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Abstract. In this paper we present two new methods of segmentation
that we developed for nuclei and chromosomic probes – core objects for
cytometry medical imaging. Our nucleic segmentation method is mathe-
matically grounded on a novel parametric model of an image histogram,
which accounts at the same time for the background noise, the nucleic
textures and the nuclei’s alterations to the background. We adapted an
Expectation-Maximisation algorithm to adjust this model to the his-
tograms of each image and subregion, in a coarse-to-fine approach. The
probe segmentation uses a new dome-detection algorithm, insensitive to
background and foreground noise, which detects probes of any intensity.
We detail our two segmentation methods and our EM algorithm, and dis-
cuss the strengths of our techniques compared with state-of-the-art ap-
proaches. Both our segmentation methods are unsupervised, automatic,
and require no training nor tuning: as a result, they are directly applica-
ble to a wide range of medical images. We have used them as part of a
large-scale project for the improvement of prenatal diagnostic of genetic
diseases, and tested them on more than 2,100 images with nearly 14,000
nuclei. We report 99.3% accuracy for each of our segmentation methods,
with a robustness to different laboratory conditions unreported before.

1 Introduction

Over the past twenty years, the age of pregnancy has been rising significantly,
with increased risk of genetic disease for the children. Thanks to the progress
made by research in genetics, many genetic diseases can now be treated at birth,
sometimes even during pregnancy. However, current diagnostic methods require
invasive procedures such as amniocentesis or cordocentesis, increasing the risk of
miscarriage. It is known that a few fetal cells enter the maternal circulation: this
opens the promise of a non-invasive diagnostic alternative. Isolating these cells
non-destructively would give access to the whole genetic material of the foetus.
Yet, such cells are rare: a sample of maternal blood will contain roughly 1 in
106 fetal cells, a ratio that can be reduced to about 1 in 104 with enrichment
methods [1]. Computer vision can make their detection easier.

The cells used in this work are leucocytes. Their nuclei are treated with a
blue fluorescent marker, and their telomeres with green fluorescent probes (see
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Fig. 1. Left: Image showing leucocyte nuclei (in blue), containing probes attached to
the telomeres (in green). Right: nuclei and probes segmented with our method.

Fig. 1). Telomeres are the ending parts of chromosomes, and more abundant
in fetal nuclei than in maternal ones. Measuring the green fluorescence in each
nucleus is expected to be sufficient to single out the rare fetal nuclei within
a sample of maternal blood, but it is still open to cytology research to assert
it. The need for automatic image processing in this field of medical research is
critical [2], and our work aims to meet this need.

Two significant issues impact the segmentation of such images. First, the nu-
cleic fluorescence spreads into the background region immediately surrounding.
Fig. 2 shows a typical nucleus, a profile of intensities across the image, and the
histogram of the three segmented regions: it appears that the background is
greatly affected near the nucleus. We use the term illuminated background to
denote the background region where the intensity is increased by a nearby nu-
cleus. Its extent is delimitated with a dotted line in Fig. 2. This region, hardly
noticeable by eye, is critical to the correctness of the segmentation of the nuclei.
The other issue is what we call foreground noise: unattached probes that cannot
be perfectly washed out of the preparation sometimes accumulate as clumps and
appear as bright spots, similar in intensity and shape to actual probes.

Previous work in this field is abundant, but is not usable in our context, where
a large number of images taken in various laboratory conditions has to be anal-
ysed with minimal user interaction, and where, to reduce the time needed for
diagnosis, the nuclei used are not cultured – as a result, they do not appear as
convex and smooth as most image processing methods for nuclei segmentation re-
quire. In the following paragraphs we review the state-of-the-art methods. First,
we review nucleic segmentation, then probe segmentation, and finally complete
systems that are used in laboratories for similar purposes.

