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Abstract. In this paper, we adaptively model the appearance of objects based 
on Mixture of Gaussians in a joint spatial-color space (the approach is called 
SMOG). We propose a new SMOG-based similarity measure. SMOG captures 
richer information than the general color histogram because it incorporates spa-
tial layout in addition to color. This appearance model and the similarity meas-
ure are used in a framework of Bayesian probability for tracking natural objects. 
In the second part of the paper, we propose an Integral Gaussian Mixture (IGM) 
technique, as a fast way to extract the parameters of SMOG for target candidate. 
With IGM, the parameters of SMOG can be computed efficiently by using only 
simple arithmetic operations (addition, subtraction, division) and thus the com-
putation is reduced to linear complexity. Experiments show that our method can 
successfully track objects despite changes in foreground appearance, clutter, 
occlusion, etc.; and that it outperforms several color-histogram based methods.  

1   Introduction 

Visual tracking in unconstrained environments is one of the most challenging tasks in 
computer vision because it has to overcome many difficulties arising from sensor 
noise, clutter, occlusions and changes in lighting, background and foreground appear-
ance etc. Yet tracking objects is an important task with many practical applications 
such as smart rooms, human-computer interaction, video surveillance, and gesture recog-
nition. Generally speaking, methods for visual tracking can be roughly classified into two 
major groups: deterministic methods and stochastic methods.  

In deterministic methods (for example, the Mean Shift (MS) tracker [1]), the target 
object is located by maximizing the similarity between a template image and the cur-
rent image. The localization is implemented by iterative search. These methods are 
computationally efficient, but they are sensitive to background distraction, clutter, 
occlusion, etc. Once they lose the target object, they can not recover from the failure 
on their own. This problem can be mitigated by stochastic methods, which maintain 
multiple hypotheses in the state space and in this way, achieve more robustness. For 
example, the Particle Filter (PF) [2, 3, 4] has been widely applied in visual tracking in 
recent years.  

A particle filter tracks multiple hypotheses simultaneously and weights them ac-
cording to a similarity measure (i.e., the observation likelihood function). This paper 
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is essentially concerned with devising and calculating this likelihood func-
tion/similarity measure. Visual similarity can be measured using many features such 
as intensity, color, gradient, contour, texture, or spatial layout. A popular feature is 
color [1, 2, 4, 5, 6], due to its simplicity and robustness (against scaling, rotation, 
partial occlusion, and non-rigid deformation). Usually, the appearance of a region is 
represented by its color histogram, and the distance between the normalized color 
histograms of two regions is measured by the Bhattacharyya distance [2, 4].  

Despite its popularity, the color histogram also has several disadvantages:  

1) The spatial layout information of a tracked object is completely ignored (see 
figure 1(a)). As a result, a tracker based on color histograms is easily confused 
when two objects with similar colors but different spatial distributions get close 
to each other. An ad-hoc solution is to manually split the tracked region into 
several sub-regions (e.g., [4, 7]).   

2) Since the appearance of the target object is reduced to a global histogram, the 
similarity measure (e.g., the Bhattacharyya coefficient) is not discriminative 
enough (see Fig. 1) [8].  

3) For a classical color histogram based particle filter, the construction of the his-
tograms is a bottleneck. The computation is quadratic in the number of sam-
ples.  

In order to overcome the disadvantages of color histograms, we describe a Spa-
tial-color Mixture of Gaussians (called SMOG) appearance model and propose a 
SMOG-based similarity measure in Sect. 2. The main advantage of SMOG over color 
histograms and general Gaussian Mixtures is in that both the color information and 
the spatial layout information are utilized in the objective function of SMOG. There-
fore, the SMOG-based similarity measure is more discriminative.  

When SMOG and the SMOG-based similarity measure are used in particle filters, 
one major bottleneck is the extraction of the parameters (weight, mean, and covari-
ance) of SMOG for each particle. In Sect. 3, we propose an Integral Gaussian Mixture 
(IGM) technique as a fast way to extract these parameters and which also requires less 
memory storage than the integral histogram [9].  

In Sect. 4, experiments showing the advantages of our method over other popular 
methods are provided. We summarize the paper in Sect. 5. 

