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Abstract. We address the problem of recognition of natural motions
such as water, smoke and wind-blown vegetation. Such dynamic scenes
exhibit characteristic stochastic motions, and we ask whether the scene
contents can be recognized using motion information alone. Previous
work on this problem has considered only the case where the texture
samples have sufficient overlap to allow registration, so that the visual
content of the scene is very similar between examples. In this paper we
investigate the recognition of entirely non-overlapping views of the same
underlying motion, specifically excluding appearance-based cues.

We describe the scenes with time-series models—specifically multi-
variate autoregressive (AR) models—so the recognition problem becomes
one of measuring distances between AR models. We show that exist-
ing techniques, when applied to non-overlapping sequences, have signifi-
cantly lower performance than on static-camera data. We propose several
new schemes, and show that some outperform the existing methods.

1 Recognition from Motion

Motion is a powerful cue for visual recognition of scenes and objects. Johansson’s
moving dot displays [1] show that objects which are highly ambiguous from a
single view are readily recovered once motion is supplied. In computer vision, the
classification of scenes from motion information has seen considerable research,
summarized in the recent survey of Chetverikov and Péteri [2]. In this paper, we
focus on classification of objects using the class of state-space dynamic texture
models introduced by Doretto and Soatto [3, 4] and Fitzgibbon [5].

Dynamic textures are image sequences of moving scenes which exhibit char-
acteristic stochastic motion. Examples include natural scenes such as water,
wind-blown flowers and fire. State-space models [5, 4] view a dynamic texture
as a realization of a time-series model such as an autoregressive process. By de-
termining the model parameters for such sequences, we can hope to recognize
similar motions by comparing the models represented by the parameters. Our
goal in this paper is to define a distance measure between pairs of image se-
quences which is low for models representing the same motion (or motion class),
and high for models derived from motions of different classes. Such distance
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measures can be used in kernel-based or nearest-neighbour classifiers; and as the
basis of clustering algorithms for the unsupervised learning of dynamic texture
classes. Some of the distance measures we propose are based on feature vectors
extracted from the state-space models, and are thus also suitable for density
estimation or regression.

Two important new aspects of our work are that we require shift invariance,
and that we want to investigate recognition using motion alone, for reasons we
now explain.
Shift invariance. Previous authors [6, 7] have investigated only the case where
the temporal sequences are captured by a camera at a single viewpoint, so that
the same area of the scene is viewed in (part of) each sequence. In some cases [5, 8]
the camera is panning across the scene, or the textures compared are in overlap-
ping tiles [9], but there remains the constraint of overlap between the textures.
However, in order to separate the appearance and dynamic components of recog-
nition we compare images of the scene where there is no spatial overlap between
the example dynamic textures. Recognition rates for this configuration are much
lower than for the single-viewpoint case, but are significantly higher than either
baseline methods or chance, and thus confirm that motion can provide a useful
cue for recognition.
Recognition from motion alone. As noted by Chan and Vasconcelos [7],
much of the recognition performance on typical test data may be attributed to
appearance cues. Thus comparisons between the recognition schemes conflate
appearance and motion, and this conflation is of a form that is hard to disen-
tangle. Furthermore, the appearance component of these schemes is not repre-
sentative of the current state of the art in appearance-based recognition, being
based essentially on a principal components analysis of the image sequence. Thus
a practical scheme for recognition including motion should combine a state-of-
the-art appearance-based scheme and the best possible motion-based scheme.
By considering motion-only schemes, we hope to allow this selection to be more
carefully performed, and to allow the balance between motion and appearance
to depend on the training set for any given real-world system.

The remainder of the paper is structured as follows: a discussion of the state of
the art also serves to introduce the DT model and the notation of the paper. We
then discuss the construction of motion-based distance measures between such
models, and introduce some novel measures. We conduct experiments comparing
these and existing distance measures in section 4, and conclude with a discussion
of the relative merits of the various models.

