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Abstract. Recently, the wide deployment of practical face recognition
systems gives rise to the emergence of the inter-modality face recognition
problem. In this problem, the face images in the database and the query
images captured on spot are acquired under quite different conditions
or even using different equipments. Conventional approaches either treat
the samples in a uniform model or introduce an intermediate conversion
stage, both of which would lead to severe performance degradation due
to the great discrepancies between different modalities. In this paper, we
propose a novel algorithm called Common Discriminant Feature Extrac-
tion specially tailored to the inter-modality problem. In the algorithm,
two transforms are simultaneously learned to transform the samples in
both modalities respectively to the common feature space. We formulate
the learning objective by incorporating both the empirical discrimina-
tive power and the local smoothness of the feature transformation. By
explicitly controlling the model complexity through the smoothness con-
straint, we can effectively reduce the risk of overfitting and enhance the
generalization capability. Furthermore, to cope with the nongaussian dis-
tribution and diverse variations in the sample space, we develop two non-
linear extensions of the algorithm: one is based on kernelization, while the
other is a multi-mode framework. These extensions substantially improve
the recognition performance in complex situation. Extensive experiments
are conducted to test our algorithms in two application scenarios: opti-
cal image-infrared image recognition and photo-sketch recognition. Our
algorithms show excellent performance in the experiments.

1 Introduction

The past decade has witnessed a rapid progress of face recognition techniques
and development of automatic face recognition (AFR) systems. In many of the
face recognition systems, we are in confront of a new situation: due to the lim-
itations of practical conditions, the query face images captured on spot and
the reference images stored in the database are acquired through quite different
processes under different conditions. Here we give two cases arising from practi-
cal demands. The first case is a surveillance system operating from morning to
night in an adverse outdoor environment. To combat the weak illumination in
the nights or cloudy days, the system employ infrared cameras for imaging and
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compare the infrared images with the optical images registered in the database,
as shown in fig.1. In another case, the police call for a photo-sketch recognition
system to recognize the identity of a suspect from a sketch when his photos are
unavailable, as shown in fig.2. The images acquired by different processes, which
we say are in different modalities, often present great discrepancies, thus it is in-
feasible to use a single model to carry out the comparison between these images.
These new applications bring forward a great challenge to the face recognition
systems and require new techniques specially designed for the Inter-Modality
Face Recognition.

Before introducing our approach to the problem, we give a brief review on the
statistical pattern recognition methods. An important difficulty for face recog-
nition lies in the high dimension of the sample space. To alleviate the curse of
the dimensionality, it is crucial to reduce the dimension while preserving the
important information for classification. LDA (Fisherface)[1] is the most pop-
ular dimension reduction method for face recognition, which pursues a feature
subspace to maximize the trace-ratio of the between-class scattering matrix and
the within-class scattering matrix. To solve the singularity of within-class scatter
matrix incurred by small sample size problem, a variety of improved LDA-based
algorithms are proposed[2][3][4][5][6][7]. However, these algorithms fail to address
the overfitting fundamentally. We argue that the poor generalization of LDA in
the small sample size case originates from the formulation of the objective, which
merely emphasize the separability of the training samples without considering
the factors affecting the generalization risk.

In this paper, we propose a general algorithm for various inter-modality face
recognition problems, where two issues arise: 1) How to enable the comparison
between samples in different modalities without the intermediate conversion? 2)
How to enhance the generalization capability of the model? To tackle the for-
mer issue, we propose a novel algorithm called Common Discriminant Feature
Extraction as illustrated in fig.3, where two different transforms are simulta-
neously learned to transform the samples in both the query modality and the
reference modality to a common feature space, where the discriminant features
for the two modalities are well aligned so that the comparison between them is
feasible. Motivated by the statistical learning theory[10] which states that the

Fig. 1. The optical images vs. the in-
frared images

Fig. 2. The photos vs. the sketches
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Fig. 3. Illustration of common feature
space