2   SMOG for Particle Filters 

2.1   A Brief Review of the Particle Filter 

Denoting by Xt and Yt the hidden state and the observation respectively at time t. The 
goal is to estimate the posterior probability density function (pdf) p(Xt) of the target 
object state given all available observations up to time t: Y1:t={Yi, i=1, …,t}.  Em-
ploying the first-order Markovian assumption 

1: 1 1p(X |X ) p(X |X )t t t t− −= , the posterior 

distribution of the state variable can be formulated as follows: 

1 : 1 1 1 : 1 1p (X |Y ) ( Y | X ) p (X |X ) p ( X |Y ) Xt t t t t t t t tL d− − − −∝ ∫            (1) 
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Given the dynamic model
1p(X |X )t t− and the observation likelihood model 

(Y | X )t tL , the posterior pdf distribution in Eq (1) can be recursively calculated.  

The particle filter approximates the posteriori distribution p(Xt| Y1:t) based on a fi-
nite set of random particles and associated weights ( ) ( )

1
{ X , } M

j

j j
t tW =

. If we draw parti-

cles from an importance density, i.e., ( ) ( ) ( )
1 1:X ~ ( X | X , Y )

t t t

j j j
tq

−
, the weights of new 

particles become:  

( )
( ) ( ) ( )

( ) ( )
1

1 1:

(Y | X )p(X | X )

(X | X , Y )
t t t

t t

j j j
tj

t j j
t

L
W

q
−

−

∝                                        (2) 

Then, the state estimate of the object at each frame can be obtained by either the 
mean state or a maximum a posteriori (MAP) estimate [10]. 

The observation likelihood function (Y | X )
ttL plays an important role in the particle 

filter. It determines the weights of particles and thereby could significantly influence 
the performance [11]. The likelihood function mainly affects the particle filter by the 
following ways: 

1) It affects the way particles are re-sampled. Re-sampling is necessary to de-
crease the number of low weighted particles and to increase the ones with more 
potential particles. Particles are re-sampled according to their weights.  

2) It affects the state estimate X̂ t
of the target object.  

Two popular likelihood function categories are: contour-based models (e.g., [12]) 
and color-based models (e.g. [1, 2, 4, 6]).  Although the contour-based model can 
accurately describe the shape of a target, it performs poorly in clutter and the time 
complexity is high. In the color-based model, a color histogram (due to its robustness 
to noise, rotation, and partial occlusion, etc.) is frequently employed with the Bhat-
tacharyya coefficient as a similarity measure. However, color histogram has some 
limitations, as we show next. 

2.2   Limitations of Color-Histogram Based Similarity Measure  

We illustrate the main disadvantage of the color histogram based similarity measure: 
it lacks information about the spatial layout of the target object, and is thus not 
discriminative enough.  

Denote by ( )
1,...,{ }

t t

u
O O u mφ φ == and ( )

1,...,{ }u
O O u mν ν

φ φ == respectively the m-bin normalized 

color histograms of target model 
t

O and the target candidate Oν , the Bhattacharyya 

coefficient (i.e., the similarity measure) between the reference region and candidate 
region is: 

( ) ( ) ( )

1

,
t t v

m
u u

O O O O
u

ν
ρ φ φ φ φ

=

=∑                                          (3) 

In Fig. 1, we track a face comprising pixels within a red rectangle region in a video 
sequence from http://vision.stanford.edu/~birch/headtracker/seq/. Target candidates  
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          (a)          (b)                 (c)         (d)   
Fig. 1. Color-histogram based similarity measure. The score of the similarity measure over (b) 
x-translation; (c) y-translation; and (d) scaling. (see text below and compare with Fig. 2). 

are generated by translating the rectangle from -20 to 20 horizontally or vertically, 
and by scaling the rectangle by a factor of 0.2 (the smaller green rectangle inside the 
target model) to 2 (the larger green rectangle inside the target model) in steps of 0.2. 
We use 8x8x8 color histogram bins. From Fig. 1, we can see that the similarity meas-
ure by Eq. (3) obtains very similar scores for different target candidates, and does not 
discriminate well between different candidate regions.  