2 Background

General-purpose automated recognition of motions in video sequences may be
attributed to Polana and Nelson, who considered two classes: stochastic motions
and “activities”. For activities they considered periodicity measures on edges
in xyt slices [10]. Subsequent research on activity recognition has been consid-
erable, using optical flow [11], features in the spatiotemporal volume [12, 13],
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Fig. 1. Single frames from the database sequences. Although many of the sequences
are easily distinguished using colour information, the goal of this paper is to explore
how well they can be distinguished using motion information alone.

spatiotemporal correlation [14], parametrized models [15] and exemplars [16]. In
addition, models of videotextures [17] may be considered to be related to activ-
ity models. These perform well for regular motions, but are less well suited to
stochastic motions of the types we consider.

Stochastic models of temporal texture may be divided into local and global:
local models include Polana and Nelson’s co-occurrence statistics of optical flow
vectors [18]; and the spatiotemporal autoregressive models of Szummer and Pi-
card [19], which model stochastic regularity by expressing each pixel of the se-
quence as a linear combination of its spatial and temporal neighbours. By fitting
the model to an example sequence, and assuming the AR model parameters
are constant over the sequence, each temporal texture is represented by a small
number of model parameters. Comparison of such parameters may be achieved
using the methods reviewed in the current paper. Fablet and Bouthemy [20]
first quantize certain motion-related per-pixel measurements, and then model
the spatiotemporal cooccurrence of the quantized labels as a Gibbs distribution.
A model is learned for each class to be recognized and recognition proceeds
by measuring the likelihood of the labels of a novel sequence under each class
model. These local models allow robust classification, but strongly bind together
the appearance and motion of the texture, limiting their applicability to textures
which are both spatially and temporally stationary; yet offering limited shift and
viewpoint invariance.

State-space models [3, 5] on the other hand, model the image sequence more
globally, and have been used for recognition [6], image segmentation [21, 9, 8],
image registration [5] and videotexture synthesis [4, 5]. The core of such models
is a spatiotemporal autoregressive (AR) model, and recognition depends on com-
puting the similarity of pairs of AR models. Saisan et al. [6] propose the Martin
distance between AR model parameters, and Chan and Vasconcelos [7] mea-
sure the Kullback-Leibler (KL) divergence between the realization distributions
defined by the models. In both of these previous cases however, the sequence
appearance plays an important role in the recognition performance, and indeed,
as we show, swamps the motion-based results.
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2.1 The State-Space Model

Dynamic texture models [4, 5] represent the image using a state-space model.
Images are represented by column vectors y. A sequence of T images is the
matrix Y = [y1, ...,yT ]. Under the state-space model of such a sequence, each yt

is assumed to be a linear projection of a low-dimensional state vector xt ∈ R
N ,

with typical values of N in the range 5 to 35. The observed y are corrupted with
zero-mean Gaussian noise with covariance matrix R, yielding

yt = Cxt + wt, wt ∼ N (0, R) (1)

The matrix C is sometimes termed the output matrix. The temporal evolution of
xt is modelled by the first-order time-series, or autoregressive (AR) model,

xt+1 = Axt + vt, vt ∼ N (0, Q) (2)

where A is the N × N state matrix, and Q is the N × N driving noise covariance
matrix. The model from which a given sequence is drawn will be represented by
its parameters θ = (C, A, Q), where C models the sequence appearance and A and
Q its motion. A sequence such as Y which is generated from the model is called
a realization of the model. Figure 2 shows some example trajectories.

2.2 Fitting the Model

Given an example sequence Y, we would like to estimate the parameters θ =
(C, A, Q) of the model of which it is a realization. We adopt the approach of [4, 5],
described here for completeness.
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Fig. 2. Example 2D state-space trajectories x1..T ⊂ R
2 for three example sequences.

Red: water flowing over stone; Black and Blue: tree blowing in the wind. We char-
acterize the sequences using auto-regressive models, and wish to compare the model
parameters to identify similar models. Any distance metric must be invariant to changes
of basis in the state space (see §2.3).
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We ensure that input sequences have zero mean
∑

t yt = 0, by subtracting
the mean from each frame. The matrix C is determined via principal components
analysis of the sequence, i.e. assuming Y is much taller than it is wide, compute
the eigendecomposition Y�Y = VDV� and set C = YVD−

1
2 . From this we may

immediately obtain estimates of the state vectors

xt = C�yt, t = 1 . . . T (3)

The state matrix A is found as the minimizer

A = argmin
T∑

t=2

‖xt − Axt−1‖2 (4)

which is easily computed. Finally the driving covariance Q is approximated as
the sample covariance of the residuals rt = xt − Axt−1, given by

Q =
1

T − 1

T∑

t=2

rtr�t (5)

As we are interested in recognition schemes which depend only on motion, and
not appearance, we shall not be required to estimate R.