Fig. 4. The query procedure

model complexity has important impact on the generalization risk, we formu-
late the learning objective by incorporating both the empirical discriminative
power and the local consistency. The empirical discriminative power comprises
the intra-class compactness and inter-class dispersion, which together reflect
the separability of the training samples; while the local consistency[11] is in-
spired by the local preservation principle emerging from the machine learning
literatures[12][13], which measures the local smoothness of the feature transfor-
mation. It is believed that by explicitly imposing the smoothness constraint and
thus preserving the local structure of the embedded manifold, we can effectively
reduce the risk of overfitting. Based on the formulation, we derive a new algo-
rithm which can efficiently solve the global optima of the objective function by
eigen-decomposition.

Considering that linear transforms lack of capability to separate the samples
well in the complicated situations where the sample distribution is nongaussian,
we further derive two nonlinear extensions of the algorithm to exploit the nonlin-
earity of the sample space. The first extension is by kernelization, which offers an
elegant and efficient way to extract nonlinear features. The second extension is a
multi-mode framework. The framework learns multiple models adapting to the
query samples captured in distinct conditions and makes the final decision by a
belief-based weighted fusion scheme. Comprehensive experiments are conducted
to validate the effectiveness of our algorithms.

2 Common Discriminant Feature Extraction

2.1 Formulation of the Learning Problem

In the problem, there are two types of samples: the query samples captured on
spot and the reference samples stored in the database, which are in different
modalities. The vector space of the query samples and the reference samples are
denoted by Xq and Xr respectively, whose dimensions are denoted by dq and
dr. Suppose we have a training set of Nq samples in the query space and Nr

samples in the reference space from C classes, denoted by {(x(q)
i , c

(q)
i )}Nq

i=1 and
{(x(r)

j , c
(r)
j )}Nr

j=1. Here c
(q)
i and c

(r)
j respectively indicates the class label of the

corresponding sample. To enable the comparison of the query samples and the
reference samples, we transform them to a dc-dimensional Common Discriminant
Feature Space, denoted by Y, which preserves the important discriminant infor-
mation and aligns the samples in two different modality so that the comparison
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is feasible. We denote the transform for the query modality by fq : Xq → Y and
the transform for the reference modality by fr : Xr → Y. For succinctness of dis-
cussion, we denote y(q)

i = fq(x
(q)
i ; θq) and y(r)

j = fr(x
(r)
j ; θr), where θq and θr are

the transform parameters. After the common feature space is learnt, the dissimi-
larity can be evaluated by transforming both the query sample and the reference
sample to the common space and computing the distance between the feature
vectors, as in fig.4.

To obtain the feature transforms with good generalization capability, we for-
mulate the learning objective integrating both the empirical separability and the
local consistency of the transform operators.

The empirical separability. The empirical separability describes the sepa-
rability of the training samples. It involves two related goals: the intra-class
compactness and the inter-class dispersion, which are measured by average intra-
class scattering and average inter-class scattering respectively as follows:

J1(θq, θr) =
1

N1

Nq∑

i=1

∑

j:c(r)
j =c

(q)
i

||y(q)
i − y(r)

j ||2, (1)

J2(θq, θr) =
1

N2

Nq∑

i=1

∑

j:c(r)
j �=c

(q)
i

||y(q)
i − y(r)

j ||2, (2)

where N1 is the number of pairs of samples from the same class, N2 is the number
of pairs of samples from different classes. To better distinguish the samples from
different classes, we should drive the query samples towards the reference samples
from the same class and far from those of distinct classes. Based on the rationale,
we derive the formulation of empirical separability by unifying the intra-class
compactness and the inter-class dispersion:

Je(θq, θr) = J1(fq, fr) − αJ2(fq, fr) =
Nq∑

i=1

Nr∑

j=1

uij ||y(q)
i − y(r)

j ||2, (3)

where uij =

{
1

N1
(c(q)

i = c
(r)
j )

− α
N2

(c(q)
i �= c

(r)
j )

, and the α reflects the trade-off between the two

goals. Minimization of Je(θq, θr) will lead to the feature space best separating
the training samples.

