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Abstract. SpatialBoost extends AdaBoost to incorporate spatial rea-
soning. We demonstrate the effectiveness of SpatialBoost on the problem
of interactive image segmentation. Our application takes as input a tri-
map of the original image, trains SpatialBoost on the pixels of the object
and the background and use the trained classifier to classify the unlabeled
pixels. The spatial reasoning is introduced in the form of weak classifiers
that attempt to infer pixel label from the pixel labels of surrounding
pixels, after each boosting iteration. We call this variant of AdaBoost —
SpatialBoost. We then extend the application to work with “GrabCut”.
In GrabCut the user casually marks a rectangle around the object, in-
stead of tediously marking a tri-map, and we pose the segmentation as
the problem of learning with outliers, where we know that only positive
pixels (i.e. pixels that are assumed to belong to the object) might be
outliers and in fact should belong to the background.

1 Introduction

Image segmentation is an ill-posed problem and automatic image segmentation is
still an illusive target. This led to the development of interactive image segmen-
tation algorithms that allow the user to intervene in the segmentation process
with minimal effort.

Image segmentation can be categorized into “soft” and “hard” segmentation.
In “soft” segmentation one is interested in recovering both the color and the
transparency of the pixels, so that mixed pixels such as hair or fur could be
handled, while in “hard” segmentation one is only interested in segmentation the
pixels of the object from the background, without recovering their transparency.
Here we focus on the latter and note that it can be used in its own right or as
an initial guess for soft segmentation.

We treat image segmentation as a binary classification problem, where a clas-
sifier is trained on pixels of the object and pixels of the background and then
used to classify the unlabeled pixels. We introduce SpatialBoost as our classifier.
SpatialBoost extends the standard AdaBoost classifier to handle spatial reason-
ing. This is done by defining two types of weak classifiers. One type is the usual
weak classifier that works on each pixel independently. The other type works on
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the predicted labels of a neighborhood of pixels, after each round of boosting.
This allows SpatialBoost to learn spatial arrangements of pixels that can improve
the overall quality of the classification. Both types of weak classifiers optimize
the same target function and the implementation of SpatialBoost involves just
a slight modification of the AdaBoost algorithm.

The three types of pixels (object, background and unlabeled) are defined in a
tri-map that the user draw manually. This is often a laborious work and an easier
user interface was recently suggested where the user casually marks a rectangle
around the object and let the application take care of the rest. We show that
our approach can be extended to handle this type of input as well by considering
it as learning with outliers. That is, we assume that part of the pixels that are
marked as positive (i.e. belong to the object) are actually outliers and should
belong to the background.

2 Background

Our work brings together two lines of research. One focused on image segmenta-
tion and the other focused on extending AdaBoost to handle spatial information.

Interactive image segmentation has been studied extensively in the past. The
Magic Wand [1] allows the user to pick pixels and then automatically cluster
together pixels with similar color statistics. Other algorithms take as input a tri-
map image. Their goal is to learn from the labeled object and background pixels
enough information to correctly label the unlabeled pixels. Ruzon & Tomasi [12]
and Chuang et al. [4] learn the local statistics of color distribution to predict
the label of the unknown pixels. Because color does not carry spatial informa-
tion they break the region of unlabeled pixels into many sub-regions, in ad-hoc
fashion, and process each sub-region independently. In contrast, Boykov & Jolly
[3] and later Blake et al. [2] use graph-cut algorithms that rely on color and
contrast information, together with strong spatial prior to efficiently segment
the image. This approach works on the entire image at once and there is no need
to process multiple sub-regions separately. Finally, Rother et al. [11] eliminated
the need for the creation of a tri-map by introducing GrabCut, where the user
casually draw a rectangle around the object and the algorithm takes it from
there. These methods are generative methods that seek to learn the likelihoods
of the colors of the object and background and then, given the unlabeled pixels,
determine to which color distribution they belong. We, on the other hand, take
a discriminative approach where a classifier is trained on the labeled pixels and
then applied to the unlabeled ones.

Efforts to extend AdaBoost to handle spatial reasoning were reported by Fink
and Perona [8] who termed their method “Mutual Boost”. They consider the
problem of mutual detection of multiple objects in images and use the spatial
relationship of AdaBoost classifiers during the detection iterations to improve
overall performance. However, they use it for object detection and not for image
segmentation. Torralba et al. [13] suggested “Boosted random fields” to combine
AdaBoost and Belief propagation to handle interaction between neighboring
pixels, for the purpose of using context to improve object detection.



