
A Fast Line Segment Based Dense Stereo
Algorithm Using Tree Dynamic Programming

Yi Deng and Xueyin Lin

Department of Computer Science,
Intitute of HCI and Media Integration, Key Lab of Pervasive Computing(MOE),

3-524, Fit building, Tsinghua University, Beijing 100084, P.R. China
dengyi00@mails.tsinghua.edu.cn,
lxy-dcs@mail.tsinghua.edu.cn

Abstract. Many traditional stereo correspondence methods emphasized
on utilizing epipolar constraint and ignored the information embedded
in inter-epipolar lines. Actually some researchers have already proposed
several grid-based algorithms for fully utilizing information embodied
in both intra- and inter-epipolar lines. Though their performances are
greatly improved, they are very time-consuming. The new graph-cut and
believe-propagation methods have made the grid-based algorithms more
efficient, but time-consuming still remains a hard problem for many ap-
plications. Recently, a tree dynamic programming algorithm is proposed.
Though the computation speed is much higher than that of grid-based
methods, the performance is degraded apparently. We think that the
problem stems from the pixel-based tree construction. Many edges in the
original grid are forced to be cut out, and much information embedded in
these edges is thus lost. In this paper, a novel line segment based stereo
correspondence algorithm using tree dynamic programming (LSTDP) is
presented. Each epipolar line of the reference image is segmented into
segments first, and a tree is then constructed with these line segments as
its vertexes. The tree dynamic programming is adopted to compute the
correspondence of each line segment. By using line segments as the ver-
texes instead of pixels, the connection between neighboring pixels within
the same region can be reserved as completely as possible. Experimental
results show that our algorithm can obtain comparable performance with
state-of-the-art algorithms but is much more time-efficient.

1 Introduction

Stereo correspondence has been one of the most important problems in computer
vision, and still remains a hard problem that needs more efforts. It is used
in many areas like robot navigation, 3D reconstruction, tracking and so on.
Introduction of different stereo correspondence algorithms can be found in the
survey by Scharstern and Szeliski [1] and the one by Brown et al. [2].

Because of the noise and ambiguity, stereo correspondence problem is con-
sidered to be greatly ill-posed. To achieve a reasonable result, people use some

A. Leonardis, H. Bischof, and A. Pinz (Eds.): ECCV 2006, Part III, LNCS 3953, pp. 201–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



202 Y. Deng and X. Lin

assumptions on the scene, one of which is the smoothness assumption. This as-
sumption supposes that the disparity map is almost smooth everywhere except
at the borders of the objects, or equivalently that the scene is composed of
several smooth structures. We formulate stereo algorithms as an energy mini-
mization framework, and impose the smoothness assumption in a smoothness
energy function. The optimal disparity map f will minimize the energy function
as follow:

E(f) =
∑

p

Ep
data(fp) +

∑

〈p,q〉∈N
Ep,q

smooth(fp, fq) , (1)

where p and q are some points in the image, fp and fq are the disparities assigned
to them, Ep

data(fp) is the matching energy (error) for point p if assigned with
disparity fp, and Ep,q

smooth(fp, fq) is the smoothness energy that imposes punish-
ment if disparities of two neighboring points are not smooth. N is a neighboring
system that contains the pairs of points which need to be imposed with smooth-
ness assumption. The choice of N is essential because it will affect both the
accuracy and efficiency of the algorithm.

In traditional algorithms, e.g. classic dynamic programming methods [3] [4],
N is often chosen within the same scanline (without lost of generality, from now
on we use scanline as rectified epipolar line) for imposing the disparity inconsis-
tency punishment. The inter-scanline smoothness is usually ignored or consid-
ered in the post-processing procedure. The equivalent neighboring system graph
is shown in Fig. 1.b. It is obvious that such asymmetric manner is unnatural and
can not receive good performance. Based on this observation, graph-based global
method (we use the terminology of [1]) has been proposed. In a global method,
N is chosen as a four-connected grid in the image (shown in Fig. 1.a). Except
the points on the image borders and corners, each point is connected with its
four neighbors. This structure fully uses the correlation between neighboring
points, and leads to the state-of-the-art performance [1] [5] [6]. But except for
some special cases [7], the four-connected grid structure makes the minimiza-
tion of the energy function generally NP-hard, and even using approximation
methods are still very time-consuming. The traditional simulated annealing [8]
algorithm usually takes hours to run, and the recent fast minimization methods,
e.g. graph-cuts [6] and belief propagation[5], still need several minutes. They are
still far from being in real-time.

