
3D Surface Reconstruction Using Graph Cuts
with Surface Constraints�

Son Tran and Larry Davis

Dept. of Computer Science, University of Maryland,
College Park, MD 20742, USA
{sontran, lsd}@cs.umd.edu

Abstract. We describe a graph cut algorithm to recover the 3D ob-
ject surface using both silhouette and foreground color information. The
graph cut algorithm is used for optimization on a color consistency field.
Constraints are added to improve its performance. These constraints are
a set of predetermined locations that the true surface of the object is
likely to pass through. They are used to preserve protrusions and to
pursue concavities respectively in the first and the second phase of the
algorithm. We also introduce a method for dealing with silhouette uncer-
tainties arising from background subtraction on real data. We test the
approach on synthetic data with different numbers of views (8, 16, 32,
64) and on a real image set containing 30 views of a toy squirrel.

1 Introduction

We consider the problem of reconstructing the 3D surface of an object from
a set of images taken from calibrated viewpoints. The information exploited
includes the object’s silhouettes and its foreground color or texture. 3D shape
recovery using silhouettes constitutes a major line of research in computer vision,
the shape-from-silhouette approach. In methods employing silhouettes only (see
e.g. [1]), voxels in a volume are carved away until their projected images are
consistent with the set of silhouettes. The resulting object is the visual hull.
In general, the visual hull can be represented in other forms such as bounding
edges ([2]), and can be reconstructed in a number of different ways. The main
drawback of visual hulls is that they are unable to capture concavities on the
object surface ([3]).

A 3D surface can also be reconstructed using color or texture consistency
between different views. Stereo techniques find the best pixel matching between
pairs of views and construct disparity maps which represent (partial) shapes.
Combining from multiple stereo maps has been studied, but is quite complicated
([4]). Space carving ([5]) and recent surface evolution methods (e.g. [6], [7]) use
a more general consistency check among multiple views.

The combination of both silhouettes and foreground color to reconstruct an
object’s surface has been studied in a number of recent papers ([7], [8], [9]).
� This work is supported by the NSF grant IIS-0325715 entitled ITR: New Technology

for the Capture, Analysis and Visualization of Human Movement.

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part II, LNCS 3952, pp. 219–231, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

220 S. Tran and L. Davis

Our work is motivated by [8] and [10] where the graph cut algorithm serves
as the underlying 3D discrete optimization tool. The near global optimality
properties of the graph cut algorithm are discussed in [11]. As noted in [8] and in
other works however, the graph cut algorithm usually prefers shorter cuts, which
leads to protrusive parts of the object surface being cut off. We overcome this
limitation with a two-phase procedure. In the first phase (phase I), protrusions
are protected during the optimization by forcing the solution to pass close to a set
of predetermined surface points called “constraint points”. In the second phase
(phase II), concavities on the object surface are aggressively pursued. Silhouette
uncertainties, which are important in practice but have been ignored in previous
research ([8], [9], . . .) are also taken into account.

1.1 Related Works

The application of reliable surface points to constrain the reconstruction of a
surface appears in a number of recent papers ([2], [7], [9], . . .). Isidoro et al ([7])
refine the shape and texture map with an EM-like procedure; the evolution of
the shape at each iteration is anchored around a set of locations called frontier
points. Cheung et al ([2]) use another set of points called color surface points
to align multiple visual hulls constructed at different times to obtain a closer
approximation to the object’s true surface. Usually, these points have no special
patterns on the surface. In some cases, however, they might lie on continuous
curves such as the rims in [9], where each (smooth and closed) rim is a contour
generator. The mesh of rims can be used to partition the surface into local
patches. Surface estimation is then performed individually for each patch, with
some interaction to ensure certain properties such as smoothness.

The identification of these surface points is typically based on the silhouettes
and color/photo consistency. A frontier point in [7] is the point with lowest
texture back-projection error among those on the evolving surface that project
onto a single silhouette point. Frontier points are recomputed at each iteration.
The rims in [9] are built with a rim mesh algorithm. In order for the mesh
to exist, certain assumptions have to be made, the most limiting one being no
self-occlusion. In [2], the colored surface points are searched for along bounding
edges which collectively represent the surface of the object.