The local consistency. To reduce the risk of overfitting, we introduce the
notion local consistency into the formulation to regularize the empirical objec-
tive, which is a notion emerging from spectral learning[11] and manifold learning
[14][12]. The local consistency for fq and fr are respectively defined by
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J
(q)
l (θq) =

1
Nq

Nq∑

i=1

Nq∑

j=1

w
(q)
ij ||y(q)

i − y(q)
j ||2; (4)

J
(r)
l (θr) =

1
Nr

Nr∑

i=1

Nr∑

j=1

w
(r)
ij ||y(r)

i − y(r)
j ||2, (5)

where N (i) is the set of indices of the neighboring samples of i, w
(q)
ij =

exp(− ||x(q)
i −x(q)

j ||
σ2

q
) and w

(r)
ij = exp(− ||x(r)

i −x(r)
j ||

σ2
r

) reflect the affinity of two sam-
ples. It has been shown that[14] such a definition corresponds to the approxima-
tion of

∫
M ||∇f(x)||2 over the manifold M on which the samples reside. This

clearly indicates that minimization of Jl will encourage consistent output for the
neighboring samples in the input space, and thus result in the transform with
high local smoothness and best locality preservation. Hence, a smooth transform
that is expected to be less vulnerable to overfitting can be learnt by imposing
the local consistency constraint.

Integrating the empirical objective and the local consistency objective, we
formulate the learning objective to minimize the following objective function:

J(θq, θr) = Je(θq, θr) + β
(
J

(q)
l (θq) + J

(r)
l (θr)

)
=

Nq∑

i=1

Nr∑

j=1

uij ||y(q)
i − y(r)

j ||2

+
Nq∑

i=1

Nq∑

j=1

v
(q)
ij ||y(q)

i − y(q)
j ||2 +

Nr∑

i=1

Nr∑

j=1

v
(r)
ij ||y(r)

i − y(r)
j ||2, (6)

where we introduce v
(q)
ij =

βw
(q)
ij

Nq
and v

(r)
ij =

βw
(r)
ij

Nr
. For convenience. β is a

regularization coefficient controlling the trade-off between the two objectives.

2.2 Matrix-Form of the Objective

To simplify the further analysis, we introduce the following matrix notations:

dc × Nq matrix Yq =
h
y(q)

1 ,y(q)
2 , . . . ,y(q)

Nq

i
, dc × Nr matrix Yr =

h
y(r)

1 ,y(r)
2 , . . . , y(r)

Nr

i

Nq × Nr matrix U : U(i, j) = uij ,
Nq × Nq diagonal matrix Sq : Sq(i, i) =

PNr
j=1 uij , Nr × Nr diagonal matrix Sr : Sr(j, j) =

PNq

i=1 uij ,
Nq × Nq matrix Vq : Vq(i, j) = v

(q)
ij , Nr × Nr matrix Vr : Vr(i, j) = v

(r)
ij ,

Nq × Nq diagonal matrix Dq : Dq(i, i) =
PNq

j=1 v
(q)
ij , Nr × Nr diagonal matrix Dr : Dr(i, i) =

PNr
j=1 v

(r)
ij .