2.3   SMOG: A Joint Spatial-Color Appearance Model  

Both the appearance model and the similarity measure are very important to the 
performance of particle filters. The color histogram, as described above, is one 
popular appearance model. Other popular models for foreground and/or background 
appearance include: the Gaussian [13], the kernel density  [14, 15] and the MOG 
(Mixture of Gaussians) based appearance model [10, 16, 17, 18, 19, 20]. For exam-
ple, [13] represented humans by blobs and modeled each blob by a Gaussian  
model.  

The kernel density based model is robust to noise and does not require the 
calculation of parameters (such as weights, mean and covariance of the Gaussian 
model) but it is computationally expensive and requires a large storage space. It is 
also not trivial to update the appearance changes. The disadvantage of the general 
MOG-based model is that it treats each pixel independently without using any 
spatial information. Moreover, it requires setting the number of Gaussians and a 
learning rate. Despite these limits, it is popular because (1) it can model the multi-
modal distribution of the appearance; (2) it is computationally efficient; (3) it is 
easy to adapt to the changes of the appearance; and (4) it does not require a large 
storage space.  

We model the appearance of an object with a joint spatial-color mixture of Gaus-
sians. We refer to this approach as SMOG. We denote by Si=(xi, yi) and 

j
j=1,...,C ={C }i i d

respectively the spatial feature (i.e., the 2D coordinates) and the color 

feature with d color channels (in RGB color space, C ={R ,G ,B }i i i i
 and d=3) at pixel xi. 

Thus, we can write the features of xi as the Cartesian product of its position and color: 
(S ,C )i i ix = . We assume that the spatial feature (S) and the color feature (C) are inde-

pendent to each other. For the mean and the covariance of the lth mode of the  
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Gaussian Mixtures, we have S C S C
, , , , , ,( , )and ( , )t l t l t l t l t l t lμ μ μ= Σ = Σ Σ . The estimated density 

at the point xi in the joint spatial-color space can be written as: 

 

(4) 

2.4   SMOG-Based Similarity Measure  

We model the appearance of a target object Ot by SMOG with k modes. We initialize 
the parameters of SMOG for a target object S, C, S, C,

1, 1, 1, 1, 1, 1,...,{ , , , , }t t t t tO O O O O
t l t l t l t l t l l kω μ μ= = = = = =Σ Σ by a  

K-means algorithm followed by a standard EM algorithm. Once we obtain the parame-
ters of the target object, we either update these parameters in an “exponential forget-
ting” way or keep the parameters (if we detect that it is occluded by other objects) in 
the following frames (t=2,3…). At time t, we sample M particles (i.e., target candidates 
Ov) and evaluate the likelihood function in Eq. (1) for each particle. The parameters of 
each target candidate S, C, S, C,

, , , , , 1,...,{ , , , , }O O O O O
t l t l t l t l t l l k

ν ν ν ν νω μ μ =Σ Σ  are calculated by: 

1. Calculate the Mahalanobis distances between pixels {xi} in the target candidate 
Ov={ xi}i=1,…N to each mode of SMOG of the target object Ot in color space: 

C, C, C, C, C,2 1
, , , , ,(C , , ) (C ) ( ) (C )t t t t tO O O O OT

l i t l t l i t l t l i t lD μ μ μ−Σ = − Σ −                  (5) 

2. Label the pixels satisfying ANY(|Dl| l=1,…,k ≤2.5) with the number of the mode to 
which the Mahalanobis distance is the least. For other pixels, label them with zero.  

( ) arg mini l
l

LB x D=                                         (6) 

3. Calculate the parameters S, C, S, C,
, , , , , 1,...,{ , , , , }O O O O O

t l t l t l t l t l l k
ν ν ν ν νω μ μ =Σ Σ of the target candidate 

by: 

( ) ( )

,
1 1 1

S, C,
, , ,

1 1

S, C,
, , , , ,

1

( ( ) ) ( ( ) )

( , ) ( ( ) ) ( ( ) )

( , ) ( ( ) ) (

N k N
O
t l i i

i l i

N N
O O O
t l t l t l i i i

i i

N TO O O O O
t l t l t l i t l i t l i
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ν

ν ν ν
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ω δ δ

μ μ μ δ δ

μ μ δ δ

= = =

= =

=

⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞Σ = Σ Σ = − − −⎜ ⎟
⎝ ⎠

∑ ∑∑

∑ ∑
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1

( ) )
N

i
i

B x l
=

⎛ ⎞−⎜ ⎟
⎝ ⎠
∑

(7) 

     where δ is the Kronecker delta function. The covariance matrix is taken to be a 
diagonal matrix for simplicity. One should normalize the coordinate space first 
so that the coordinates of pixels in the target candidate (and target object) are 
within the range [0, 1].         