Surface reconstruction methods that use color or texture such as [2], [8], [7],
[9] and most stereo algorithms involve optimization. The original space carving
algorithm ([5]) used a simple greedy algorithm. Other examples of local methods
include stochastic search ([7]) and, recently, surface evolution using level sets or
PDEs (e.g. [6]). Local techniques are often sensitive to initialization and local
minimum. Here, we use the 3D graph cut algorithm which is more global in scope
([11]). It was applied in [3] to solve the occupancy problem and in [10] for 3D
image segmentation. The work described in [7] has similar motivation to ours:
developing a constrained graph cut solution to object surface recovery. Their
constraints are based on the rim mesh mentioned above. Multiple interconnected
sub-graphs are built, with one for each rim mesh face. Our constraint points are
not required to form rims and we use only one graph; our formulation is most

3D Surface Reconstruction Using Graph Cuts with Surface Constraints 221

similar to [8], which is the departure point for our research. Section 2 describes
the basic steps of the formulation from [8].

2 Volumetric Graph Cuts

Following [8], we first construct the visual hull V from the set of N image
silhouettes, denoted {Sili}. V is used as the initial approximation to the object
shape. A photo consistency field for all voxels v ∈ V is constructed and used as
the graph on which a graph cut optimization is performed. Visibility for a voxel
v ∈ V , V is(v), is approximated with the visibility of the closest voxel to v on the
surface Sout of V . The consistency score for v, ρ(v) is the weighted normalized
cross correlation (NCC) between the pairs of local image patches that v projects
to in the different views:

ρ(v) =
∑

Ci,Cj∈V is(v)

w(pos(Ci, Cj))NCC(p(Ci, v), p(Cj , v)) (1)

where w(pos(Ci, Cj) is a weight depending on the relative position of the two
camera centers Ci and Cj (small when the difference between the viewing angles
of the i-th and j-th cameras is large and vice versa); p(Ci, v) is the local image
patch around the image of v in the i-th image Ii .

Fig. 1. a) a slice of the photo consistency field, yellow line denotes the true surface. b)
Nodes and edges in the graph G.

If the surface, Sout, of the visual hull, V , is not far from the actual surface
S∗, then with consistency computed this way, voxels that lie on S∗ would have
smallest ρ values (Figure 1.a). Therefore, finding S∗ can be formulated as an
energy minimization problem, where the energy is defined as

E(S) =
∫∫

S

ρ(x)dA (2)

A graph cut algorithm can be used to solve this problem in a manner similar
to [12] and [10]. Each voxel is a node in the graph, G, with a 6-neighbor system
for edges. The weight for the edge between voxel (node) vi and vj is defined as

222 S. Tran and L. Davis

w(vi, vj) = 4/3πh2(ρ(vi) + ρ(vj))/2 (Figure 1.b), where h is the voxel size. Sout

and Sin − the surface inside V at a distance d from Sout − form an enclosing
volume in which S∗ is assumed to lie. Similar to [12] and [9], every voxel v ∈
Sin(Sout) is connected to the Sink (Source) node through an edge with very
high weight. With the graph G constructed this way, the graph cut algorithm is
then applied to find S∗.

3 Graph Cut with Surface Point Constraints

As mentioned in [8], the above procedure suffers from the limitation that the
graph cut algorithm prefers shorter cuts. This produces inaccurate surfaces at
protrusions, which are often cut off ([8]). We address this problem by constraining
the solution cut to pass through certain surface points. First we show how to
identify those points. Next, we show how to enforce the solution cut to pass
through or close to them. Finally, methods for dealing with silhouette uncertainty
are included.