Then we can rewrite the objectives in matrix form as:

Je(θq, θr)=
Nq∑

i=1

Nr∑

j=1

uij ||y(q)
i −y(r)

j ||2 = tr
(
YqSqYT

q +YrSrYT
r −2YqUYT

r

)
.(7)

J
(q)
l (θq) = 2tr

(
Yq(Dq − Vq)YT

q

)
; (8)

J
(q)
l (θr) = 2tr

(
Yr(Dr − Vr)YT

r

)
. (9)
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Combine the three formulas above, we can derive that

J(θq, θr) = tr
(
YqRqYT

q + YrRrYT
r − 2YqUYT

r

)
. (10)

where Rq = Sq + 2(Dq − Vq) and Rr = Sr + 2(Dr − Vr).
It is conspicuous that the transform f(x) and its double-scaled version 2f(x)

are essentially the same with respect to classification, however the latter trans-
form will result in the objective value four times the former one. Hence, we
should impose constraint on the scale of features in order to prevent trivial solu-
tions. Since Euclidean distance will be used in the target feature space where all
dimensions are uniformly treated, it is reasonable to require the feature vectors
satisfy isotropic distribution. It can be expressed in terms of unit covariance as
follows

1
Nq

YqYT
q +

1
Nr

YrYT
r = I. (11)

2.3 Solving the Linear Transforms

Linear features are widely used in the literatures due to its simplicity and good
generalization. Accordingly we first investigate the case where fq and fr are
linear transforms, parameterized by the transform matrix Aq and Ar. Denote the

sample matrices1 by Xq =
[
x(q)

1 ,x(q)
2 , . . . ,x(q)

Nq

]
and Xr =

[
x(r)

1 ,x(r)
2 , . . . ,x(r)

Nr

]
,

then we have
Yq = AT

q Xq Yr = AT
r Xr (12)

Combining Eq.(10), Eq.(11) and Eq.(12), the optimization problem of the trans-
form matrices Aq and Ar is given by

minimize J(Aq,Ar) = tr
(
AT

q MqqAq + AT
r MqrAr − 2AT

q MqrAr

)
, (13)

s.t AT
q CqAq + AT

r CrAr = I. (14)

For Eq.(13) Mqq = XqRqXT
q , Mrr = XrRrXT

r , and Mqr = XqRqXT
r . While

for Eq.(14), Cq = 1
Nq

XqXT
q and Cr = 1

Nr
XrXT

r are the covariance matrices.
To solve the optimization problem, we introduce the matrices

M =
(

XqRqXT
q −XqUXT

r

−XrUT XT
q XrRrXT

r

)
A =

(
Aq

Ar

)
C =

(
Cq 0
0 Cr

)
(15)

According to Eq.(13), Eq.(14), and Eq.(15), the optimization problem can be
written as

A = argmin
AT CA=I

AT MA, (16)

where both M and C are (dq + dr) × (dq + dr) symmetric matrices.

1 Here we assume that the samples Xq and Xr have zero mean vectors, otherwise, we
can first shift them by subtracting the mean vectors.
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To solve the constraint optimization problem, we have the following lemma

Lemma 1. The matrix A satisfies ACAT = I where C is symmetric, if and
only if A can be written as A = VΛ− 1

2 U where columns of V are eigenvectors
and Λ are diagonal matrix of eigenvalues satisfying CV = VΛ, and U are
orthogonal matrix satisfying UT U = I.

The lemma suggests a two-stage diagonalization scheme to obtain the optimal
solution. In the first stage, we solve the V and Λ by eigenvalue decomposition
on C and compute the whitening transform W = VΛ− 1

2 . It can be easily shown
that TT CT = I. Considering that C is a block-diagonal matrix, it be accom-
plished by eigen-decomposition on Cq and Cr respectively as Cq = VqΛqVT

q

and Cr = VrΛrVT
r . When the dimensions of Xq and Xr are high, the covari-

ance matrices may become nearly singular and incur instability. To stabilize the
solution, we approximate the covariance by discarding the eigenvalues near zero
and the corresponding eigenvectors as follows:

C̃q = ṼqΛ̃qṼT
q C̃r = ṼrΛ̃rṼT

r (17)

Subsequently, T can be obtained by T =

(
ṼqΛ̃

− 1
2

q 0

0 ṼrΛ̃
− 1

2
r

)
.