Fig. 1. Effective edges (marked by solid lines) for difference algorithms. In (d), points
of each line segment are encircled by a dashed line.



A Fast Line Segment Based Dense Stereo Algorithm 203

Recently, Veksler [9] proposed a novel approach that connected all the pixels
with a tree, and performed the dynamic programming on that tree (see Fig. 1.c).
Since more edges are remained, and more importantly, horizontal and vertical
edges are chosen in a symmetric style, better performance than classic dynamic
programming methods is obtained. When using some special smoothness functin,
the complexity of dynamic programming becomes as low as O(hn) [9], supposing
h is the number of possible disparities and n is the number of points.

Nevertheless, the performance of dynamic programming methods is still not
comparable with that of global methods. We consider this problem by analyz-
ing how much information has been lost in dynamic programming compared with
global methods. Suppose the image is in the size of N × N . We can see that the
number of edges in Fig. 1.a is about 2N2, and in Fig. 1.b and Fig. 1.c the number of
effective1 edges has been reduced to about N2. That is to say, half of the edges are
discarded in dynamic programming methods, and much information embodied in
these edges is lost. This is the main reason why their performance is apparently
worse than global methods. Then our new approach is motivated by how to re-
main as many effective edges as possible while still utilizing the time efficiency of
dynamic programming. This is achieved with the help of color segmentation.

Color segmentation is used in recent years to improve the performance of
stereo correspondence in several publications [10] [11] [12] [13], called segment-
based approaches. In the surfaces in the scene can be approximated by several
slanted planes, better performance is achieved especially on textureless and dis-
continuity areas. The main assumption they use is that discontinuity may happen
at the boundary of a segmented area. All the pixels within a segment are as-
signed with the same label, which means they must belong to the same plane
in the scene. At the same time, we only need one vertex for all the pixels in
one segment, which means the scale of the graph is decreased. Besides, segment-
based methods commonly use a 3-parameter linear transform label space which
can well model slanted planes in the scene.

In our approach, we segment each scanline into several line segments accord-
ing to the colors of pixels. Pixels in one line segment are assigned with the same
label, or we use the line segment as the matching unit. A tree is constructed
to connect all segments, and smoothness is imposed in a line segment level. In
this way, when the edge connecting two line segments in different scanlines are
remained, it is equivalent to remain a number of edges in pixel level. The num-
ber of effective edges removed is greatly reduced, as shown in Fig. 1.d. Therefor
our algorithm gives a much better approximation to the four-connected grid,
and better correspondence result can be achieved. Our experimental results also
show that the accuracy of our algorithm is comparable to the global methods,
while the algorithm is still very time-efficient. Besides, using the 3-parameter
linear transform space, we can well model the slanted plane and give a sub-pixel
disparity map as the results. Disparities of the half-occluded area are given a
good guess which will be shown in our experimental results in Sect. 4.1.

1 The effective edges mentioned here means the information embodied in those edges
are used.



204 Y. Deng and X. Lin

The rest of the paper is organized as follow: Section 2 introduces our for-
mulation of the stereo correspondence problem and how to compose a tree on
line segments that can mostly estimate the grid structure. In Sect. 3, we discuss
some implementation issues which are also essential to the performance of our
algorithm. Experimental results and analysis are given in Sect. 4 and Sect. 5 is
the conclusion.

2 Tree Dynamic Programming on Line Segments

In this section, we firstly formulate the stereo correspondence problem into a
labelling problem in the line segment level. Then the construction of the tree for
dynamic programming, which is the key of our algorithm, is introduced.

2.1 Problem Formulation

We denote the left and right images as IL and IR, and choose the left image as
the reference image. The color segmentation algorithm, (described in Sect. 3.1
in detail), will segment the scanlines of the image into a set of line segments,
denoted as S.Our goal is to assign each line segment s ∈ S a label fs ∈ L, where
L is the set of all possible labels (the label space). Each label in L represents a
correspondence between points in left and right image respectively.