3.1 Constraint on Surface Points

Assume, to begin with, that the set of silhouettes has absolute locational cer-
tainty. Every ray (Ci, p

j
i) from a camera center Ci through a point pj

i on the
silhouette Sili has to touch the object surface at at least one point P ([2],
[9]) (Figure 2.a). In [2], the authors search for P along this ray. We, addi-
tionally, take into account the discretization of the silhouette and make the
search region not a single ray (Ci, p

j
i) but a surface patch s ⊂ Sout where

s = {v | v ∈ Sout and v projects to pj
i through Ci}. Since every voxel on

Sout has to project onto some point on some silhouette {Sili}, the union of all s
is Sout. Therefore, Sout is completely accounted for when we search for all P ’s.
In [7], the authors also use the projection from object space to silhouettes to find
the search regions for their set of constraint points. However, these regions, and
therefore the resulting constraint points, lie on an evolving surface and have to
be recomputed at each step of their iterative procedure. Here, the determination
of P is done only once and is based on Sout, the surface of the original visual hull.

Fig. 2. a) Rays touch V ’s surface at p, b) Example of the set of constraint points, P

3D Surface Reconstruction Using Graph Cuts with Surface Constraints 223

Let P denotes the set of all such P ’s. To identify the location of each P ∈ P
within its corresponding search region, we use color or texture information from
the image foreground. Ideally, the images of such voxels should have zero consis-
tency score ρ or zero color variance. Practically, they are voxels whose projections
have the lowest ρ within a search region. Figure 2.b shows an example of the con-
straint points, P, for the synthetic face that is used in the experiments in section 5.
Note that their distribution is quite general and they do not obviously form rims.
This creates difficulties for approaches that assume exact silhouette information
such as [9] and [13] . By marking which sub-regions of Sout are produced by which
camera, P can be constructed in time linear in the number of voxels in Sout.

If the average number of points on a silhouette is ns, then the number of
points in P is N.ns. Many of them lie on protrusive parts of the object surface.
In general, P provides a large set of constraints for the graph cut optimization.

3.2 Graph Cut with Surface Constraint Points

Given the set of surface constraint voxels, P, we want to construct a cut that
passes through every voxel p ∈ P. Unfortunately, it is difficult to introduce
such constraints directly into the 3D graph cut algorithm. Instead, we adopt
an indirect approach by blocking the solution surface from cutting a continuous
region that connects p and Sin. Figure 3.a illustrates the blocking region: it is
a curve bl(p) from the surface point p ∈ P to Sin. More generally, a blocking
region can be represented as a blurred volume around the blocking curves using
a Gaussian blurring function. We next describe how to construct bl(p).

Let D(S) and ∇D(S) denote the 3D distance transform of a surface S and
the gradient of the distance transform, respectively. For each p ∈ P, the cor-
responding curve bl(p) is constructed using ∇D(Sout) and ∇D(Sin) as follows.
First, starting from p, we move along ∇D(Sout) for a small distance l. Second,
we follow −∇D(Sin) until Sin is met. Points are added into bl(p) as we move.
To avoid redundancy, if a point is met that has been added to some previously
constructed bl(p′), we stop collecting points for bl(p). This procedure is carried
out for all points in P.

Fig. 3. a) Blocking regions (curves). b) Locational uncertainties (gray areas) of the
contour extracted from a difference image.

224 S. Tran and L. Davis

D(Sout) can be considered as an implicit shape representation with the zero-
level set being Sout; so, the normal of Sout at a surface point p is the gradient of
D(Sout), i.e. ∇D(Sout), evaluated at that point. Therefore, in the first step, we
initially move in the direction of the normal of Sout at p. Given that p is assumed
to be on the true surface, S∗, by moving this way, we will reduce the chance of
erroneously “crossing” S∗. After a small distance l, we could have continued to
move along ∇D(Sout). However, we switch to moving along −∇D(Sin) for the
following reasons. First, if we have a group of constraint points that are close
together, then their respective bl(p)’s built by using ∇D(Sout) will usually meet
and collapse into a single curve well before Sin is reached. Such a merge is not
desirable when the graph cut weight from a voxel v in bl(p) to the Sink node is
not set to infinity, but to some other smaller value. (This is necessary for dealing
with noise and discretization ambiguities - see below). Second, there are places
where the above gradient fields vanish, and we must either abandon constructing
the current bl(p) or need several bookkeeping steps such as making small random
jumps to take care of this issue. Of the two gradient fields, ∇D(Sin) is more
homogenous and this happens less frequently to it.