2.3 Comparing State-Space Models

For recognition, we will need to determine whether two models θ = (C, A, Q) and
θ′ = (C′, A′, Q′) represent the same dynamic texture. It is not sufficient to check
for equality of the parameters, because a given sequence may be generated by
an equivalence class of models [3]. Specifically, for any invertible N × N matrix
M the model

(CM−1, MAM−1, MQM�) (6)

generates image sequences drawn from the same distribution as (C, A, Q). Thus
any metric for comparing AR models must be invariant to this class of transfor-
mations of the model parameters. In this paper we explore three classes of dis-
tance measure which (sometimes approximately) obey this property: measures
of divergence between the distributions of the model realizations [7], spectral
methods [6], and techniques which operate directly on invariant functions of the
AR model parameters. Each of these will now be discussed.

2.4 Time-Series Spectrum

Several of the distance measures previously proposed in the literature, as well
as those we introduce, may be expressed in terms of the Fourier transform of
the autocovariance of the time series, or its spectral density [22, Ch3]. For an
infinite time-series (C, A, Q), the spectral density matrix is a matrix function of
frequency ν, F(ν) ∈ C

N×N defined as
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F(ν) = (I − Ae−2πiν)−1Q(I − Ae2πiν)−1.

and for a finite time-series of length T it will suffice to evaluate this on the
finite set νk = k/T , k = 0, ..., T − 1. Thus the spectral density of a length
T time-series is a set of T matrices. We refer to this method for estimating
the spectral density matrices as the AR method, since it is computed from the
auto-regressive model parameters. We may also directly estimate the spectrum
F(νk) using the fast Fourier transform of the raw time-series as follows. Given
the N × T matrix of state values X, compute the componentwise FFT fk (i.e.
FFT each component f(i, :) = fft(X(i, :)), and set fk = f(:, k).) Then compute
the periodogram Gk = fkf∗k . The spectrum is then given by smoothing G with
a window of size 2H + 1, yielding F(νk) =

∑k+H
i=k−H Gk. We refer to this as the

time-series or TS method, and show that it can give better results than the AR
method for appropriate choices of smoothing parameter H .

3 Distance Measures Between Dynamic Textures

We are now in a position to define distance measures between dynamic textures.
We consider distances of three forms. The first class compares the probability
densities over all possible sequences generated by the time-series under compari-
son. We present a new formulation of the KL metric and introduce the Chernoff
distance. The second class of measure is based on a multivariate definition of
the Cepstrum. The final class is based on computing a set of features from the
fitted AR model parameters.

3.1 Distances Between Realization Distributions

We consider the set of all possible realizations of time-series generated by the AR
model (C, A, Q). Following [7], it suffices to consider only sequences of a certain
length T . This is a probability density over the set of sequences Y, which we may
write as p(Y) or p(yT , ...,y1). As the yt are linear transformations of xt, it is
sufficient to characterize the distribution of the xt, written p(X) = p(xT , ...,x1).
From (2), this is exactly p(xT |xT−1)p(xT−1|xT−2) · · · p(x2|x1)p(x1) where each
term in the product is Gaussian, so that the joint distribution is a Gaussian,
whose covariance matrix may be computed from the model parameters A and Q.
Thus any sequence X drawn from the model is a draw from a Gaussian distribu-
tion whose parameters depend only on the model parameters. Comparing two
AR models then amounts to comparing two Gaussian distributions, i.e. measur-
ing their divergence. We consider two possible definitions: the Kullback-Leibler
divergence and the Chernoff distance.