Then the learning objective is transformed to be

U = argmin
U

UT
(
TT MT

)
U, s.t UT U = I, (18)

In the second stage we solve U by eigen-decomposition on the matrix MW =
TT MT and taking the eigenvectors associated with the smallest eigenvalues of
MW , then A = TU. Exploiting the fact that T is block-diagonal, we further
simplify the computation by partitioned matrix multiplication. The whole pro-
cedure is summarized in Table 1.

Table 1. The Procedure of Solving the Linear Transform

1. Compute Rq , Rr and U as in section 2.2.
2. Compute Mqq = XqRqXT

q , Mqr = XqUXT
r and Mrr = XrRrXT

r .
3. Compute Cq = 1

Nq
XqXT

q and Cr = 1
Nr

XrXT
r .

4. Solve Ṽq, Λ̃q , Ṽr and Λ̃r by performing eigenvalue-eigenvector analysis on Cq and
Cr and removing the trailing eigenvalues and corresponding eigenvectors.
5. Compute Tq = ṼqΛ̃− 1

2 and Tr = ṼrΛ̃− 1
2 . Denote their numbers of columns by d̃q

and d̃r.

6. Compute MW =
(

TT
q MqqTq −TT

q MqrTr

−TT
r MT

qrTq TT
r MrrTr

)
.

7. Solve U by taking the eigenvectors corresponding to the d least eigenvalues of MW .
8. Denote the first d̃q rows of U by Uq and the rest d̃r rows by Ur. Then we have
Aq = TqUq and Ar = TrUr.
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3 Kernelized Common Discriminant Feature Extraction

Kernel-based learning is often used to exploit the nonlinearity of the sample
space. The core principle is to map the samples to a Hilbert space with much
higher dimension or even infinite dimension so that the inner product structure
of that space reflects the desirable similarity. Suppose the original sample space
is denoted by X and a positive definite kernel is defined on it by k : X ×X → R.
For a set of observed samples: {xi}n

i=1, the n × n Gram matrix is given by K
with K(i, j) = k(xi,xj).

According to the kernel theory, each positive definite kernel k induces a Hilbert
space H and a feature map φ : X → H satisfying that for every x1,x2 ∈ X ,
〈φ(x1), φ(x2)〉 = k(x1,x2). With this kernel trick, we can compute the inner
product in the original space without explicitly evaluating the feature map.

Given the Hilbert space, we can extract the features by projecting the high-
dimensional mapping to a lower-dimensional feature space. Assume the basis of
the projection is a linear combinations of the Hilbert mappings of the training
samples. Denote Φ = [φ(x1), . . . , φ(xn)], then we have P = ΦA, where A is an
n×d matrix storing the expansion coefficients and d is the dimension of the final
feature space. Then for any sample x ∈ X , it is transformed to

y = PT φ(x) = AT ΦT φ(x) = AT k(x), (19)

where k(x) = [φ(x1,x), φ(x1, . . . , φ(xn,x)]T . Specially, for the training set
X = [x1, . . . ,xn], the matrix of the transformed vectors can be expressed as

Y = [y1,y2, . . . ,yn] = [Pφ(x1),Pφ(y2), . . . ,Pφ(yn)] = AT K. (20)

Actually, the learning of Common Discriminant Feature Extraction relies on
inner products, thus it can be extended to the nonlinear case by kernel theory.
Denote the Gram matrices for the query samples and the reference samples by
Kq and Kr, and the coefficient expansion matrices for transform operators by
Aq and Ar. According to Eq.(20), we have the feature vectors for the training
set expressed as follows:

Yq = AT
q Kq Yr = AT

r Kr. (21)

Then from Eq.(10), the joint objective function can be written by

J(Aq,Ar) = tr(AT
q KqRqKT

q Aq + AT
r KrRrKT

r Ar − 2AT
q KqUKT

r Ar) (22)

s.t Aq

(
1

Nq
KqKT

q

)
AT

q + AT
r

(
1

Nr
Kr,KT

r

)
Ar = I. (23)