This procedure constructs the set of all blocking curves BL through which
the solution cut should not pass. This constraint might be incorporated into the
graph cut algorithm by setting the weights of the edges from each voxel in BL to
the Sink node to be infinity. However, the set P (and hence BL) often contains
false positives, so this strategy can lead to significant errors. Therefore, instead,
for every voxel v ∈ BL, we set w(v, Sink) = 4/3πh2, where h is the voxel size.
This is the maximum weight for the edges between any two neighboring voxels
in V . This uniform weight setting works well provided that the silhouette set is
accurate, as shown in experiments on synthetic data in section 5.

Incorporating silhouette uncertainties. When dealing with real image se-
quences, errors in background subtraction and from the morphological operations
typically employed to find silhouettes introduce artifacts ([3]). So, there is always
uncertainty in silhouette extraction. We would, of course, like our silhouette to
be as accurate as possible. But we still need to measure the local positional
uncertainty of the silhouette and incorporate this uncertainty into the surface
estimation algorithm. We extract silhouettes in the following way. First a back-
ground image, Ibgr , is subtracted from the image I, with �I = |I − Ibgr|. Then,
a small threshold θI = 2σnoise is applied to �I to get the largest connected com-
ponent BWobj , which is assumed to contain the object’s true silhouette. Next,
along the boundary of BWobj , we find the set Pfix - a set of high confidence sil-
houette points - wherePfix = {p | �I > ΘI} and ΘI is a large threshold. Finally,
an active contour method is applied to �I with points in Pfix being part of the
contour and fixed. So, we first identify boundary sections with high likelihood
of being on the silhouette and recover the rest of the silhouette with an active
contour. The associated uncertainties for points on contours are measured with
a quadratic function as described below.

The uncertainties on the location of the silhouette affect the process of finding
P. To account for them, we need to determine the probability that a point in P

3D Surface Reconstruction Using Graph Cuts with Surface Constraints 225

is really on S∗. It is estimated with a combination of cues from silhouette and
photometric consistency, i.e.

Pr(p ∈ P) ∼ Pr(PhotoConsistency(p), a ∈ Sili) (3)

where p projects to the point a on the silhouette Sili through the camera center
Ci. Assuming that photo consistency and silhouette uncertainty are independent,
we have

Pr(p ∈ P) ∼ Pr(PhotoConsistency(p))Pr(a ∈ Sili) (4)
∼ ρ(p)Pr(a ∈ Sili) (5)

where, similar to [3], Pr(a ∈ Sili) is a truncated linear function of |�I(a)|2.
(Figure 3.b illustrates uncertainty measure along the contour extracted from a
difference image).

The search region, s ⊂ Sout, for a constraint voxel p described in section 3.1
is now extended to a sub-volume around s with a thickness proportionate to
Pr(a ∈ Sili). Note that the extension is also outwards in addition to inwards. To
determine the color consistency value for the searched points that are outside
V which haven’t been computed so far, we dilate V with a small disk (e.g. a
disk of 5 × 5 pixels) and proceed with the ρ computation described in section 2.
Instead of applying uniform weight to the edges connecting voxels in BL to the
Sink node, we now weight these edges for p ∈ P and for voxels that are in the
associated bl(p) using Pr(p ∈ P).

4 A Second Phase to Handle Concavities

As discussed in section 3.1, the set of surface constraint points, P, provides a
large set of constraints on surface recovery which tend to best capture protrusive
parts of the object’s surface. So, the surface reconstructed by the first stage of
recovery (phase I) is generally accurate over such areas. This is supported by
the experiments described in section 5. On the other hand, it is well known that
the silhouette does not contain information about concave regions of the surface
([3]). In addition, the graph cut algorithm, which prefers shorter cuts, will not
follow a concavity well unless we “aggressively” pursue it.

We propose the procedure in figure 4 as a second phase to correct the esti-
mation of the surface over concave regions.

We first (step 1) divide all of the voxels on the surface SI into three groups.
The first group,Psurf , has small ρ (or high photo consistency); the second group,
Poutside, consists of voxels with high ρ ; and the last group consists of the
remaining voxels. Percentile(S, θ) returns the ρ value which is the θ-th percentile
of the ρ score for SI . The parameters θ1 and θ2 determine the size of each group.
In general, their appropriate values depend on the properties of the surface under
consideration. Although as we observed, the final result is not very sensitive to
these parameters. For the experiments in section 5, θ1 and θ2 are set to 0.7 and
0.95 respectively.