In order to model the slanted plane in the scene, the label space L is chosen
to be a 3-parameter linear transform space:

fs = 〈c1, c2, c3〉 ⇔

∀p ∈ s, p
〈c1,c2,c3〉↔ p′, with p′x = c1px + c2py + c3, p′y = py ,

where p′ is a point in the right image, and p
〈c1,c2,c3〉↔ p′ means p and p′ are

corresponding points if assigned by a label 〈c1, c2, c3〉.
We formulate the correspondence problem in an energy minimization frame-

work, and the optimal label configuration fopt for line segments S is:

fopt(S) = arg min
D(S)

∑

s

Es
data(fs) +

∑

〈s,t〉∈N
Es,t

smooth(fs, ft) , (2)

where f(S) is the disparity map represented in the line segment level, and N is
the neighboring system in the line segment level. Es

data(fs) is the data term that
measures how well the label fs agrees with the input image pairs. One simple
choice (which is used in our experiment in this paper) is to use the summation
of the matching costs of all the points in the segment, i.e.:

Es
data(fs) =

∑

p∈s

C(p, p′), p
fs↔ p′, p ∈ IL, p′ ∈ IR . (3)



A Fast Line Segment Based Dense Stereo Algorithm 205

We use the combination of trimmed linear function and Potts model as our
smoothness energy function Es,t

smooth:

Es,t
smooth(fs, ft) = vstLc(s, t) ·

{
sλ,τ

T (fs, ft) FRNT (fs) and FRNT (ft)
sP (fs, ft) otherwise

, (4)

where vst is a coefficient which is a descending function of the color difference
between s and t, and Lc(s, t) is the length of the boundary shared by s and t.
FRNT (fs) returns whether fs represents a fronto plane, i.e.:

FRNT (〈c1, c2, c3〉) =

{
true c1 = c2 = 0
false otherwise

.

sT is the trimmed linear function defined as:

sλ,τ
T (〈0, 0, cs

3〉, 〈0, 0, ct
3〉) = min{λ|cs

3 − ct
3|, τ} .

sP is the Potts smoothness function:

sP (fs, ft) =

{
0 fs = ft

1 otherwise
.

2.2 Constructing the Tree

Selecting the neighboring system N or constructing the tree is the key of our
algorithm.

Let G(V, E) be a graph with vertices V and edges E. Each vertex in V
represents a line segment in S. All possible edges in E reflects the connection
between two neighboring line segments. In general, G is a graph with many loops
inside. Our goal is to find a spanning tree of G, denoted as GT , to best estimate
the full grid graph.

Two criteria for the selection of the optimal tree among all possible ones are
used:

1. The line segments connected by a remained edge in the GT are likely with
similar disparities, they are probably belonging to the same region in the
image, and

2. The connected line segment pair should have as many neighboring pixels as
possible from each other.

The first criterion is similar to the strategy used in [9], which means the neigh-
boring segments with similar color attribution values more likely share the same
disparity. The second one assures that the edge that connects line segment pair
sharing the longer boundary are preferred to remain in GT .

Combining above two criteria, we define a weight function wst between two
neighboring line segments 〈s, t〉 as follows:

wst = Lmax − σ(Īs, Īt)Lc(s, t) ,



206 Y. Deng and X. Lin

where Lmax is the length of the longest segment of S in pixels, Īs and Īt are av-
erage colors of the segments s and t respectively, σ is a similarity function which
returns a real value between 0 and 1 representing how similar the two colors are.
For consecutive segments within the same scanline, Lc(s, t) is 1, and for segments
in neighboring scanlines Lc(s, t) = min{smax, tmax} − max{smin, tmin}, where
smin and tmin are horizontal coordinates of the left ends of segment s and t, and
smax and tmax are those of the right ends.

After defining the weights for each neighboring line segment pair, we use
standard minimum-spanning tree (MST) algorithm, which can be found in any
data-structure book, to choose the optimal tree. The complexity is almost linear
to the number of segments |S|. It can be seen that the MID tree construction
algorithm in [9] can be considered as a special case of ours, in which line segments
have degenerated to individual points. In their situation, Lmax and Lc are always
1, and then wpq = 1−σ(Ip, Iq) is proportional to the intensity (or color) difference
between two neighboring pixels.

3 Implementation

The flowchart of our algorithm is shown in Fig. 2. Each part is described in
detail in the sub-sections.

Fig. 2. The flowchart of our LSTDP algorithm

3.1 Line Segmentation

The line segmentation algorithm segments each scanline into several small parts,
each of which contains pixels with similar colors. We do not choose some compli-
cated segmentation algorithms, such as mean-shift [14] or normalized cuts [15],
because they are not efficient and may become the bottleneck of the whole
algorithm. Instead, we design a simple and fast scanline segmentation algo-
rithm.