388 S. Avidan

3 SpatialBoost: AdaBoost with Spatial Reasoning

We pose image segmentation as a binary classification problem where a classi-
fier is trained on the labeled pixels of the object and the background and then
applied to the unlabeled pixels of the border region. In particular, the user con-
structs a tri-map image that defines pixels that are part of the object, part of
the background or are unlabeled. We will term pixels that belong to the object as
positive examples and pixels that belong to the background as negative exam-
ples. We can train a classifier on the labeled pixels and then apply the classifier
to the unlabeled pixels. Recall that AdaBoost training, and testing, is done on
each pixel independently, without any spatial interaction between neighboring
pixels. Extending the feature vector of every pixel to capture some local image
statistics can give a partial solution to the problem but can also pose several
new problems. First, the dimensionality of the data grows, which in turn might
require additional training data. Second, the interaction between neighboring
pixels is limited to the particular image statistics selected. Finally, the informa-
tion can not be propagated beyond the extent of the local image patch that was
used to compute the local image statistics.

3.1 SpatialBoost

Within the context of AdaBoost, we give a simple extension that can incor-
porate spatial reasoning automatically. Given a collection of N data points
and their labels, denoted {xi, yi}N

i=1, AdaBoost minimizes the exponential loss
function

J(H) = E(e−yH(x)) (1)

as a way to minimize the zero-one loss function, where H(x), termed the “strong”
classifier, is a linear combination of T “weak” classifiers hi(x).

H(x) =
T∑

i=1

hi(x) (2)

We will denote the weak classifiers hi(x) as data classifiers because they op-
erate solely on the data point and do not model spatial interaction between the
data points. However, the goal of AdaBoost is to minimize J(H) and every weak
classifier that helps the minimization can, and should, be used. In particular, we
can use the current labels of the neighbors of the pixel to predict its label, in the
next iteration of AdaBoost. That is, after each iteration of AdaBoost training
we have, in addition to the feature vector of every pixel, the predicted labels of
its neighbors. This is the additional information we want to capture and we do
that by introducing a new “weak” classifier, that we term spatial classifier. In
each iteration of AdaBoost training we now train two classifiers. A “data” clas-
sifier that was trained on each pixel independently and a “spatial” classifier that
was trained on the predicted label of neighborhoods of pixels. AdaBoost now
gets to choose the “weak” classifier that minimizes the classification error, be it
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Algorithm 1. SpatialBoost - Training
Input: Training set {xi, yi}N

i=1

Number of iterations T
Output: A strong classifier H(x)

1. Initialize weights {wi}N
i=1 to 1

N

2. Initialize estimated margins {ŷi}N
i=1 to zero

3. For t = 1...T

(a) Make {wi}N
i=1 a distribution

(b) Set x′
i = {ŷj |xj ∈ Nbr(xi)}

(c) Train weak data classifier ht on the data {xi, yi}N
i=1 and the weights {wi}N

i=1

(d) Train weak spatial classifier h′
t on the data {x′

i, yi}N
i=1 and the weights {wi}N

i=1

(e) Set ε =
∑N

i=1 wi|ht(xi) − yi|
(f) Set ε′ =

∑N
i=1 wi|h′

t(x′
i) − yi|

(g) Set λt =
{

1 if ε < ε′

0 otherwise
(h) Set err = λtε + (1 − λt)ε′

(i) Set weak classifier weight αt = 1
2 log 1−err

err

(j) Update examples weights

wi = wie
(αt(λt|ht(xi)−yi|+(1−λt)|h′

t(xi)−yi|)

(k) Update margins ŷi to be

ŷi = ŷi + αt(λtht(xi) + (1 − λt)h′
t(x

′
i))

4. The strong classifier is given by sign(H(x)) where H(x) =
∑T

t=1 αt(λtht(x) +
(1 − λt)h′

t(x))

the “data” classifier or the “spatial” classifier. As a result, the strong AdaBoost
classifier might be a weighted sum of weak data and spatial classifiers where both
types of classifiers work in concert to improve the same objective function. For
the weak spatial classifiers we actually use the estimated margin of each data
point, after each boosting round, instead of the label (which is the sign of the
margin).

The SpatialBoost training algorithm is given in Algorithm 1. It takes as input
a collection of labeled data points {xi, yi}N

i=1 and a function Nbr(xi) that returns
the list of neighbors of the point xi. Once the strong classifier has been trained
we can apply it to the unlabeled pixels of the image using Algorithm 2.