Let S C
, ,andt l t lΛ Λ  be respectively the spatial and the color similarity measure be-

tween the lth mode of the target candidate Ov and the lth mode of the target object Ot. 
The SMOG-based similarity measure (as compared to the color-histogram based 
similarity measure in Eq. (3)) between two regions (Ov and Ot) in the joint spatial-
color space is defined as:  

S S 1 S C C 1 C
, , , , , ,

, S 1/ 2 / 2 C 1/ 2
1 , ,

1 1
exp (S ) ( ) (S ) exp (C ) ( ) (C )

2 2( )
2 | | (2 ) | |

T T
i t l t l i t l i t l t l i t lk

o i t l d
l t l t l

p x
μ μ μ μ

ω
π π

− −

=

⎧ ⎫ ⎧ ⎫− − Σ − − − Σ −⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭=

Σ Σ∑
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1
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k

t v t l t l
l

O O
=

Λ = Λ Λ∑                                             (8) 

where S, S, S, S,S S 1
, , , , , ,

1 ˆexp ( ) ( ) ( )
2

t tO O O OT
t l t l t l t l t l t l

ν νμ μ μ μ−⎧ ⎫Λ = − − Σ −⎨ ⎬
⎩ ⎭

with S, S,S 1 1 1
, , ,

ˆ( ) ( ) ( )tO O
t l t l t l

ν− − −Σ = Σ + Σ  

and C
, , ,min( , )tO O

t l t l t l
νω ωΛ = .  

The likelihood function in our method is given by: 

( )2

1
(Y | X ) exp 1 ( , )

2t t t v
b

L O O
σ

⎧ ⎫
∝ − − Λ⎨ ⎬

⎩ ⎭
                           

(9) 

where σb is the observation variance. 
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               (a)             (b)                                 (c)   

Fig. 2. The score by the SMOG-based similarity measure over (a) x-translation; (b) y-
translation; and (c) scale 

We repeat the experiment in Fig. 1 using SMOG. As shown in Fig. 2, the SMOG-
based similarity measure (Eq. (8)) is more discriminative than the color-histogram 
based similarity measure in Eq. (3). 

Recently, Birchfield et al. [21] proposed a method (Spatiograms), which captures the 
spatial information of the general histogram bins, and applied it to the Mean Shift 
(MS) tracker. The spatial mean and covariance of each bin is computed. In contrast, 
we consider the spatial layout and color distribution of each mode of SMOG. The 
number of the Gaussians (normally, k is set within the range from 3 to 7 in our case) 
is much less than the number of the histogram bins. SMOG is also more efficient in 
estimating density distribution of the data and in computation, and requires less stor-
age space to build up an integral Gaussian mixtures image (as described in Sect. 3) 
than the integral histogram method [9].  

2.5   Updating the Parameters of SMOG 

We dynamically model the object appearance by updating the parameters of SMOG 
through a learning rate α. The assumption made here is that in the temporally 
neighboring frames (e.g., frame t and frame t-1), the appearance (including both spa-
tial and color distributions) of an object does not change dramatically.   

Similar to [10] and [17], we assume that the past appearance is exponentially 
forgotten and new information is gradually added to the appearance model.  

To handle occlusion where image outliers exist, we use a heuristic way: we update 
the appearance only if the score of the similarity measure is larger than a threshold Tu. 
When occlusion is declared (i.e., the score is less than Tu), we stop updating the ap-
pearance model.  
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2.6   Choosing the Color Space 

We employ the normalized color space in our method. The normalized chromaticity 
coordinates of (r, g, b) can be written as: r=R/(R+G+B); g=G/(R+G+B); 
b=R/(R+G+B). The intensity information is also exploited. Thus we use (r, g, I) as the 
color feature in our method.   

In Fig. 3, we show an experiment illustrating the advantage of (r, g, I) over (R, G, 
B) color space in dealing with illumination changes. (r, g, I) color space shows more 
robustness to the illumination change. In contrast, the method employing (R, G, B) 
achieved less accurate results and lost the target at the end.   