Comparing Eq.(13) and Eq.(23), we see that the mathematical form of the op-
timization problem is essentially the same, except that the matrices Xq and Xr

are replaced by the Kernel Gram matrices Kq and Kr. Thus the optimization
procedure derived above is also applicable here.
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4 Multi-mode Framework

In practical systems, the reference images are often captured in a controlled
condition, while the query images on spot are subject to significant variation
of illumination and pose. To address this problem, we develop a Multi-Mode
Framework. For each query mode, we learn a common feature space for compar-
ing the query samples in that mode and the reference samples. Here, we denote
the transform matrices for the k-th mode by Aqk and Ark.

Considering that uncertainty may arise when we judge which mode a query
sample belongs to, we adopt a soft fusion scheme. In the scheme, the fused
distance is introduced to measure the dissimilarity between the query samples
and the reference samples, which is a belief-based weighted combination of the
distance values evaluated in the common spaces for different modes. We denote
the belief that the i-th query sample belongs to the k-th mode by bik, and
denote the features of the i-th query sample and the j-th reference sample in
the common space for the k-th mode by y(q)

ik = AT
qkx

(q)
i and y(r)

jk = AT
rkx

(r)
i

respectively, then the fused distance is given by

d(x(q)
i ,x(r)

j ) =
M∑

k=1

bik||y(q)
ik − y(r)

jk ||2 s.t
M∑

k=1

bik = 1. (24)

When the belief values for training samples are known, for a new query sample
x, its belief values w.r.t to the modes can be computed by smooth interpolation
from the training samples adjacent to it. We re-formulate the learning objective
with the following extensions:
1) Evaluate the empirical separability based on fused distance: Je =∑Nq

i=1
∑Nr

j=1 uijd(x(q)
i ,x(r)

j );
2) The local consistency comprises the local consistency of transforms for all
modes;
3) Each query samples in the training set corresponds to M belief values. To
ensure each mode covers a continuous and smooth region in the sample space so
that the computation of beliefs for new samples is stable, we further enforce the
local consistency on the belief values: J

(b)
l =

∑Nq

i=1
∑Nq

j=1 v
(q)
ij

∑M
k=1(bik − bjk)2.

Consequently, the multimode formulation of the learning objective is derived as
follows:

J = Je + β
M∑

i=1

(J (q)
l + J

(r)
l ) + γJ

(b)
l , (25)

where γ controls the contribution of the local consistency of beliefs. Eq.(25) can
be expanded as follows:

J =
Nq∑

i=1

Nr∑

j=1

uij

M∑

k=1

bik||y(q)
ik − y(r)

jk ||2 +
M∑

k=1

Nq∑

i=1

Nq∑

j=1

v
(q)
ij ||y(q)

ik − y(q)
jk ||2

+
M∑

k=1

Nr∑

i=1

Nr∑

j=1

v
(r)
ij ||y(r)

ik − y(r)
jk ||2 +

Nq∑

i=1

Nq∑

j=1

v
(q)
ij

M∑

i=1

(bik − bjk)2. (26)
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Based on the generalized formulation, we derive the optimization scheme by
alternate optimizing the transform matrices and the belief values.

1) Optimizing Transform Matrices. Denote JA = Je + β
∑M

i=1(J
(q)
l + J

(r)
l ),

since J
(b)
l does not relate to the features, with the belief values given, we can

obtain the optimal transform matrices by minimizing JA. Rearranging the order
of sums, we can write it by

JA =
M∑

k=1

⎧⎨
⎩

Nq∑

i=1

Nr∑

j=1

bikuij ||y(q)
ik − y(r)

jk ||2 +
Nq∑

i=1

Nq∑

j=1

v
(q)
ij ||y(q)

ik − y(q)
jk ||2 +

Nr∑

i=1

Nr∑

j=1

v
(r)
ij ||y(r)

ik − y(r)
jk ||2

⎫⎬
⎭ .