Given two probability distributions over X with pdfs f1 and f2, the Kullback
Leibler divergence is

IKL(f1, f2) = E1

[
f1(X1)
f2(X1)

]

. (7)
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A generalization of this is the Chernoff distance, given by

ICH(f1, f2) = − ln E2

[(
f2(X1)
f1(X1)

)α]

, (8)

where 0 < α < 1 is a parameter. It was found in experiments that for our
task, the success rate did not depend sensitively on α near the middle of the
interval (0, 1). Thus we often took α = 0.5, yielding Bhattacharya’s symmetric
divergence.

In order to compute the KL divergence of our dynamic texture model, suppose
we have two movies (Cj , Aj, Qj)j=1,2. Compute the spectral densities Fj(νk) as
above. From this definition, we can compute the Kullback Leibler distance from
(C1, A1, Q1) to (C2, A2, Q2) by [22, p459]

IKL(F1, F2) =
∑

0<νk<1/2

[

trace
{
F1(νk)F−1

2 (νk)
}

− ln
|F1(νk)|
|F2(νk)| − N

]

. (9)

The Chernoff distance may also be expressed in terms of the spectral density
as follows [22, p461].

ICH(α, F1, F2) =
1
2

∑

0<νk<1/2

[

ln
|αF1(νk) + (1 − α)F2(νk)|

|F2(νk)| − α ln
|F1(νk)|
|F2(νk)|

]

.

(10)

Note that these distance measures are not invariant to transformations of the
form described in §2.3, so Chan and Vasconcelos suggest resolving the ambiguity
by projecting A2 into the space of A1 using the appearance matrices C1, C2.

3.2 Distances Based on the Cepstrum

The cepstrum of a time series may be thought of as being derived from the
frequency domain representation in the same way that this comes from the time
domain. Intuitively, peaks in the cepstrum correspond to “echoes” in the signal.
The cepstrum coefficients are powerful features for characterizing speech and
music signals, so it is of interest to see how they may apply to repetitive video
signals. In this section, we give the conventional univariate definition of cepstrum
and apply it to dynamic texture recognition via cepstral distance. We suggest
three extensions of the cepstrum to the case of multivariate time series.

Univariate case. For a general univariate time series (xt) the cepstrum, written
(x̂t), is defined as [23] the inverse z-transform of the logarithm of the z-transform
of (xt). In symbols:

(xt) →
∑

t∈Z

xtz
−t = X(z) : the z transform (11)

→ log X(z) (12)

=
∑

t∈Z

x̂tz
−t (13)

→ (x̂t) : the complex cepstrum. (14)
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If the time series (xt) above is drawn from an autoregressive model of order K
the above definition gives rise to a characterization of the cepstrum in terms of
poles. Assume (xt) comes from such an AR(K) model, that is:

xt + a1xt−1 + ... + aKxt−K = wt; wt ∼ N(0, σ2). (15)

Define the model’s poles as pi ∈ C where the system function is:

H (z)−1 = 1 + a1z
−1 + ... + aKz−K =

K∏

i=1

(1 − piz
−1). (16)

The cepstral coefficients x̂t are then given by

x̂t = 0, for t ≤ 0 (17)

=
1
t

K∑

i=1

pt
i for t > 0.

The cepstral distance between two univariate time series (xt) and (x′
t), with

cepstra (x̂t) and (x̂′
t), is then [23]

∞∑

t=0

|x̂t − x̂′
t|

2
. (18)

Note the similarity to the Martin distance [4, 24] where the weighting of higher
degree cepstral coefficients is increased linearly:

∞∑

t=0

t |x̂t − x̂′
t|

2
. (19)

For practical computation, in our application, the sum may be terminated at
about t = 20. Performance (i.e. success rate in the classification task of §4,
figure 4) rises quickly for t < 20 and then plateaus.

Multivariate case. There is no consensus definition in the literature of either
cepstra or cepstral distance for multivariate time series, to the best of our knowl-
edge. We present three such definitions, which are mutually incompatible, and
use them to construct distances for classifying dynamic textures.