Nucleic segmentation methods can be classified in four categories: background
subtraction, thresholding, watershed, and energy-based methods. For background
subtraction, the background is generally either considered as uniformly noisy
(with a histogram consisting of one Gaussian curve) [3], or is modeled with
a reference image containing no objects, taken from an empty slide [2]. How-
ever, none of these models is satisfactory because of the background illumination
near the nuclei. Threshold-based methods commonly used in cytometry, such as
Otsu’s [4] or Kittler and Illingworth’s [5], assume that histograms are bimodal,
or even consist of two Gaussians: this would be a crude and unrealistic estimate
for our images (see histogram of a typical image in Fig. 2). Global thresholding
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Fig. 2. Background illumination. Top left: image of a nucleus. Bottom left: intensity
values along the horizontal line across the image. Right: Histograms of the three seg-
mented regions (The vertical scale is bilinear, as reflected by the values on the side).

is bound to fail, because of cross-image intensity variations. Regarding local
thresholding, the construction of a threshold surface introduces extra size and
smoothness parameters, which have to be tuned, and are sensitive to the size
and number of objects in an image. Watershed-based methods [6] are notori-
ous for oversegmenting images; they require pre-processing with morphological
operations to smooth the image, and post-processing to merge contiguous re-
gions using shape, size and texture criteria. Most morphological operations use
a filter, whose size and profile are to be tuned according to the image’s prop-
erties and the smoothness required, and are thus little robust when automated.
Region-merging is a long process, where the criteria for merging depend on the
watershed results, and have to be tuned as well. Finally, energy-based methods,
such as active contours [7], level sets, or graph cuts, require initialisation, inter-
nal energies modeling the final shape, external energies modeling the borders’
characteristics, and parameters to balance them: these are difficult to tune even
manually. Furthermore, in our context, the various nucleic textures and their im-
pacts on the surrounding background are hard to model as local energy terms.
Besides, the irregular shapes of uncultured nuclei elude typical internal energy
terms. To summarise, these methods model the objects’ characteristics indepen-
dently, and require a complex parametrisation to link these models together.

Regarding probe segmentation, most methods are designed to segment only
large bright probes, and usually less than four per nucleus. Existing probe-
finding methods filter the image and threshold the intensities in order to keep
a given percentage of bright pixels [8]. Two significant problems arise from the
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Fig. 3. The steps of nucleic segmentation. Top row, left to right: original image; its
histogram with our adjusted model superimposed; the components of our model, used
to find a global threshold removing most of the background; the segmented image, with
two segmented regions containing nuclei but also some background. Middle row: one of
these regions; its histogram and our adjusted model; the components of our model, used
to find a local threshold, removing the remaining background; the segmented region,
with no more background, but where the two nuclei are still undistinguised: it will be
used as a mask for the final step of the segmentation. Bottow row: the segmented region;
the components of our model, used to find an inner threshold, removing the darkest
parts of the nuclei; the segmented nuclei, isolated but with parts missing: they are used
as seeds, and grown with a fast distance transform within the mask defined above; the
resulting segmentation of the region, with two separated nuclei and no background.
See Section 3 for more details.

foreground noise. First, it flaws any histogram-based method by significantly
increasing the number of high-intensity pixels. Second, as it is segmented as
probes, existing methods need post-processing with a carefully designed classi-
fier to distinguish it from the actual probes [9]. Also, existing systems measuring
probes intensity require calibration, usually using a set of fluorescent beads [8],
and are sensitive to changes in the fluorescence of the markers over time.