(27)
Thus JA can be decomposed into

JA =
M∑

k=1

Jk(A(q)
k ,A(r)

k ) (28)

Jk(A(q)
k ,A(r)

k ) =
Nq∑

i=1

Nr∑

j=1

bikuij ||y(q)
ik −y(r)

jk ||2+
Nq∑

i=1

Nq∑

j=1

v
(q)
ij ||y(q)

ik −y(q)
jk ||2+

Nr∑

i=1

Nr∑

j=1

v
(r)
ij ||y(r)

ik −y(r)
jk ||2.

(29)
Compare Eq.(6) and Eq.(29), we see that they share the same mathematical
form except that uij is replaced by bikuij . Because Jk is solely determined by
the features of the k-th mode, we can optimize A(q)

k and A(r)
k for each mode

individually by the aforementioned procedure with the belief values fixed.

2) Optimizing Belief Values. Denote JB = Je + γJ
(b)
l , which is the part of

objective depending on the belief values. With the transform matrices given, we
can optimize the beliefs by minimizing JB:

JB =
Nq∑

i=1

Nr∑

j=1

M∑

k=1

uij

M∑

k=1

bik||y(q)
ik −y(r)

jk ||2 +
Nq∑

i=1

Nq∑

j=1

M∑

k=1

v
(q)
ij

M∑

i=1

(bik − bjk)2. (30)

For succinctness, we denote eik =
∑Nr

j=1 uij ||y(q)
ik −y(r)

jk ||2, then it can be simpli-
fied to

JB =
Nq∑

i=1

M∑

k=1

eikbik +
Nq∑

i=1

Nq∑

j=1

M∑

k=1

v
(q)
ij

M∑

i=1

(bik − bjk)2. (31)

We introduce the following notations: E is an M ×Nq matrix with E(i, k) = eik,
B is an M × Nq matrix with B(i, k) = bik, then the optimization problem can
be written in a matrix form as

B = argmin
B

JB = argmin
B

tr(ET B+2B(Dq−Vq)BT ), s.t BT 1M = 1Nq . (32)

Here Dq − Vq is positive-semidefinite. This is a convex quadratic optimiza-
tion program with linear constraint and can be efficiently solved by quadratic
programming.
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3) The whole procedure of optimization. We adopt the alternate opti-
mization strategy in our framework. First we cluster all the query samples in
the training set by Gaussian Mixture Model and set the initial belief values to
be the posteriori evaluated by GMM. After that, we optimize the transform ma-
trices for each mode based on Eq.(29) and the belief values based on Eq.(32)
alternately until convergence.

5 Experiments

Experiment Settings
We conduct experiments in two inter-modality recognition applications.

1) Infrared-optical recognition. The reference images are captured by
optical cameras with controlled illumination condition, while the query images
are acquired in an uncontrolled environment. To cope with the adverse illumi-
nation condition, we use infrared cameras to capture the query images. In our
experiment, two configurations are constructed to test our algorithms. Both con-
figurations share the same set of reference samples. The reference set consists of
64 samples from 16 persons with each person having 4 samples. In the first con-
figuration, we select 800 images with mild expression variation to form the query
set. The second configuration is a much more challenging one, which consists of
1600 images subject to significant pose and illumination variation. Some exam-
ples of the images are displayed in fig.1. It can be seen that the infrared images
are seriously blurred and distorted due to the limitation of infrared imaging.

2) Sketch-photo recognition. The reference set is composed of 350 images
from FERET face database[16]. The 350 images represent 350 different persons.
The query set comprises 700 sketches composed by artists. Each person has 2
samples in the query set. Fig.2 shows some examples of the photos and the
corresponding sketches. We can see that the sketches present greatly different
characteristics from the photos. In addition, some texture information is lost in
the sketches.