Summed univariate distances. One simple extension of the univariate definitions
is to fit univariate AR(K) models to each component of the series (xt) indepen-
dently. The distance is simply the sum of the per-component distances. Although
this ignores correlations between the components, the fact that C is obtained by
projection onto a PCA space will have the effect of somewhat decorrelating the
components, and thus this technique can provide good results, as we shall see.
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Fig. 3. Crop regions. In order to test the invariance of recognition to shifts of the image,
all comparisons are between cropped sub-sequences. This figure indicates the two crops
of the test dataset used. Note that the appearance of the tree varies considerably
(globally—local texture measures will be similar) between the two regions, so that
motion is the main recognition cue, even for schemes which include some appearance
modelling.
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Fig. 4. Performance of cepstral distances for two values of N , the number of princi-
pal components. The abscissa is the upper bound on the summations in (18). Left:
N = 5, Right: N = 15. The three distances tested are (red) summed univariate dis-
tances, (green) state matrix eigenvalues, (black) DFT. The DFT method is uniformly
outperformed by the other two.

State matrix eigenvalues. This definition is by analogy to (17). The state equa-
tion for a dynamic texture is xt = Axt−1+vt; vt ∼ N(0, Q), that is a multivariate
AR(1) process. Let the system function be

H(z) = (I − Az−1)−1, z ∈ C. (20)

Let the poles be solutions of |I− Ap−1
i | = 0, that is to say eigenvalues of A. Now

define the cepstrum by analogy with (17) as

x̂t = 0, for t ≤ 0 (21)

=
1
t

N∑

i=1

pt
i for t > 0.
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Note that the cepstral coefficients of a multivariate time series are scalars, accord-
ing to this definition. The multivariate cepstral distance is again given here by (18).

Discrete Fourier transform. Here we let the cepstrum of a multivariate time
series (xt)T

t=1 be the inverse DFT of the logarithm of the DFT of (xt):

(x̂t)T
t=1 = IDFT(ln(DFT((xt)T

t=1))). (22)

Here the DFT of a sequence of vectors is taken componentwise. Thus, the cepstral
coefficients of a multivariate time series are vectors. The cepstral distance is then

n∑

t=1

‖x̂t − ŷt‖ . (23)

3.3 Distances Based on Feature Extraction

In this section we measure discrepancy between dynamic textures by Euclidean
distances between feature vectors. A feature vector is some vector function of
the sequence parameters (C, A, Q) which we hope characterizes a movie.

The choice of feature vectors is subject to two constraints, for the purposes
of this paper. Firstly we restrict ourselves only to consider motion. So the state
matrix A and driving noise covariance matrix Q are both allowed, but we may not
examine the output matrix C or the movie frames yt. Secondly, recall that we
aim to measure distances between observationally equivalent classes of dynamic
textures. Thus any property of A we examine should be invariant under a change
of basis A → M−1AM. Similarly, any property of Q we use should be invariant
under Q → M�QM.
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Fig. 5. Feature-based distance. Each sequence is characterized by a feature vector
comprising K eigenvalues of Q and (N − K) eigenvalues of A.
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A typical feature vector consists of some eigenvalues of A and some eigenvalues of
Q. Fromtheabove considerations, eigenvalues ofA seemvalid choices for feature vec-
tors, and we note that the set of eigenvalues of A already appears in the definition of
multivariate cepstrum above. Eigenvalues of Q are invariant under Q → M�QMwhen
M is orthogonal, but not otherwise, in general. Nevertheless, experiments suggest
there is some information to be gained from the eigenvalues of Q.

Specifically, denote by αi the eigenvalues of A with |αi| > |αi+1|, and denote by
σ2

i the eigenvalues of Q, again in descending order. Generate the feature vector
v(K) = [α1, ..., αK , σ2

1 , ..., σ2
N−K ]. Figure 5 shows performance of this feature

vector as a function of K.

4 Experimental Results

In order to compare the distance measures on experimental data, we tested classifi-
cation performance on the UCLA test database [6]. The UCLA database comprises
50 sets of four sequences of a dynamic texture scene, for a total of 200 sequences.The
movies are 75-frame sequences of size 110×160, andwere converted to grayscale be-
fore any computation. In each category, the fourmovies are captured from the same
camera viewpoint, and thus recognitionperformance is dominated by the sequence
appearance. Indeed simply using the mean frame of each sequence, and performing
a 1-vs-all classification using a 1-nearest neighbor classifer (described in more de-
tail below) yields a 60% classification rate. Existing dynamic texture recognition
algorithms quote performance figures of 90% on this dataset.