Finally, there are several integrated systems that are used in laboratory con-
ditions for similar purposes; however, none of them is either automatic enough
or general enough for clinical application. Many systems require expert human
intervention at some point during the segmentation of each nucleus [10, 11]. Au-
tomatic systems are not as general-purpose as ours: [12] require an extra specific
marker on the nuclei’s borders, while [13] only segments isolated convex elliptic
nuclei; systems such as Castleman’s [2] or Netten’s [14], are only applicable to
images with few nuclei and few probes.
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Our approach to segmentation is designed to avoid from the beginning the
problems mentioned above. For the nuclei, we use a unified model which encom-
passes seamlessly the background noise, the nucleic textures and the nuclei’s al-
terations to the background. The parameters of our model are intuitive and are
automatically adjusted to every image, using an adaptation of an Expectation-
Maximisation algorithm. This way, our model adapts to images of varying inten-
sities and qualities, with no prior assumptions, training or manual tuning. We
use our model to find successive threshold values, first global then local, and to
isolate touching nuclei – one of the most difficult tasks in cytometry. The three
steps of our nuclei segmentation are illustrated in Fig. 3. For probe segmenta-
tion, we use a new dome-detection algorithm which is insensitive to background
and foreground noise, and detects any number of probes of any intensity, with
no calibration required. After segmentation, the locations and measures of the
nuclei are stored in an XML database for later retrieval.

This article is organised as follows: in Section 2, we detail our novel model
for histograms. In Section 3, we describe our Expectation-Maximisation algo-
rithm adapted for histogram modeling. In Section 4, we present our new dome-
detection method applied to probe segmentation. In Section 5, we compare our
method with a typical watershed-based segmentation, discuss the results, and
present the results obtained with our software to compare individuals’ ages us-
ing telomeres intensities – a critical issue for non-invasive prenatal diagnosis as
mentioned earlier. We conclude in Section 6 with an overview of our future work.

2 Model of the Histogram of an Image

As illustrated in Fig. 2, the histogram of a typical image consists of three over-
lapping parts: a sharp peak in the lowest values, a sharply decreasing curve in
the medium values, and a plateau in the highest values. They correspond respec-
tively to the non-illuminated background (NIB), illuminated background (IB),
and nuclei (N). In this section we present the parametric functions we use to
model each part, and emphasis our new model for the illuminated background.

Let h(I) be an image histogram, consisting of parts NIB, IB and N, which we
model with hmodel(I). We assume NIB contains Ab pixels, has a mean value Ib,
and is affected by Gaussian noise of standard deviation σb. It is modeled with:

NIB(I) =
Ab√
2πσb

exp
(

− (I − Ib)2

2σ2
b

)
. (1)

The part of the histogram corresponding to the highest intensities, N, reflects
the nuclei’s textures. They are very variable, within and across samples: in par-
ticular, variations affect the range of intensity values, the shape of the histogram
and the number of peaks in it. Also, saturation can occur at high intensities, de-
pending on the hardware used for imaging. To overcome these problems we model
the nuclei’s histograms with sums of Gaussians: this is both robust and flexible
enough for our needs. As we do not know in advance how many nuclei an image
contains, nor how many Gaussians are needed for each texture, we introduce a
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new parameter, n, the number of Gaussians modeling the nuclei. Each of these
Gaussians i will model Ai pixels, with mean Ii and deviation σi:

Ni(I) =
Ai√
2πσi

exp
(

− (I − Ii)2

2σ2
i

)
, 1 ≤ i ≤ n . (2)

Next we detail the model we use for the illuminated background. Let I0 be
the intensity at the nucleus’ border, at distance R0 from its center, and let Ib be
the mean intensity of the non-illuminated background (see Eq.( 1)). We model
the intensity in the illuminated background, along a line normal to the nucleus’
border, with a decreasing exponential (see Fig. 4):

I(r) = Ib + (I0 − Ib) · exp
(

−r − R0

ρ

)
, for r ≥ R0 , (3)

where ρ is a constant controlling the slope of the intensity decay. This model
cannot be fitted directly to an image for segmentation purposes, as it requires a
prior segmentation of the nuclei. Nevertheless, it can be used to derive a model
of the illuminated background’s histogram. This latter model can be adjusted
to the image histogram, as detailed in the next section. In the remaining of this
section, we explain how we derive that model.