3.2 GrabCut – Learning with Outliers

Creating a tri-map image is time consuming and hence, Rother et al. [11] sug-
gested GrabCut. In GrabCut the user merely draws a rectangle around the object
and the system automatically takes care of the rest. Within the context of Spa-
tialBoost this means nothing more than outlier rejection. Given the rectangle
we know that all the pixels outside the rectangle are negative examples, while
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Algorithm 2. SpatialBoost - Testing
Input: Unlabeled pixels {xi}N

i=1

The strong classifier H(x)
Output: Labels {yi}N

i=1

1. Initialize estimated margins {ŷi}N
i=1 to zero

2. For t = 1...T

(a) Set x′
i = {ŷj |xj ∈ Nbr(xi)}

(b) Update margins ŷi to be

ŷi = ŷi + αt(λtht(xi) + (1 − λt)h′
t(x

′
i))

3. Output sign(ŷi)

part of the positive pixels (i.e. pixels inside the rectangle) might be negative
examples. Hence, we modify SpatialBoost to handle outliers. A simple approach
to outlier rejection is to run SpatialBoost for several iterations and then mark the
positive pixels with large weights (i.e. weights larger than a predefined thresh-
old) as outliers, change their label to negative and repeat. In our case, we run
SpatialBoost for several iterations (typically, 10 iterations), then take all the
positive pixels that are still wrongly classified and have weight greater than 3

N
(where N is the number of labeled pixels), flip their sign to be negative and
restart SpatialBoost. We repeat this procedure for several times (typically, 5
times). Alternatively, one can adopt the BrownBoost algorithm [9].

3.3 The Feature Space

We are also interested in finding what is a good feature space to represent every
pixel. Clearly, one can use the (R,G,B) color of every pixel as its feature vector
but color carries no spatial information. This can be fixed in one of two ways.
One way is to add spatial smoothness assumption, for instance by introducing
a penalty term if two neighboring pixels disagree on their label. The second
way is to consider more complicated feature spaces that capture both color and
spatial information. In our experiments, we use feature vectors that capture the
local HoG of every pixel, in addition to the color. This combined feature vector
help disambiguate pixels. Working in a high-dimensional space makes it hard to
model the distribution of the data points, as is done in generative methods. On
the other hand, discriminative methods, such as AdaBoost or SpatialBoost, can
give better results.

Also, since our feature space encodes both color and spatial information we
do not have to break the image into multiple sub-regions and process each sub-
region independently. Breaking the image into sub-region could improve our
results, but we prefer to show the advantages of SpatialBoost without ad-hoc
improvements.
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4 Experiments

We show experiments on synthetic and real images.

4.1 Synthetic Images

To gain some intuition as to how SpatialBoost work we first present experiments
on synthetic images where we compare SpatialBoost and AdaBoost on a toy
problem of noise removal from binary images. Given a noisy binary image we
wish to infer the original “clean” image. To do so, we take a pair of clean/noisy
training images, that have the same local image statistics as our test image, and
train our classifier on them. We then apply the classifier to the noisy test image.
In our case we take the feature vector to be the 3 × 3 window around every
pixel, in the noisy image, and the label of each such data point is taken to be
the label of the center pixel of the window, in the corresponding clean image.
The neighborhood used by the function Nbr() in the SpatialBoost algorithm is
taken to be a 5 × 5 window around every pixel. Figure 1 compare AdaBoost
and SpatialBoost. The size of the images is 100 × 100 pixels and the amount

(a) (b) (c)

(d) (e) (f)

Fig. 1. Noise removal with 35% random noise. Given image (a) we want to infer image
(d). We show the results of two methods: AdaBoost (b) and SpatialBoost (e). For
training we used images (c) and (f). The “data” classifier takes every 3 × 3 window in
image (c) as a data point whose label is the value of its central pixel in image (f). The
“spatial” classifier takes every 5 × 5 window of the predicted labels in image (c) as a
data point.
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of noise is 35%, that is we randomly flipped the sign of 35% of all the pixels in
the image. One can see that SpatialBoost does a much better job in removing
the noise then AdaBoost. This is because SpatialBoost allows information to
propagate over time (i.e. iterations), whereas in AdaBoost the classification is
much more localized.

4.2 Real Images

We now turn our attention to the problem of image segmentation and use the
database published by [2].

Pre-processing. We compared two feature spaces. The first one is simply the
(R,G,B) values of every pixel. The second feature space consists of color and local
Histogram of Oriented Gradients (HoG). HoG is reminiscent of the SIFT detector
[7] and has been used in several object detection and recognition applications
[5, 6]. In particular, we compute it as follows.

We convert the color image into a gray scale image and compute its x and y
derivatives, we then clip pixels whose x and y derivative are below a threshold
(5 intensity values, in our case) and create an 8 bin Histogram of Oriented
Gradients (HoG) in the neighborhood of each pixel. The feature vector contains
both the (R,G,B) values of the pixel, as well as two 8-bin HoGs, on 3×3 and 5×5
windows, centered at the pixel. To improve the weak classifiers, we store several
powers of the feature vector elements. Let f = [f1, ..., fn] denote the original
feature vector, then we store the feature vector [f , f2, f3], that is, we raise every
element to all the powers in the range one through three. In total, our feature
vector consists of 57 = 3 ∗ (3 + 8 + 8) elements. This is a cheap way of gaining
kernel power, a-la kernel-SVM, for the weak classifier without implementing an
SVM as our weak classifier.