In order to more rigorously test the performance of motion-based classifica-
tion, we have cropped the test data to remove the effects of identical viewpoint.
The sequences were cropped into a pair of 48 × 48 subsequences, denoted “L”
and “R” for left and right crop windows (illustrated in figure 3). Comparisons
between sequences were only ever performed between different crop locations.
From the 51 categories in the UCLA database, we discarded 12 which violated
the assumption of spatial stationarity (e.g. “candle”, “fire”, “fountain”, in all of
which the “L” cropping viewed stationary background, while the “R” cropping
viewed the motion). Retaining these sequences would be expected to yield simi-
lar results, but with a reduced success rate on all algorithms. There were thus 39
categories. The introduction of this cropping reduces the performance of state-
of-the-art metrics from a quoted 90% to about 15%. Note that this is still well
above the performance of random guessing, which is expected to be about 1%.

In all experiments we considered a nearest-neighbour classifier—classifiers
with stronger priors on the density could be considered, such as a support vector
machine using these distance metrics as a kernel [7], but the NN classifier makes
the fewest assumptions about the parameter distribution, and generally performs
competitively with a wide range of classifiers [25], providing a useful baseline.

The experimental procedure may be defined as follows. Index the m = 36 × 4
test sequences by i, with the sequence category given by c(i). For each se-
quence, fit models θiL = (CL, AL, QL) and θiR = (CR, AR, QR) to the left and right
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Fig. 6. Performance of distance metrics as a function of state-space dimension (i.e. nu
mber of principal components) N . The state of the art is represented by the “Martin”
and “KL” schemes, which are generally outperformed by the new cepstral univari-
ate scheme. The Bhattacharya metric performs comparably to the Martin distance.
The “Baseline” metric simply compares the mean frames of the (greyscale) sequences.
Note that all performance figures are low—best achieved performance is about 20%—
reflecting the difficulty of the dataset when cropping is introduced.

croppings. For a distance metric d(θ, φ) between AR models, define the distance
between sequences i and j as

dij = min{d(θiL, θjR), d(θiR, θjL)}. (24)

One-NN classification performance is then computed as

success =
∑

i

δ(c(i), c(argminj �=i dij))

where δ(x, y) = 1/m for x = y, zero otherwise. Figure 6 summarizes the primary
result. The tuning parameter common to all techniques is N , the number of
principal components used to characterize the sequence, and the figure plots
performance against N . The graph shows that for a wide range of values, the
leading performers were the Bhattacharya distribution comparison (Chernoff
information with α = 0.5) and the summed univariate cepstral distances of §3.2.

5 Conclusion

This paper has introduced a new and challenging recognition problem: shift-
invariant dynamic texture recognition. We have shown that existing dynamic
texture recognition algorithms, when applied to classification problems where
there is a difference in camera viewpoint, show a significant drop in performance.
Several new similarity measures have been proposed, and some have been shown
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to outperform the state of the art. In particular, the use of the cepstrum appears
to be a natural tool for the comparison of AR models.

The investigation has concentrated on defining distance metrics between AR
models, rather than modelling the distributions of model parameters in a learning
framework. This allows us to test classification without requiring a large labelled
training set, and provides insight into the behaviour of these model parameters
which may be useful in feature selection for distributional approaches.

The reader will note that we are quoting absolute performance figures of the
order of 20%, which may appear unusually low. We comment that the absolute
performance figures are not relevant, providing that performance is significantly
different from random, which is true here. The absolute performance figures can
be increased by further pruning of the dataset, but relative performance of the
algorithms is expected to remain unchanged. In a real-world system, of course, we
would not expect to use cues based on motion alone—distinguishing grass from
water is rendered artificially difficult if colour is removed from consideration. It is
our contention however, that when testing metrics for motion-based recognition,
it is valuable to exclude textural cues as much as possible.

The paper has concentrated on global modelling approaches in order to cap-
ture large-scale correlations in the motion sequences. However, the relatively
small size of our crop windows may be thought of as positioning the technique
between local and global strategies. It may be valuable to further explore this
tradeoff, and build a multi-scale strategy.
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