The expression of I(r) in Eq. (3) can be inverted to define r(I). This can be
used to express the number of points dn(r) = 2π r dr at distance r from the
nucleus, as a function of the intensity, dn(I). By integrating dn(I) between I
and I + 1, we obtain – by definition – the illuminated background’s histogram.
Introducing the new parameters α = ρ

R0
and A = πR2

0, we obtain:

IB(I) = 2 Aα

∫ I+1

I

(
1 − α ln

I − Ib

I0 − Ib

)
dI

I − Ib
. (4)

Eq. (4) is independent of the nucleus’ actual shape: it only depends on its area
A and the dimensionless parameter α, controlling the extent of the illumination
relative to the nucleus’ size. It can be easily integrated with the change of vari-
ables X = I−Ib

I0−Ib
. Also, this model is to be fitted to the histogram at values above

the mean background value, with I − Ib � 1. Thus, a first-order expansion of
IB(I) with respect to 1

I−Ib
is enough for our purpose. This leads to the definition

of our new model for the histogram of the illuminated background:

IB(I) =
2 A α2

I − Ib
ln

(
I0 − Ib

I − Ib

)
. (5)

The expression of IB(I) in Eq. (5) is illustrated in Fig. 4, to the right. Its two
parameters A and α correspond respectively to the area of the nucleus creating
the illumination, and to the spatial decay of the illumination.

To link this model with that of the nuclei, we assume that each Gaussian
modeling the nuclei’s textures creates part of the background illumination. Let
IB i(I) model the background illuminated by Ni(I). Three of its four param-
eters are constrained by the rest of the model: namely, the area causing the
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Fig. 4. Illustration of our model. Left: model of a circular nucleus. Center: model of the
intensity values in the illuminated background, I (r), defined in Eq. (3). Right: model
of the histogram of the illuminated background, IB(I ), defined in Eq. (5).

illumination A=Ai (see Eq. (2)), the mean intensity Ib of the non-illuminated
background (see Eq. (1)), and the intensity I0 at the nucleus’ border. We set
it to I0 = Ii − 2σi. Using Eq. (2), it corresponds to the darker 5% of the nu-
cleus’ pixels, which we consider to be on the boundary. This way, the functions
modeling the illuminated background are:

IB i(I) =
2 Ai α2

i

I − Ib
ln

(
Ii − 2σi − Ib

I − Ib

)
, 1 ≤ i ≤ n . (6)

Let Φn be the set of all the functions used, which are defined in Eqs. (1), (2)
and (6). The model of the histogram is:

hmodel(I) =
∑

g∈Φn

g(I) , where Φn = {NIB} ∪
⋃

1≤i≤n

{IB i, Ni} . (7)

It depends on the 4(n+1) parameters n, Ab, Ib, σb, {Ai, Ii, σi, αi}1≤i≤n. They are
adjusted to an image histogram using an Expectation-Maximization algorithm,
as detailed in the next section.

3 Expectation-Maximisation Algorithm for Histogram
Modeling

Let h(I) be an image histogram, consisting of parts NIB, IB and N, which we
model with hmodel(I). Each intensity I in the histogram contains a proportion
of pixels modeled by each function of our model. We define this proportion as:

pf (I) =
f(I)∑

g∈Φn
g(I)

, ∀f ∈ Φn = {NIB} ∪
⋃

1≤i≤n

{IB i, Ni} . (8)

Knowing these proportions is enough to define the successive thresholds needed
for our nucleic segmentation, as detailed at the end of this section. Given all
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Algorithm 1. Expectation-Maximisation algorithm for histogram modeling
1: for n = 1 to 6 do
2: Initial E-step: set the initial proportions as in Table 1
3: for 100 times do
4: M-step: compute the parameters with Eqs. (9) and (10).
5: E-step: update the proportions with Eqs. (1), (2), (6), (8).
6: Evaluation: measure the error between the model and the histogram as

error =
∑

I

(
1 − hmodel(I)

h(I)

)2
. Store the model if the error is the lowest.