226 S. Tran and L. Davis

Let SI be the surface constructed by the algorithm in phase I.

Step 1. From SI , extract two sets of points Psurf and Poutside,

Psurf = {v | v ∈ SI and ρ(v) < Percentile(SI , θ1)} (6)

Poutside = {v | v ∈ SI and ρ(v) > Percentile(SI , θ2)} (7)

Step 2. Using the procedure in section 3.2 to find BLinside = ∪v∈Psurf bl(v).
Set the weight w(v, Sink) for all v ∈ BLinside using the previous method.

Step 3. Get BLoutside = ∪v∈Poutsidebl(v) with the procedure in section 3.2
For all v ∈ BLoutside and v �∈ BLinside

w(v, Source) = c.Pr(v is outside S∗) = c.

� ∞

d(v)
exp(−p2/σ2

surf)dp (8)

where c is a normalizing constant, d(v) is the distance from v to Sout.
The weights for all remaining voxels are set using photo consistency scores as
before.

Step 4. Perform the graph cut algorithm to extract the final surface, SII .

Fig. 4. The steps of the second phase

Since all voxels in Psurf lie on SI and have high photo consistency (small ρ),
we assume that they belong to or are very close to the true surface S∗. Therefore,
in step 2, we connect them and all the voxels in their associated BLinside to the
Sink node. Essentially, we treat Psurf in a similar way to the set of constraint
points, P, in phase I.

On the other hand, the voxels in Poutside have low photo consistency (high
ρ), so in step 3 we connect them to the Source node. By doing so, we effectively
assume that these voxels are outside the true surface S∗ (and hence do not belong
to the object’s occupancy volume). The reasons we do this are as follows. Any
such voxel is unlikely to lie on the actual surface S∗, so is either inside or outside
of it. If such a voxel were inside the true surface S∗, then the surface region
on S∗ that “covers” it would either be protrusive (case 1 - fig. 5) or concave
(case 2 - fig. 5). If this region were protrusive (case 1), then it would likely have
been captured by the constraint points, P, so would have been included in SI

by phase I. If that region were concave (case 2), then the phase I graph cut
algorithm would have included the region in SI , instead of Poutside, because it
would have incurred a smaller cutting cost. This is because voxels that lie on
that region would have low ρ, while the voxels in Poutside have high ρ and form
even more concave (or “longer”) surface regions. Therefore, voxels in Poutside

are assumed to be outside of S∗ (case 3 - fig. 5), the only remaining possibility.
Moreover, the region of S∗ that lies “under” Poutside is assumed to be concave.

Therefore, to better recover it, we bias the solution cut inwards by treating the
blocking curves BLoutside differently. Voxels on these curves are assumed to be
outside S∗ with a probability distribution that decreases as the distance of these

3D Surface Reconstruction Using Graph Cuts with Surface Constraints 227

Fig. 5. Possible displacements of SI and S∗. The solid curve represents SI with bold
segments for Psurf and thin segments for Poutside. Of these cases, only case 3 is likely.

voxels from Sout increases (note that we use Sout instead of SI). We model
the probability of the surface location as a Gaussian distribution N(Sm, σ2

surf),
where Sm is a “mean surface” midway between Sout and Sin. The variance
σ2

surf is set to be (1/4d)2 for the experiments in section 5, where d is the dis-
tance from Sin to Sout. This leads to approximating the probability that a voxel
v is outside of S∗ with the cumulative distribution of N(Sm, σ2

surf), and so
the weight from voxels in BLoutside to the Source node is computed using (8)
in step 3.