All the photos are normalized to reduce the influence of interference factors.
For each image, we first perform affine transformation on it to fix the eye centers
and mouth center of the face to standard positions. Then we crop it to the size
of 64×72. After that we apply histogram equalization and mask the background
region using a face-shape mask. After preprocessing, we obtain the original vector
representation for each image by scanning the 4114 remaining pixels to a vector.
To accelerate the process of training and testing and suppress the noise, we
employ PCA to reduce the space dimension and preserve 0.98% of the energy in
the principal space.

Experiment Results
1) We first investigate how the selection of parameters α and β affects the gen-
eralization performance. In the experiments, we find that the performance is not
sensitive to the α when α ranges from 0.2 to 2. However, the parameter β signifi-
cantly influence the results. Fig.5, fig.7 and fig.9 show the change of performance
w.r.t the number of features when β takes different values. We can see that when
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Fig. 10. Comparison of algorithms in
sketch-photo recognition

β = 0, that is, the local consistency does not contribute to the formulation, the
performance degrades drastically as the number of features increases. When β
becomes larger, the change of performance becomes stable. However, if β is too
large, the performance may degenerate. This is mainly due to over-smoothing.
From the results, we can see that for infrared-optical recognition, the algorithm
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Reg. + Reg. + RReg. + RReg. + EigT. + EigT. + CDFE
KPCA KLDA KPCA KLDA KPCA KLDA

infrared-optical. conf-1 24.3% 15.6% 20.4% 8.34% 22.7% 9.56% 1.98%
infrared-optical. conf-2 50.6% 21.8% 47.9% 15.0% 45.7% 15.3% 4.42%

sketch-optical. 32.2% 20.8% 24.3% 11.7% 25.8% 12.8% 5.43%

Fig. 11. Comparison of the algorithms with kernelized features

achieves best performance when β = 0.5, while for sketch-photo recognition, the
algorithm achieves best performance when β = 1.0. The analysis above indicates
the important role of local consistency for the generalization ability.

2) We compare the common discriminant feature extraction (CDFE) with
other approaches for inter-modality recognition. In previous works, it is typi-
cal to first convert the query images to the reference modality and then apply
conventional algorithms to classify the converted sample. In the experiments,
we test the combination of three conversion methods (linear regression (Reg),
ridge regression (RReg), and Eigentransformation (EigT)[9] ) and three feature
extraction methods (PCA[17], LDA[1], and Enhanced LDA[4]). The results are
illustrated in fig.6, fig.8, and fig.10 for the infrared-optical recognition and the
sketch-photo recognition respectively. It can be seen from the results that the
CDFE consistently outperforms the other methods by a large margin. In all
the configurations, CDFE at least reduces the error rate by half compared with
the most competitive methods in conventional approaches.

3) We test the kernelized extension of the CDFE and compare it with the
conversion-classification paradigm. For fair comparison, in the traditional ap-
proach, we also use kernelized method to extract features. Here, we test Kernel
PCA and Kernel LDA. Gaussian kernel is used in the testing. The results are
listed in fig.11. All the results given in the table are the best performances
obtained through cross-validation. We can see our algorithm outperforms the
conventional ones by a surprisingly large margin. In our view, such a remark-
able improvement is owing to incorporation of local consistency, which on one
hand fully exploits the potency of kernel method, on the other hand effectively
controls the complexity of the operator.

4) We finally test the multi-mode framework in the conf-2 of infrared-optical
recognition. In this configuration, due to diverse poses and illumination condi-
tions, there are multiple modes in the sample distribution. In our experiments,
the error rate decreases when we increase the number of modes. The lowest error
rate 3.25% is attained when M = 5. Compared to the single mode case, in which
error rate is 7.56%, it is an encouraging improvement.

6 Conclusion

In this paper, we studied the inter-modality face recognition problem. We pro-
posed a new notion of common discriminant feature space and formulated the
learning objective with local consistency. In the extensive experiments, our al-
gorithms have achieved significant improvement over conventional methods.
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