For the spatial weak classifier we set the Nbr() function to return a neighbor-
hood of 5 × 5 pixels around every pixel.

Image Segmentation Results. In figure 2 we compare the different fea-
ture spaces (Color Vs. Color+HoG) and the different classifiers (AdaBoost Vs.

Fig. 2. Comparing feature space as well as AdaBoost Vs. SpatialBoost. First column:
AdaBoost + RGB, Second column: SpatialBoost + RGB, Third column: AdaBoost +
RGB + HoG, Fourth column: SpatialBoost + RGB + HoG.
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Fig. 3. Roles of data and spatial classifiers. The x-axis show the iteration number, the
y-axis show the error rate of the data and spatial weak classifiers. In each iteration
SpatialBoost chooses the weak classifier with the lowest error rate. As can be seen, In
the first iteration the weak data classifier gives the lowest error rate, after that, the
two types of weak classifier play interleaving roles.

(a) (b) (c)

Fig. 4. Experiments on real data. Each row correspond to one example. Column (a) show
the input image, column (b) show the results on the tri-map data and column (c) show
the results on the GrabCut input. The tri-map and GrabCut inputs are overlaid on the
original image. In the tri-map case, the inner most region is marked as positive, the outer
most region is marked as negative and the region between the two is the test pixels to
be classified. In the GrabCut method all the pixels outside the rectangle are marked as
negative and all the pixels inside are marked as positive. The algorithm must determine
which of the “positive” pixels is an outlier and should in fact belong to the background.
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SpatialBoost). As expected, the combined Color+HoG conveys additional infor-
mation that improves the results of both AdaBoost and SpatialBoost. Of the two,
SpatialBoost produces better looking, and more accurate, segmentation results.
In both cases we used weighted least squares as our weak learner.

Next, we measured the role data and spatial classifiers play in SpatialBoost.
Figure 3 shows a plot of the error rate of each of these classifiers when trained
on the llama image (shown in figure 2). In each round SpatialBoost picks the
classifiers with the lowest error rate and as can be seen from the graph, the two
types of classifiers play interleaving roles. At the first iteration, SpatialBoost
picks a data classifier, but in the second iteration it picks a spatial classifiers
because it has a lower error rate, and so on.

Figure 4 show some results of running SpatialBoost on some real images. We
show results of running SpatialBoost with tri-map and GrabCut, as they appear
in the database. No morphological post-processing operations are performed to
enhance the results. We ran SpatialBoost on all 50 images in the database and
found the average error rate to be 8.00% for the set of 30 training images and
8.23% for the set of 20 test images. The best results, for the tri-map input

(a) (b)

(c) (d)

Fig. 5. Experiments on real data. Adding morphological post-processing can further
improve results. Image (a) show the input image (with the tri-map and GrabCut bound-
aries overlaid), image (b) show the results with the tri-map input, image (c) show the
results with the GrabCut input and image (d) show only the largest connected com-
ponent of image (c).
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reported by [2] are 7.9% on a test set of 20 out of the 50 images. They do not
report results for the GrabCut input. We obtain an error rate of 8.84% for the 30
training images and 11.96% for the 20 test images, in the GrabCut case. In their
follow-up work [11], where GrabCut was introduced, the authors show examples
with multiple user inputs and so direct comparison is no longer possible.

A couple of comments are in order. First, we found that choosing small neigh-
borhood windows gave better results, this is because larger neighborhood win-
dows lead to blur that degrades segmentation performance. Second, we found
that a large number of iterations actually help the segmentation as it allows the
propagation phase to spread the information. Finally, the method takes a couple
of seconds to run on a non-optimized MATLAB implementation.

In figure 5 we show results of combining SpatialBoost with basic morpholog-
ical operations. In this case we cleaned the result of SpatialBoost in the case
of GrabCut by detecting and keeping the largest connected component. The
results on the tri-map input usually do not require the use of morphological
post-processing operations.

SpatialBoost will automatically default to the standard AdaBoost algorithm
in case there is no spatial information to be used for classification. Indeed, we
tested spatialBoost on some of the UCI ML repostiroy [10] datasets (Ionosphere
and Glass) and found that no “spatial” classifier was chosen. Specifically, the
“spatial” classifier was trained on the predicted label of the 3 nearest examples,
but apparently this information was not useful.

5 Conclusions

We give a simple extension to AdaBoost to handle spatial information. In ad-
dition to the usual weak data classifiers, we introduce weak spatial classifiers
that work on the labels of the data points, after each iteration of the boosting
algorithm. In each SpatialBoost iteration the algorithm chooses the best weak
classifier (either data or spatial classifier) to be added. Results on synthetic and
real images show the superiority of SpatialBoost over AdaBoost in cases that
involve spatial reasoning.
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