5 Experimental Results

We demonstrate the performance of our approach on both synthetic and real
data (640 × 480 images). Volumetric discretization are 256 × 256 × 256 for all

a b c d

e f g h

Fig. 6. Synthetic face reconstruction: a-c) Three of the images collected; d) visual hull
V ; e-f) using basic step, λ = .3 and .1; g) using constraint points P after phase I; h)
after phase II (bottom) as compared to after phase I (top)

228 S. Tran and L. Davis

experiments. The synthetic experiment is with a textured head (figure 6.a-c).
Note that the nose is quite protrusive and the eye areas are concave. For the
results in figure 6, twenty images and the associated calibration information were
constructed. Figure 6.d shows the visual hull V obtained from the silhouettes.
Each colored patch of the surface Sout is “carved” by some camera. Patches
from any single camera may not be connected and so are rims ([9]). Moreover,
if self-occlusion occurs, some patches may not contain any true surface points
at all. Figure 6.e and 6.f show the result of using the basic algorithm from [8]
described in section 3.1 with different ballooning factors, λ, to overcome the
preference of the algorithm to shorter cuts. As can be seen, if λ is too high (0.3),
the protrusive parts (the nose) are preserved, but the concave regions (the eyes)
suffer. Lowering λ (0.1) helps to recover concave areas but at the price of losing
protrusive parts. Figure 6.g shows the result of phase I when constraint points
are used. Protrusive parts are well preserved now. However, the concave regions
still are still not accurately recovered: the eye areas are nearly flat. Figure 6.h
compares the results of phase I (the top part) and phase II (the bottom part),
where the eye areas are now improved.

In the second experiment, we measure the reconstruction errors of the syn-
thetic face when different numbers of views are used (8, 16, 32, and 64). In
generating images, the viewing direction of the camera is always towards the
center of the face. For every set of views, the camera is placed in positions that
are arbitrary, but distributed roughly even in front of the face. For the basic
algorithm, λ is set to 0.15 to get a balance between the recovery of protrusions
and concavities. Since the ground truth for the face is given as a cloud of points,
G0, we use the 3D distance transform to measure the recovery error E. Specif-
ically, for a surface S, E(S, G0) = (D(S, G0) + D(G0, S))/(|S| + |G0|), where
D(S, G0) is the sum of distances from all points in S to G0. E(S, G0) is thus the
average distance between points in S and G0 (in voxel units). Figure 7 shows the

Fig. 7. Recovery errors for different set of views. For each group, from left to right,
values are respectively for visual hull, basic algorithm and our phase I, II results. (A
unit along the y-axis corresponds to the size of a voxel).

3D Surface Reconstruction Using Graph Cuts with Surface Constraints 229

reconstruction errors. The visual hull V produces quite a large error with 8 views
but is noticeably better as the number of views increases. For the basic algorithm,
with λ = 0.15, some protrusions are cut off. Note that since the cutting off effects
can have unpredictable consequences, the reconstruction error can increase as
the number of views increases (although not significantly). Adding more views
in this case turns out to be “helping” the nose of the face to be more cut off. As
a result, the visual hull may produce better results for larger number of views.
Our methods behave consistently and produce better performance. Our result
with 8 views, although with no discernible improvement for more than 16 views,
is better than the visual hull with 64 views. The error of our method compared
to the basic algorithm, is reduced roughly 33%. Note that in term of average
error distance, phase II is not much better than phase I. This is because the
focus of phase II is only on small (concave) portions left by phase I (θ2 = 0.95,
section 4).

In the third experiment, 30 real images of a colored plastic squirrel were col-
lected. We imaged the object under natural lighting conditions with a cluttered
background, and moved the camera around the object. Due to self-shadowing
and the arrangement of the light sources, the object is well lit on one side and
poorly lit on the other side (see figures 8.a and 8.b for examples). The color
information from the poorly lit side is noisy and tends to saturate to black.
These 30 images are divided roughly even for both sides. The object’s actual
size is about 300 × 150 × 300 mm3 (width-length-height); this is also the size
of the discretized volume used. Camera calibration was done using a publicly
available tool box with the principal point’s uncertainty from 1.4 − 1.7 pixels.
Silhouette extraction is performed using the method described in section 3.2.
The silhouettes can be 1 to 5 pixels off from the “true” silhouettes. Figure 8.c
show the visual hull constructed from them. Assuming that these silhouettes
are exact leads to undesirable consequences. Figure 8.d shows the result of the
basic algorithm. Even when we add the set of constraint points, our algorithm
(phase I) still produces bad results: a number of incorrect bumps and dents
on the surface. Figure 8.e, top row, zooms in on some of them (the image are
smoothen for better visualization). Adding silhouette uncertainties (bottom row)
produce much improved results. To allow for comparison with the basic algo-
rithm, the dilated visual hull discussed at the end of section 3.2 is also used
for it.