A Fast Line Segment Based Dense Stereo Algorithm 207

Our algorithm contains 3 steps as follows:
1. Computing Initialization Marks

For each image line, we scan the pixels from left to right. Two registers stores
the minimum and maximum intensities of the current segment. For color
images, the registers are both vectors with three channels. If the difference
between the minimum and maximum intensities are greater than a threshold
Tseg, a mark is put at the current position and two registers are reset. After
processing, the points between two marks are considered as one line segment.
The maximum intensity difference between pixels within a segment is no
more than Tseg.

2. Repositioning Marks
The marks made in the first step may not lay at the accurate edge. So a
repositioning procedure is performed. Each mark is moved to the near local
maximum of intensity gradients without changing their orders.

3. Removing Isolated Marks
The image noise often leads to some isolated marks in the image, and makes
the image being wrongly segmented. We check each mark and remove those
who do not have enough close neighbors in 2D area.

This segmentation method works fast and produces good segmentation in
our algorithm. We show the results of segmentation results in Fig. 3.

Color image Initial Repositioned Isolated removed

Fig. 3. Results of different steps of the segmentation on the “Venus” image

3.2 Label Selection

The label set L is first initialized with all possible fronto linear transforms, i.e.
{〈0, 0, −d〉|d = 0, . . . , Dmax}.

Then we need to estimate some possible 3-parameter linear transform labels.
To do this, we first segment both left and right images. Line segments on two
images are matched locally according to their average colors. For each matched
line segment pair, whose colors are similar enough, we obtain two matched point
pairs(the corresponding ends). This matching is rough and may contains many
errors. A robust estimation method, like M-estimators [16], is then used to ex-
tract the linear planes by fitting on the sparse correspondences robustly.

3.3 Tree Construction

The algorithm described in Sect. 2.2 is used to construct a tree on the reference
image.



208 Y. Deng and X. Lin

3.4 Dynamic Programming

Dynamic programming is performed on the constructed tree to minimize the
energy function defined in (2). Readers can find more details in [9]. Using the
technology introduced in [17] and [9], our energy function with smoothness en-
ergy defined in (4) can be minimized with the complexity of O(hn).

4 Experiments

Our experiments include two parts. First, we perform our algorithm on the
testbed of Middlebury University [1], and performance is compared with other
algorithms submitted to that testbed. To further test the accuracy and efficiency
on the real-time system, we embed our algorithm into a realtime automatic
navigation system, in which outdoor image series are processed.

4.1 Experiments on Middlebury dataset

We adopted Birchfield and Tomasi’s matching cost [18] which is insensitive to
image sampling as C(p, p′) in (3). vst in (4) is defined as

vst = C1 + σ(Īs, Īt)C2

All parameters are listed in Table 1, and are used for all image pairs. Com-
puted disparity maps are shown in Fig. 4 accompany with the results from [9].
We also listed the time (in milliseconds) of the different parts of our algorithm,
i.e. DSI (Disparity Space Image[1]) computing, line segmentation, label selec-
tion, and tree dynamic programming, and the total time in Table 3. They are
measured on a computer with an Intel Pentium IV 2.4 GHz processor. We sub-
mit the results into Middlebury test-bed and show the accuracy evaluations in
Table 2. Three criteria are used in the evaluation table which are percentages
of: bad points in non-occluded area, in all area, and near discontinuities. A bad
point is a point whose absolute disparity error is greater than one [1].

From the evaluation table we can see that our algorithm can achieve over-
all accuracy comparable with the state-of-the-art global methods (4 out of 13).
The result of “venus” is almost equal to the best one. For all the four images,
the rank of “all” column of our algorithm, which includes the guessing for half-
occluded areas, is better than the other two. That is because we use the line
segment as the matching unit, and the disparities of some occluded pixels can
be inferred by the disparity of the segment where the occluded pixels belong to.
Besides the good performance, our algorithm runs very fast. Processing time for
“tsukuba” is only about 160ms, and the other three can be processed within one

Table 1. Parameter values set for experiments for Middlebury image pairs

Parameter C1 C2 λ τ Tseg

Value 5 75 0.5 1.0 20



A Fast Line Segment Based Dense Stereo Algorithm 209

tsukuba venus teddy cones

Fig. 4. Experimental results for Middlebury database. The first row is left images, the
second row is ground truth of disparity map, the third row is results by our LSTDP
algorithm, and the last row is the results of pixel-based Tree DP method from [9].

