies, the lack of ground truth data has prevented us (so far) from
conducting a quantitative assessment of the proposed method, but the qualitative re-
sults presented in Figs. 1 and 7 demonstrate the recovery of very fine surface details

UIn the form of watertight surface meshes, as opposed to the partial surface models typically
output by stereo and structure-from-motion systems.
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Fig. 1. Overall flow of the proposed approach. Top: one of the 24 input pictures of a toy dinosaur
(left), the corresponding visual hull (center), and the rims identified in each strip using dynamic
programming (right). Bottom: the carved visual hull after graph cuts (left) and iterative refinement
(center); and a texture-mapped rendering of the final model (right). Note that the scales on the
neck and below the fin, as well as the undulations of the fin, are recovered correctly, even though
the variations in surface height there is well below 1mm for this object about 20cm wide.

in all our experiments. Our technique also appears to fare rather well in preliminary
—and once again qualitative— comparisons with several state-of-the-art image-based
modeling algorithms (Fig. 8).

1.1 Background

Several recent approaches to image-based modeling attempt to recover photoconsistent
models that minimize some measure of the discrepancy between the different image
projections of their surface points. Space carving algorithms represent the volume of
space around the modeled object by a grid of voxels, and erode this volume by carving
away successive layers of voxels with high discrepancy [11, 18]. In contrast, variational
methods explicitly seek the surface that minimize image discrepancy. Variants of this
approach based on snakes iteratively deform a surface mesh until convergence [7,21].
Level-set techniques, on the other hand, implicitly represent surfaces as the zero set
of a time-varying volumetric density [6,9]. The graph cuts global optimization tech-
nique can also be used to avoid local extrema during the search for the optimal surface
[16,23,20]. The last broad class of image modeling techniques is the oldest one: The
visual hull, introduced by Baumgart in the mid-seventies [1], is an outer approxima-
tion of the observed solid, constructed as the intersection of the visual cones associated
with all input cameras. Many variants of Baumgart’s original algorithm have also been
proposed (e.g., [13, 15, 19]).

1.2 Approach

Herndndez Esteban and Schmitt propose in [7] to use the visual hull to initialize the
deformation of a surface mesh under the influence of photoconsistency constraints ex-
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pressed by gradient flow forces [24] (see [9] for a related approach combining geometric
and photometric approaches). Although this method yields excellent results, its reliance
on snakes for iterative refinement makes it susceptible to local minima. In contrast, Vo-
giatzis, Torr and Cipolla use the visual hull to initialize the global optimization of a
photometric error function [23]. The results are once again impressive, but silhouette
consistency constraints are ignored in the minimization process, which may result in
excessive carving. In fact, they add an inflationary ballooning term to the energy func-
tion of the graph cuts to prevent the over-carving, but this could still be a problem,
especially in high-curvature regions (more on this in Section 5.2).

To overcome these problems, we propose in this paper a combination of global and
local optimization techniques to enforce both photometric and geometric consistency
constraints throughout the modeling process. The algorithm proposed by Lazebnik [13]
is first used to construct a combinatorial mesh description of the visual hull surface in
terms of polyhedral cone strips and their adjacency relations (see next section and [13]
for details). Photoconsistency constraints are then used to refine this initial and rather
coarse model while maintaining the geometric consistency constraints imposed by the
visual hull. This is done in three steps: (1) the rims where the surface grazes the visual
hull are first identified through dynamic programming; (2) with the rims now fixed,
the visual hull is carved using graph cuts to globally minimize the image discrepancy
of the surface and recover its main features, including its concavities (which, unlike
convex and saddle-shape parts of the surface, are not captured by the visual hull); and
(3) iterative (local) energy minimization is finally used to enforce both photometric and
geometric constraints and recover fine surface details. While geometric constraints have
been ignored in [23] in the global optimization process, our approach affords in its first
two steps an effective method for enforcing hard geometric constraints during the global
optimization process. As demonstrated in Section 5.2, the third step, similar in spirit to
the local optimization techniques proposed in [7, 9], remains nonetheless essential in
achieving high-quality results. The overall process is illustrated by Fig. 1, and the rest
of this paper details each step and presents our implementation and its results, along
with preliminary comparative experiments.