Fig. 4 shows the adaptation of the proposed method to the appearance changes by 
updating the appearance model in subsection 2.5. Our method succeeds in adaptation 
to appearance changes throughout the sequence. 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

                      t=21                                    t=34                                    t=52 

Fig. 3. Tracking results employing RGB as color feature (in the first row) and rgI as color 
feature (in the second row)  

 

Fig. 4. The appearance of the tracked target changes with time increasing 
 

3   Integral Gaussian Mixture for Higher Computational Efficiency 

To efficiently calculate the similarity measure ( , )t vO OΛ (in Eq. (8)), we need to cal-

culate { }S, S,

1,...,
, ,O O O

l l l l k

ν ν νω μ
=

Σ for each target candidate. One possible way, which is 
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usually used in the color-histogram based particle filters (such as [2, 4]), is to ran-
domly sample a particle, and generate a target candidate, and then calculate the pa-
rameters corresponding to the candidate region. This is computationally inefficient 
because particles may have many overlapped regions and the same operator for each 
possible region can be repeated many times.  

To overcome this inefficiency, integral methods exploiting rectangle features were 
introduced by Viola et al. [22] and more recently, were developed by Porikli [9]. In 
[22], a grey-level image is converted to integral image format (i.e., the value of each 
pixel is the sum of values of all pixels to the left and above of the current pixel). In 
[9], integral histogram is constructed by a recursive propagation of an aggregated histo-
gram in a Cartesian data space.  

We propose an Integral Gaussian Mixture (IGM) technique as a fast and efficient 
way to extract the parameters of SMOG for each particle. To calculate the parameters 
of the lth mode of a target candidate, we need to calculate 2 2

x, y, x, y,( , , , , )l l l l ln μ μ σ σ , i.e., 

the number of pixels whose label is l, the spatial mean and variance values in x and y 
coordinates.  

We can write these quantities in the following form: 

1

x, y,
1 1

2 2 2 2 2 2
y, x, y, y,

1 1

( ( ) )

x ( ( ) ) ; y ( ( ) )

x ( ( ) ) ; y ( ( ) )

N

l i
i

N N

l i i l l i i l
i i

N N

l i i l l l i i l l
i i

n LB x l

LB x l n LB x l n

LB x l n LB x l n

δ

μ δ μ δ

σ δ μ σ δ μ

=

= =

= =

= −

⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑

∑ ∑

(10) 

and we have 
2
x,S S

x, y, 2
1 y,

0
; ( , );

0

k
l

l l l l l l l
l l

n n
σ

ω μ μ μ
σ=

⎛ ⎞
= = Σ = ⎜ ⎟⎜ ⎟

⎝ ⎠
∑                            (11) 

The procedure of the IGM can be described as follows: 

1. Predict the region R% , that includes all particles (i.e., target candidates), in the 2D image. 
2. Label each pixel 

ix%  in R%  by step 1 and 2 in subsection 2.4.  

3. Generate a GM image whose thi% pixel is given by
1,...,,{ }l ki i l

x x ==% % , where 
2 2

, ( ( ) )(1,x ,x ,y , y )i l i i i i ix LB x lδ= −% % % % % %
.  

4. Build an IGM image, where each pixel is the sum of values of all pixels of the 
GM image to the left and above of the current pixel.  

5. Calculate the parameters of each target candidate by four table lookup opera-
tions, which are similar to [22]. 

We find that once the IGM is built, the calculation of the likelihood function is 
very fast. Fig. 5 gives a rough estimation of the computational time (in MATLAB 
code) to evaluate the likelihood function for particles. From Fig. 5, we can see that the 
calculation of the color histogram based similarity measure in Condensation is  
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                        (a)                                                     (b)  

Fig. 5. The computational time v.s. the number of particles for the color histogram based 
method and the proposed method. Candidate region size in (b) is twice as that in (a).   

computationally expensive and will be affected by both the number of particles and 
the size of target candidate regions. When we double the region size (Fig. 5 (b)) of the 
candidate region (Fig. 5 (a)), the computational time of the color histogram based 
Condensation increased by about 60%. In contrast, both the number of particles and 
the size of the target candidate regions have much less influence on the computational 
complexity of the proposed method: the processing time is about 10 to 20 times less 
than the color histogram based Condensation.  