Table 2. Accuracy Evaluation Results on Middlebury Stereo Test-bed

Algorithm Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Sym.BP+occl0.97 1 1.75 2 5.09 1 0.16 1 0.33 2 2.19 1 6.47 3 10.7 2 17.0 3 4.79 4 10.7 3 10.9 3
Segm+visb 1.30 4 1.57 1 6.92 4 0.79 3 1.06 3 6.76 5 5.00 1 6.54 1 12.3 1 3.72 2 8.62 1 10.2 2
SemiGlob 3.26 9 3.96 8 12.812 1.00 4 1.57 4 11.3 9 6.02 2 12.2 3 16.3 2 3.06 1 9.75 2 8.90 1
LSTDP 1.93 6 2.59 6 9.70 8 0.19 2 0.26 1 2.49 2 11.1 6 16.4 5 23.4 8 6.39 7 11.8 5 13.5 7
Layered 1.57 5 1.87 3 8.28 5 1.34 6 1.85 5 6.85 6 8.64 4 14.3 4 18.5 4 6.59 8 14.7 8 14.4 8
GC+occ 1.19 2 2.01 5 6.24 2 1.64 8 2.19 8 6.75 4 11.2 7 17.4 7 19.8 5 5.36 6 12.4 7 13.0 6
MultiCamGC 1.27 3 1.99 4 6.48 3 2.7910 3.13 9 3.60 3 12.0 8 17.6 8 22.0 7 4.89 5 11.8 6 12.1 4
TensorVoting 3.7910 4.7910 8.86 6 1.23 5 1.88 6 11.510 9.76 5 17.0 6 24.0 9 4.38 3 11.4 4 12.2 5
TreeDP 1.99 8 2.84 7 9.96 9 1.41 7 2.10 7 7.74 7 15.910 23.910 27.112 10.010 18.310 18.910

...
...

SO[1c] 5.0812 7.2213 12.211 9.4412 10.912 21.913 19.913 28.213 26.311 13.013 22.813 22.312

second. From Table 3, we can see that besides the dynamic programming modula,
half of the processing time is spent on preprocessing modules, and they can be
greatly accelerated with special hardware if necessary. Like other segment-based
methods, some artifacts caused by segmentation can be found in the disparity



210 Y. Deng and X. Lin

Table 3. Time Analysis of Our Algorithm on Middlebury Dataset

Size |S| Disp. Range DSI Line-Segm. Lab-Sel Tree-DP Total

tsukuba 384×288 19621 0..15 30 8 37 88 163
venus 434×384 29664 0..19 76 12 89 143 320
teddy 450×375 37435 0..59 195 10 359 299 863
cones 450×375 50780 0..59 194 16 170 370 750

† Unit for all the time (the last 5 columns) in this table is millisecond.

Table 4. Effective edges of three kinds of algorithms

Size |S| Global Pixel-TDP LSTDP
Total Hard Soft

tsukuba 384×288 19621 220512 110591 (50.1%) 192517 (87.3%) 90971 101546
venus 434×384 29664 332494 166655 (50.1%) 283241 (85.2%) 136558 146683
teddy 450×375 37435 336675 168749 (50.1%) 274557 (81.6%) 131315 143242
cones 450×375 50780 336675 168749 (50.1%) 259205 (77.0%) 117970 141235

† The percentages of equivalent edges of Pixel-TDP and LSTDP over full grid(Global) are
listed in brackets.

‡ In the LSTDP columns, Hard means edges connecting pixels within a line segment, and
Soft means the equivalent edges crossing line segments.

map. But this only happens along the scanline direction, because we do not
perform a hard constraint on inter-scanlines.

Moreover, we give the statistics on the numbers of effective edges in Table 4.
Note that the effective edges here are not the edges in the tree on the line
segment level, but the equivalent edges in pixel level. Our algorithm remains
much more edges than pixel-based dynamic programming method (Pixel-TDP).
Less than a quarter of the edges are discarded, and for images with less texture,
e.g. “tsukuba”, almost 90% of edges are remained.

Left Image Disparity Map

Fig. 5. Disparity and elevation results in a real-time outdoor automatic navigation
system. The upper row is one of the frame captured on an avenue, and the lower row
is from a country road.



A Fast Line Segment Based Dense Stereo Algorithm 211

4.2 Results on a Real-Time System

Our algorithm is used in a real-time outdoor stereo system. Because the outdoor
images are of relatively higher contrast and for obtaining higher efficiency, the
input images are first converted into gray-level images. The dynamic histogram
warping algorithm by Cox et al. [19] is used to rectify the difference of image
capturing. We only use fronto labels and hence label selection is not performed.
The size of the input images is 320 × 240, and disparity ranges from 0 to 40. No
acceleration hardware is used. Two frames of results are shown in Fig. 5. One is
from an avenue environment and the other is from a country road. We can see
that our matching results are rather accurate. The system is running on a Dual
Intel Xeron 2.4 GHz processor, and the processing time for each frame is only
60–70ms.