2 Identifying Rims on Visual Hull Surfaces

2.1 Visual Hulls, Cone Strips, and Rims

Let us consider an object observed by n calibrated cameras with optical centers
01,...,0,, and denote by ¥ its apparent contour in the image I; (Fig. 2(a)). The cor-
responding visual cone is the solid bounded by the surface @; swept by the rays joining
0, t0 7;.> @; grazes the object along a surface curve, the rim I7. The visual hull is the solid
formed by the intersection of the visual cones, and its boundary can be decomposed into
a set of cone strips ¢; formed by patches from the cone boundaries that connect to each
other at frontier points where two rims intersect (Fig. 2(b)). As illustrated by Fig. 2(c),
each strip can be mapped onto a plane by parameterizing its boundary by the arc length

2 We assume here for simplicity that 7 is connected. As shown in Section 5, our algorithm
actually handles apparent contours made of several nested connected components.
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(c) Cone Strip

Fig. 2. A visual hull, cone strips and rims: (a) an egg-shaped object is viewed by 2 cameras with
optical centers O and O3; the point x is a frontier point; (b) its visual hull is constructed from
two apparent contours Yy and 9», the surface 2 of the visual hull consisting of two cone strips ¢;
and ¢»; (c) the cone strip ¢; associated with the first image /; is stretched out along the apparent
contour ¥, S0 a point g on ¥, corresponds to a vertical line in the right part of the diagram

of the corresponding image contour. In this figure, a viewing ray corresponds to a ver-
tical line inside the corresponding strip, and, by construction, there must be at least one
rim point along any such line (rim points are identified in [3] by the same argument, but
the algorithm and its purpose are different from ours). Once the visual hull and the cor-
responding cone strips have been constructed using the algorithm proposed in [13], the
next step is to identify the rim that runs “horizontally” inside each strip (Fig. 2(c)). Since
rim segments are the only parts of the visual hull that touch the surface of an object, they
can be found as the strip curves that minimize some measure of image discrepancy. The
next section introduces such a measure, similar to that used in [6].

2.2 Measuring Image Discrepancy

Let us consider a point p on the visual hull surface. To assess the corresponding image
discrepancy, we first use z-buffering to determine the images where it is visible, then se-
lect among these the 7 pictures with minimal foreshortening. Next, a tt x u grid is over-
laid on a small patch of the surface’s tangent plane at p, and 7 u X u tangent plane “win-
dows” hy,---,h; are retrieved from the corresponding input images. We normalize the
intensity of each window /; and compute the sum of squared differences (SSD) for each
pair. Our final discrepancy measure is thus: f(p) = T(Tfl)uz i1 i1 SSD(hishj).
T=>5and yu = 11 in all our experiments.

2.3 Identifying a Rim in a Cone Strip

As noted earlier, the image discrepancy function should have small values along rims,
thus these curves can be found as shortest paths within the strips, where path length
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Fig. 3. (a) An undirected graph representing a cone strip ¢;. The two leftmost components are
vertical neighbors. (b) The opening and closing vertices v, and v, of ¢;. (c) Illustration of the
vertical edge creation process for a different strip ¢;. (d) After the horizontal and vertical edges
of the directed graph G’ associated with ¢; have been created, G’ is split into two connected
components, shown here in different shades of grey, with unique start and goal vertices each.