4   Experiments 

We test the effectiveness of our method using a number of video sequences with differ-
ent environments and conditions1. We compare with two popular color histogram based  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
           t=1          t=8          t=12        t=20        t=25  

Fig. 6. Tracking results of the face sequence with the MS tracker (first row), Condensation 
(second row) and our method (third row)  

 

                                                           
1  Some demo video sequences of our method can be obtained from http://users.monash. 

edu.au/~hanzi 
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methods: the Mean Shift tracker and Condensation. Note: we employ the (r, g, I) color 
space for all three methods. For the Mean Shift tracker and the Condensation tracker, 
we use 16x16x16 color histogram bins. For both Condensation and our method, we 
employ a random walk dynamic model (number of particles M=200).  

In Fig. 6, the human face is moving to the left and right very quickly. The illumina-
tion on the face also changes. The background scene includes clutter and material of 
similar color to the face. As we can see in Fig. 6, the Mean Shift tracker fails to track 
the face very soon; the results of Condensation are not accurate and Condensation 
even fails to track the face in some frames because the color histogram based similar-
ity measure is not discriminative enough (section 2.2). In comparison, our method, 
which considers both color and spatial information of the target object, never loses the 
target and achieves the most accurate results. 

Fig. 7 and Fig. 8 show situations where two humans with very similar colors get 
close to each other and one occludes the other. In Fig. 7, when the man’s face gets 
close to and occludes the girl’s face, the results of both the MS tracker and Condensa-
tion are greatly influenced. In Fig. 8 (a), because the color histogram based similarity 
ignores the spatial information, both the MS tracker and Condensation break down 
when two players with similar colors, but different spatial distributions, get close to 
each other. In contrast, our method works well in both cases. Fig. 8 (b) shows that our 
method can still effectively track the human body even if it is almost completely oc-
cluded by another player. 

Next, we test the adaptation of our method to appearance changes. In Fig. 9, a par-
ticularly challenging (with high clutter) video sequence is used. The head of a player 
is tracked even though it moves fast and the appearance of the head changes fre-
quently (including occlusion, blurring, and changes in the spatial and color distribu-
tions of the appearance). Fig. 9 shows that our method has successfully tracked the 
target and adapted to the changes of the target appearance.  

 

           t=1                   t=31                    t=40                    t=53                    t=74  

Fig. 7. Tracking results of the girl sequence with the MS tracker (first row), Condensation 
(second row) and our method (third row). The tracked face is shown in the upper-right window. 
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               t=1                           t=53                            t=57                            t=60 
 

 
 
                                    
 
 
                                        
 
 
 
 
 
 
 
 
 

(a) 

 
(b) t=130 to t=144  

Fig. 8. Tracking results of the soccer sequence with three methods (a): the MS tracker (first 
row), Condensation (second row) and our method (third row). The tracked body is also shown 
in the upper-right window; (b) tracking results with occlusions by our method. 

               t=1                           t=18                            t=49                            t=73 
 
 
 
 
 

(a) 
 
 
 
 
 
a 
 
 

(b)  

Fig. 9. (a) Tracking results of the football sequence with the MS tracker (first row), Condensa-
tion (second row) and our method (third row); (b) the target appearance changes (frames from 2-77) 
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5   Conclusion 

We have described an effective appearance model (SMOG) in a joint spatial-color 
space and a new similarity measure based on SMOG. The SMOG appearance model 
and the SMOG-based similarity measure consider both the spatial distribution and the 
color distribution of objects: they utilize richer information than the general color 
histogram based appearance model and similarity measure.  

We also propose an Integral Gaussian Mixture (IGM) technique, which greatly 
improves the computational efficiency of our method. Thus the number of particles 
and the size of target candidate region can be greatly increased, without significant 
change in the processing time of the proposed method.  

We have successfully applied the SMOG appearance model and the SMOG-based 
similarity measure to the task of visual tracking in the framework of particle filters. Our 
tracking method can effectively handle clutter, illumination changes, appearance 
changes, occlusions, etc. Comparisons show that our method outperforms popular 
methods such as the general color histogram based MS tracker and Condensation. 
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