5 Conclusion

In this paper, we proposed a fast stereo correspondence algorithm based on line
segments using tree dynamic programming. From our preliminary experimental
results on both standard image pairs and real image sequences, it can be seen
that the performance of our algorithm is comparable to those of state-of-the-art
algorithms while our algorithm runs much faster. It can be used in different
real-time systems providing high accuracy disparity map.

We will continue our work on this proposed method to further improve the
performance of our method. Our future work includes occlusion modelling, new
construction rules for the tree, and parallel algorithm for the tree dynamic pro-
gramming.

References

1. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. Int’l J. Comput. Vision 47(1) (2002) 7–42
http://cat.middlebury.edu/stereo/.

2. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE
Trans. Pattern Anal. Machine Intell. 25(8) (2003) 993–1008

3. Baker, H., Binford, T.: Depth from edge and intensity based stereo. In: Int’l Joint
Conf. on Artificial Intell. Volume 2 of 20-26. (1981) 384–390

4. Cox, I., Hingorani, S., Rao, S., Maggs, B.: A maximum likelyhood stereo algorithm.
Computer Vision, Graphics and Image Processing 25(8) (2003) 993–1008

5. Sun, J., Li, Y., Kang, S.B., Shum, H.Y.: Symmetric stereo matching for occlusion
handling. In: Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition.
Volume 2. (2005) 399–406

6. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using
graph cuts. In: Proc. IEEE Int’l Conf. on Computer Vision. Volume 2. (2001)
508–515

7. Roy, S.: Stereo without epipolar lines: A maximum-flow formulation. Int’l J.
Comput. Vision 24(2/3) (1999) 147–161



212 Y. Deng and X. Lin

8. Geman, S., Geman, D.: Gibbs distributions, and the baysian restoration of images.
IEEE Trans. Pattern Anal. Machine Intell. 6 (1984) 721–741

9. Veksler, O.: Stereo correspondenc by dynamic programming on a tree. In: Proc.
IEEE Int’l Conf. on Computer Vision and Pattern Recognition. Volume 2 of 20-26.
(2005) 384–390

10. Tao, H., Sawhney, H.S., Kumar, R.: A global matching framework for stereo com-
putation. In: Proc. IEEE Int’l Conf. on Computer Vision. Volume 1. (2001) 532–539

11. Wei, Y., Quan, L.: Region-based progressive stereo matching. In: Proc. IEEE Int’l
Conf. on Computer Vision and Pattern Recognition. Volume 1. (2004) 106–113

12. Hong, L., Chen, G.: Segment-based stereo matching using graph cuts. In: Proc.
IEEE Int’l Conf. on Computer Vision and Pattern Recognition. Volume 1. (2004)
74–81

13. Deng, Y., Yang, Q., Lin, X., Tang, X.: A symmetric patch-based correspondence
model for occlusion handling. In: Proc. IEEE Int’l Conf. on Computer Vision.
Volume II., Beijing, China, 2005 (2005) 1316–1322

14. Comaniciu, D., Meer, P.: Robust analysis of feature spaces: Color image segmen-
tation. In: Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition,
Puerto Rico (1997) 750–755

15. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Machine Intell. 22(8) (2000) 888–905

16. Stewart, C.V.: Robust parameter estimation in computer vision. SIAM Reviews
41(3) (1999) 513–537

17. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision.
In: Proc. IEEE Int’l Conf. on Computer Vision and Pattern Recognition. Volume 1.
(2004) 261–268

18. Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image
sampling. IEEE Trans. Pattern Anal. Machine Intell. 20(4) (1998) 401–406

19. Cox, I.J., Roy, S., Hingorani, S.L.: Dynamic histogram warping of image pairs for
constant image brightness. In: Proc. Int’l Conf. on Image Processing. Volume II.
(1995) 366–369


	Introduction
	Tree Dynamic Programming on Line Segments
	Problem Formulation
	Constructing the Tree

	Implementation
	Line Segmentation
	Label Selection
	Tree Construction
	Dynamic Programming

	Experiments
	Experiments on Middlebury dataset
	Results on a Real-Time System

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