is determined by the image discrepancy function. In our visual hull implementation, a
cone strip ¢; is represented by the undirected graph G with its polyhedral vertices V and
edges E, and it is straightforward to find the shortest path by dynamic programming.
However, the idealized situation in Fig. 2 rarely occurs in practice, and the rim may not
be a continuous curve in its cone strip (Fig. 3(a)): As shown in [13], the boundaries of
the cone strips often loose their singularities (frontier points) to measurement errors,
resulting into multiple connected components. In practice, we can still apply dynamic
programming to each connected component independently. Harder problems arise from
the facts that (1) there may be multiple strip components intersecting the same vertical
line (we call them vertical neighbors), with the rim being in any one of these; and (2)
the rim can be discontinuous at any point inside the strip due to T-junctions. In this
work, we assume for simplicity that rim discontinuities occur only at the following two
types of strip vertices (Fig. 3(b)): an opening vertex v, whose neighbors V' all verify
v, < V', and a closing vertex whose neighbors V' all verify v/ < v.., where “<” denotes
the circular order on adjacent vertices in G induced by the closed curve formed by the
apparent contour. Under this assumption, dynamic programming can be still used to
find the rim as a shortest path in the directed graph G’ with vertices V and edges E’,
defined as follows. Firstly, for each edge (v;,v;) in E, we add to E' the Horizontal edge
(vi,vj) if v; < v;, and the edge (v}, v;) otherwise. Secondly, to handle discontinuities, we
add to E’ the Vertical directed edges linking each opening (resp. closing) vertex to all
vertices immediately following (resp. preceding) it in its vertical neighbors (Fig. 3(c)).
Next, we assign weights to edges in a directed graph G'. For horizontal edges, a
weight is the physical edge length multiplied by the average image discrepancy of its
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two vertices. Vertical edges have weight 0. Then, we decompose the graph G’ into
connected components (Fig. 3(d)), and use dynamic programming to find the shortest
path between the leftmost (start) vertex of each component and its rightmost (goal)
vertex. At times, rim discontinuities may occur at other points than those selected by our
assumptions. Accordingly, the simple approach outlined above may misidentify parts of
the rim. Since the rims are used as hard constraints in the next global optimization step,
we want to avoid false positives as much as possible. Among all the vertices identified
as the rim points, we filter out false-positives by using the image discrepancy score f(v)
and the vertical strip size g(v) at a vertex v. More concretely, a vertex v is detected as
a false-positive if either R/3 < g(v) or R/15 < g(v) and < f(v) hold, where R is an
average distance from all the vertices V' in the mesh to their center of mass ¥,y v/|V'|.
7 is a threshold for the image discrepancy score, and is selected for each data set in our
experiments. Image discrepancy values are blurred along the identified rims before this
filtering. Note that when the vertical strip size is small (at most R/15), there is little
ambiguity in the location of the rim, and the corresponding vertex automatically passes
the test according to the above rule.

The next two sections show how to carve the visual hull by combining photocon-
sistency constraints with the geometric rim consistency constraints associated with the
identified rim segments. We start with a global optimization step by graph cuts to re-
cover main surface features. A local refinement step is then used to reveal fine details.

3 Global Optimization

In this part of our algorithm, rim consistency is enforced as a hard constraint by fixing
the location of the identified rim segments, which split the surface €2 of the visual hull
into k connected components G; (i = 1,...,k) (note that the rim segments associated
with a single strip may not form a loop, so each graph component may include vertices
from multiple strips). To enforce photoconsistency, we independently and iteratively
deform the surface of each component G; inwards to generate multiple layers forming
a 3D graph, associate photoconsistency weights to the edges of this graph, and use
graph cuts to carve the surface. > The overall process is summarized in Algorithm 1 and
detailed in the next two sections.

3.1 Deforming the Surface

To construct the graph associated with each component G; of the visual hull bound-
ary, we first deform the surface inwards (remember that the visual hull is an outer
object approximation) to create multiple offset layers. Note that the photoconsistency
function is evaluated at all the vertices in each layer, and their surface normals are es-
timated by using the corresponding layer. At every iteration, we move every vertex v
in G; (except for the boundaries) along its surface normal N(v), and apply smoothing:
vev— (8 f(v) + &)N(v) +s(v), where {1, are scalar constants, f(v) is the

3 The graph associated with a voxel grid serves as input in typical applications of graph cuts to
image-based modeling (e.g., [2, 10, 16, 23]). The surface deformation scheme is proposed here
instead to take advantage of the fact that the visual hull is already a good approximation.
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Algorithm 1. Carving G; with graph cuts

J — G;j; {J will contain p layers of the mesh. }
for j=2top do
for k = 1to A do {Apply A deformation steps to G;.}
for each vertex v € G; except for the boundary do
veev=5 (& f() +LINE) +s(v);
end for
end for
J —JUG;; {Add alayer.}
end for
Add vertical, horizontal, and diagonal edges to J, and compute their weights;
Use graph cuts to find a minimum cut in J.

image discrepancy function defined earlier, N(v) is the unit surface normal, and s(v)
is a smoothness term of the form —B;Av + B,AAv suggested in [5]. A iterations are
performed to generate each layer, and at total p layers are generated during the defor-
mation process. Note that using f(v) yields an adaptive deformation scheme: the surface
shrinks faster where the image discrepancy function is larger, which is expected to pro-
vide better surface normal estimates. We use §; = 100, {; = 0.1, §; = 0.4, B, = 0.3,
p =30, and A = 20 in all our experiments, which have empirically given good results
for our test objects. On the other hand, €, which determines an offset between adjacent
layers, should depend on the depth of a surface from the visual hull boundary, and is set
manually for each object, typically to about 0.3 times the average edge length in G;.