For the well lit side of the object, figure 8.f shows the result of the basic
algorithm and figure 8.g shows the result of our methods (phase I). Figure 8.h
compares the two results on several places: the top row is for the basic algorithm
and the bottom row is for ours. The phase I and phase II give nearly the same
result. In other words, phase II has little effects on this well-illuminated side.

For poorly lit side of the object, figure 8.k shows the result of the basic algo-
rithm, figure 8.l is for phase I and figure 8.m is for phase II. Note the difference
between the two legs and along the tail.

230 S. Tran and L. Davis

a b c

d e f

g h k

l m

Fig. 8. Reconstruction of the squirrel object. a-b) two of the images collected; c) the
visual hull V ; d-e) the result of the basic algorithm and our phase I when silhouettes
are assumed exact (see text). Well lit area results: f) the basic algorithm; g) our phase
I algorithm; h) some detailed comparison between the basic algorithm (top row) and
the final result of phase I (bottom row). Poorly lit area results: k) the basic, l) phase
I and m) phase II algorithms. Note the differences inside the red circles.

3D Surface Reconstruction Using Graph Cuts with Surface Constraints 231

References

1. Szeliski, R.: Rapid octree construction from image sequences. CVGIP: Image
Understanding 57 (1993) 23–32

2. Cheung, G.K.M., Baker, S., Kanade, T.: Visual hull alignment and refinement
across time: A 3d reconstruction algorithm combining shape-from-silhouette with
stereo. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR-
2003). (2003) 375–382

3. Snow, D., Viola, P., Zabih, R.: Exact voxel occupancy with graph cuts. In:
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR-2000). (2000)
345–352

4. Paris, S., Sillion, F., Long, L.: A surface reconstruction method using global graph
cut optimization. In: Proc. Asian Conf. Computer Vision (ACCV-2004). (2004)

5. K. Kutulakos, K., Seitz, S.: A theory of shape by space carving. In: Proc. IEEE
Int’l Conf. Computer Vision (ICCV-1999). (1999) 307–314

6. Solem, J., Kahl, F., Heyden, A.: Visibility constrained surface evolution. In:
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR-2005). (2005)
892–900

7. Isidoro, J., Sclaroff, S.: Stochastic refinement of the visual hull to satisfy photo-
metric and silhouette consistency constraints. In: Proc. IEEE Int’l Conf. Computer
Vision (ICCV-2003). (2003) 1335–1342

8. Vogiatzis, G., Torr, P., Cippola, R.: Multi-view stereo via volumetric graph-cuts.
In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR-2005).
(2005) 391–399

9. Sinha, S.N., Pollefeys, M.: Multi-view reconstruction using photo-consistency and
exact silhouette constraints: A maximum-flow formulation. In: Proc. IEEE Int’l
Conf. Computer Vision (ICCV-2005). (2005) I:349–356

10. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph
cuts. In: Proc. IEEE Int’l Conf. Computer Vision (ICCV-2003). (2003) 26–33

11. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. and Machine Intell. 23 (2001) 1222–1239

12. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region
segmentation of objects in n-d images. In: Proc. IEEE Int’l Conf. Computer Vision
(ICCV-2001). (2001) 105–112

13. Esteban, C.H., Schmitt, F.: Silhouette and stereo fusion for 3d object modeling.
In: Proc. 4th Int’l Conf. on 3D Digital Imaging and Modeling (3DIM 2003). (2003)
46–53

	Introduction
	Related Works

	Volumetric Graph Cuts
	Graph Cut with Surface Point Constraints
	Constraint on Surface Points
	Graph Cut with Surface Constraint Points

	A Second Phase to Handle Concavities
	Experimental Results

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