3.2 Building a Graph and Applying Graph Cuts

After a set of layers J has been created, three types of edges are added, as shown in
Fig. 4. Vertical edges connect the offset instances of the same vertex in adjacent layers,
horizontal edges connect vertices in the same layer, and diagonal edges connect vertices
in adjacent layers. As before, photoconsistency values are computed at all the vertices in

J, and a simple variant of the technique proposed in [2] is used to compute edge weights.
o(f(vi)+f(v}))(8i+6;)
d (V,‘,V_,') ’
where f(v;) is the photoconsistency function value at a vertex v;, d(v;,v;) is the length
of the edge, and §; is a measure of the sparsity of vertices around v;, approximated

Concretely, the weight of an edge (v;,v;) is computed as w;; =

gy PR SOUICE  — yertical edge
,1.!1"“' LV, — Layer
- o Diagonal edge

0 —>-0(Visual hull)

(a) Visual Hull

Fig. 4. Deforming the surface for graph cuts: (a) the surface Q2 of the visual hull is decomposed
into multiple independent components Gj;; (b) the deformation process is illustrated for the cross
section of G4 that contains vertices vy, v, and v3
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by the average distance to the adjacent vertices. Intuitively, weights should be large
where vertices are sparse. We use o = 1, 10, and 5 for horizontal, vertical, and diagonal
edges, respectively, in all our experiments, which accounts for the fact that edges are
not uniformly distributed around a vertex. Lastly, we connect all the vertices in the top
(resp. bottom) layer to the source (resp. sink) node with infinite edge weights.

3.3 Practical Matters

For the global optimum provided by graph cuts to be meaningful, the edge weights must
accurately measure the photoconsistency, which in turn requires good estimates of the
normals in the vicinity of the actual surface. For parts of the surface far from the visual
hull boundary, normal estimates computed at each vertex from neighbors in the same
layer may be inaccurate. In practice, this suggests applying the surface deformation and
graph cuts procedure to each component of the graph G; several times, each iteration
improving the accuracy of the normals and of the photoconsistency function, and there-
fore the quality of its global optimum. Note that after the pure inward deformation of
the first iteration, the mesh is allowed to deform both inwards and outwards —while re-
maining within the visual hull— along the surface normals. Empirically, three iterations
have proven sufficient to recover the main surface features in all our experiments.

4 Local Refinement

In this final step, we iteratively refine the surface while enforcing all available photo-
metric and geometric information. At every iteration, we move each vertex v along its
surface normal by a linear combination of three terms: an image discrepancy term, a
smoothness term, and a rim consistency term. The image discrepancy term is simply
the first derivative of f(v) along the surface normal. The smoothness term is the same
as in the previous section. The rim consistency term is similar to the one proposed in
[7]: Consider an apparent contour Y represented by a discrete set of points g; together
with the corresponding viewing rays r;. We add rim consistency forces to vertices as
follows (Fig. 5): Let us define d(vk,7;) as the distance between the vertex v and a
viewing ray r;; we find the closest viewing ray r; = argmin, d (vk,7;j) to every vertex
vi. Next, if V; denotes the set of all the vertices v; whose closest viewing ray is r; (i.e.,
ri =rj), we find the vertex v7 in V; closest to r; (i.e., v; = argmin,, ¢y d(vk, ;). Note
that a surface satisfies the rim consistency conditions if and only if d (v;‘-, rj) =0 for all

Fig.5. The rim consistency force is computed for a viewing ray r;, then distributed to all the
vertices V; whose closest ray is r;. Here vi | is the closest vertex vj torj.
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viewing rays r;. Therefore, we add an appropriately weighted force whose magnitude
is proportional to vir; to all vertices in Vj, where vyr; is the signed distance between
the vertex v and a viewing ray r;, with a positive sign when the projection of v; lies
inside the contour y and negative otherwise. Concretely, we add to the vertex vy in V;
o exp(—(vkrj—vjr_,-)z/ZGZ)
=Vir;

J /kalev.exp(—(vk/rj—vjr_,-)z/Zcz)
normal in v¢. The basic structure of the algorithm is simple. At every iteration, for each
vertex v, we compute three terms and move v along its surface normal by their linear
combinations: v < v+s(v) +r(v) — kVf(v) -N(v). x is a scalar coefficient and is set
depending on the object and the resolution of the mesh. After repeating this process un-
til convergence—typically from 20 to 40 times, we remesh and increase the resolution,
and repeat the same process until the image projections of the edges in the mesh become
approximately 2 pixels in length. Typically, the remeshing operation is performed three
times until the mesh reaches the final resolution.

the force r(vy) N(vy), where N(vy) is the unit surface

5 Implementation and Results

5.1 Implementation

We have implemented the proposed approach in C++. The bottleneck of the computa-
tion is the global optimization and the local refinement steps, each of which takes about
two hours for our large data sets such as the first toy dinosaur, the toy mummy, and the
two human skulls, with a 3.0 GHz Pentium 4. The remaining steps including the visual
hull construction and the rim identification take at most twenty minutes. Note that we
have assumed so far that a single apparent contour is extracted from each input image.
In fact, handling multiple nested components only requires a moderate amount of ad-
ditional bookkeeping, whose description is omitted here for brevity. Note also that our
algorithm does not require all silhouette holes to be found in each image: For example,
silhouette holes are ignored for the human model shown in Fig. 7, while the apparent
contour components associated with holes are explicitly used for the human skull mod-
els. In practice, the surface of an object may not be Lambertian. We identify and reject
for each patch the input images where it may be highlighted by examining the mean
intensity and color variance. The chain rule is used to compute the derivative of f(v)
along the surface normal as a function of image derivatives, which in turn are estimated
by convolving the input images with the derivatives of a Gaussian function. Finally, the
topology of an object’s surface is not necessarily the same as that of its visual hull. We
allow the topology of the deforming surface to change in the local refinement step, us-
ing a method similar to that of [12]: As resolution increases and edges are split, it may
happen that three vertices in a shrinking area of the surface are connected to each other
without forming a face. In this case, we cut the surface at the three vertices into two
open components, and add a copy of the triangle to both components.

5.2 Results

We have conducted experiments with strongly calibrated cameras and six objects: two
toy dinosaurs, two human skulls (modern man and Homo Heidelbergensis), a toy
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Fig. 6. From left to right, an input image, a visual hull, cone strips on the visual hull boundary,
identified rim segments, and a surface after graph cuts for the remaining five objects

mummy, and a person. Four of the six data sets, captured in our laboratory, consist
of 24 images, with an image size of about 2000 x 2000pixel’. The two exceptions are
the person (courtesy of S. Sullivan), that only appears in 11 pictures, with an image size
of roughly 2000 x 1300pixel, and the second dinosaur (courtesy of S. Seitz) that ap-
pears in 21 images, with an image size of about 640 x 480pixel’. In all cases, contours
have been extracted interactively.

Figure 1 illustrates the successive steps of our algorithm in a case of the first toy
dinosaur. This object is about 20cm in diameter, with fine surface details including fin
undulations, and scales in the neck. These details are well captured by the model, even
though the corresponding height variations are a fraction of 1mm. Figure 6 shows input
images and intermediate results for the remaining five objects. As can be seen in the
figures, rim points have been successfully identified, especially at high-curvature parts
of the surface. Our rim-discontinuity assumption (Section 2.3) breaks at the cloth of
the standing human model, due to its complicated fold structure and the sparse input
viewpoints, while the assumption rarely fails in the other data sets. Nonetheless, spuri-
ous rim points have been detected and filtered out by our conservative post-processing
in all the data sets. With the help of the identified rim segments, the graph cuts step
recovers the main surface structures rather well, including large concavities, while pre-
serving high-curvature structural details, such as the fingernails of the first dinosaur, the
fingers of the person, the cheekbones of the two skulls, and the metal bar sticking out
from the second dinosaur. Figure 7 shows shaded and texture-mapped renderings of the
final models including several close-ups. Note that some of the surface details are not
recovered accurately. In some cases, this is simply due to the fact that the surface is not
visible from any cameras: the bottom part of the first dinosaur, for example. In other
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Fig. 7. Experimental results. See text for details, and the video submitted as supplemental material
for animations.

cases, this is due to failures of our algorithm: For example, the eye sockets of the skulls
are simply too deep to be carved away by graph cuts or local refinement. The human is
a particularly challenging example, because of the extremely complicated folds of the
cloth, and its high-frequency stripe patterns. Nonetheless, our algorithm has performed
rather well in general, correctly recovering minute details such as the sutures of the
skulls, the large concavity in the mummy’s chest, much of the shirt fold structure in the
human example, as well as the high-curvature structural details mentioned earlier.

To evaluate the contributions of each step in our approach, we have performed the
following two experiments: First, we have implemented and added the ballooning term
introduced in [23] to the energy function in the graph cuts step, while removing the
hard constraints enforced by the identified rim segments to see its effects on the over-
carving problem mentioned earlier (Fig. 8, first row). Note that the layer-based graph
representation is still used in this experiment, instead of the voxel representation used in
[23]. The leftmost part of the figure shows the result of our graph cuts step (with fixed
rim segments), and the remaining three columns illustrate the effects of the ballooning
term with three different weights associated with it, the weight being zero at the left and
increasing to the right. As shown by the figure, high-curvature surface details have not
been preserved with the ballooning term. Even in the third column of the figure, where
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Fig. 8. A preliminary comparative evaluation of our algorithm. Top: comparison with our imple-
mentation of a variant of the method proposed by Vogiatzis et al. [23]. Middle: comparison with a
purely local method initialized with the visual hull surface, akin to those proposed by Herndndez
Esteban and Schmitt [7], and Keriven [9]. Bottom: comparison with the voxel coloring method
of Seitz [18]. See text for details.

UV &7 AN AR

Fig. 9. Assessing the accuracy of the reconstruction: a-blended surface textures backprojected
from different images are shown for (from left to right) the visual hull, the surface obtained
after graph cuts, and the final surface after local refinement for details of the dinosaur and shirt
surfaces. See text for details.

Fig. 10. Preliminary results combining carved visual hulls with wide-baseline stereo. Large con-
cavities such as eye sockets are successfully recovered.

the ballooning term is too high to preserve surface details in other parts of the surface,
the fingers almost disappear. This may be due in part to the fact that photometric con-
sistency measurements become unreliable at high-curvature parts of a surface which,
on the other hand, tend to generate highly reliable rim consistency constraints. We have
also tested our algorithm without its graph cuts phase, yielding a purely local method
comparable to those proposed in [7, 9]. Figure 8 (second row) shows two examples: the
graph cuts step being included in the left part of the diagram, and omitted in the right
part. As expected, local minimum problems are apparent in the latter case. Of course,
it would be highly desirable to conduct more comparisons with native implementations
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of the algorithms proposed in [7, 9, 23], but we do not have access to these (yet). In the
mean time, we have tried an implementation of voxel coloring [11, 18], kindly provided
by S. Seitz, on two of our examples (Fig. 8, bottom). The results appear rather noisy
compared to ours (see Fig. 7), probably due to the lack of regularization, and several
concavities are missed in the two objects (e.g., the chest of the mummy).

As noted before, we have been unable (so far) to conduct a quantitative assessment
of our algorithm due to the lack of ground truth data. A qualitative assessment can be
obtained by a-blending surface textures backprojected from different images: They will
only appear consistent when the geometry is correct. Figure 9 shows the results of such
an experiment. Blended textures on the surface after visual hull construction, global
surface carving, and final local refinement are shown, from left to right, for the first
dinosaur and the human figure. It is clear that the backprojected textures are consistent
on the final surfaces.

6 Conclusions and Future Work

We have proposed a method for acquiring high-quality geometric models of complex
3D shapes by enforcing the photometric and geometric consistencies associated with
multiple calibrated images of the same solid, and demonstrated the promise of the ap-
proach with six real data sets and some preliminary qualitative evaluation experiments.
Next on our agenda is a quantitative assessment of our algorithm using a measuring
device such as a laser theodolite to recover accurate ground truth at a number of key
points. One of the limitations of our current approach is that it cannot handle concavities
too deep to be carved away by the graph cuts or local refinement steps. To overcome this
problem. we plan to combine our approach with recent work on sparse wide-baseline
stereo from interest points (e.g., [17]) in order to incorporate stronger geometric con-
straints in the carving and local refinement stages, and Fig. 10 shows the results of
a preliminary experiment. Attempting, as in [21], to explicitly handle non-Lambertian
surfaces is of course of interest. Finally, we plan to follow the lead of photogrammetrists
and add a final simultaneous camera calibration stage, where both the camera parame-
ters and the surface shape are refined simultaneously using bundle adjustment [22].
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