7: end for
8: end for
9: return the model with the lowest error.

the parameters of the model, these proportions can be computed using Eqs. (1),
(2), (6) and (8). Reciprocally, given all the proportions pf (I), ∀I, ∀f ∈ Φn, the
parameters of the model can be computed as described below. However, neither
the parameters nor the proportions are available in the first place. This type of
problem is commonly solved by Expectation Maximisation [15]. The EM algo-
rithms commonly used in computer vision are adapted to mixture of Gaussian
models. The algorithm we present as Algorithm 1 is adapted to histograms: the
steps are the same, only the equations are different.

We now explain how to compute our model’s parameters given a histogram
h(I) and all the proportions pf(I). The parameters of the Gaussians NIB and
Ni are computed as the total, mean and deviation of a weighted histogram [16]:

Ai =
∑

I

pNi(I)h(I) ; Ii =
∑

I

pNi(I)h(I) I ; σ2
i =

∑
I

pNi(I)h(I) (I−Ii)2 . (9)

The only unconstrained parameters of the functions IBi are computed as:

αi =
1

| ln ε|

√√√√ 1
Ai

Ii−2σi∑
I=Iε

pIBi h(I) , where ε = 0.1 , Iε = Ib + ε (I0 − Ib) . (10)

(See Appendix for details). The complete segmentation of the nuclei is performed
in three steps, as illustrated on Fig. 3. First, we use the algorithm above to adjust
our parametric model to the image histogram. Let:

θglobal = max{I, ∀i, min(pNIB (I), pIBi (I)) ≥ pNi(I)} .

Below θglobal , all intensities contain more points from NIB or IB i than from the
corresponding Ni, and it is the highest such value. This is the global threshold
we use to discard the non-illuminated and part of the illuminated background.
Then, in each of the segmented regions, we apply the same algorithm to find
a model of the histogram (without the NIB function this time). In the same
way, we find the highest intensity containing more points from IB i than from
Ni, and use it as a local threshold θlocal . The newly segmented components
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Table 1. Initial proportions’ values for the EM algorithm. The histogram range [0, Imax ]
is divided in n+2 parts. Intuitively, most dark pixels are modeled by NIB , most bright
pixels by either one of the Ni, and most of the remaining pixels by the IB i (see Fig. 2).

Intensity 0 . . . 1
n+2 Imax

1
n+2 Imax . . . 2

n+2 Imax
j

n+2Imax . . . j+1
n+2Imax for 2 ≤ j ≤ n + 1

pNIB (I) 0.9 0.1 0
pIBi (I) 0.1/n 0.9/n 0.1/n
pNi(I) 0 0 0.9/n if i = j − 1 , 0 else

do not contain background anymore; however, they might contain more than
one nucleus. This problem is often solved by splitting components into convex
parts [17], but cannot be applied here – uncultured nuclei may be concave.
Instead, we consider the components’ textures, which are already modeled by
the Ni. We assume that there are several distinguishable nuclei in a component
if it contains dark paths separating several bright parts. The threshold we use to
define dark and bright for this test, called inner threshold θinner , is the lowest of
the Ii. The connected components above θinner are considered as seeds: each one
marks a unique nucleus. Then we extend the seeds into the regions above θlocal

using a fast distance transform [18], and obtain the segmented nuclei. Fig. 3
shows the three steps of the segmentation, with the models adjusted to the
histograms. Another example of a segmented image is shown in Fig. 1.

4 Dome-Finding Algorithm for Probe Segmentation

Once the nuclei are segmented, their telomere contents are to be evaluated, by
segmenting the fluorescent probes in the green channel. Probes appear as small
spots, each about a dozen pixels big. Background illumination is observed around
the probes as well; however we cannot apply the same segmentation method as
for the nuclei. This is for practical reasons: on a typical image, nuclei represent
about 8% of the pixels in the image, and the illuminated background about
50%; but the probes only represent 0.3%, and the background around them, 2%.
Adjusting our model using so few pixels would not be reliable enough.

Our novel method to segment probes is based on the following observations.
Both background and foreground noise are characterized by high densities of
local intensity maxima, distant by two or three pixels. Conversely, probes cor-
respond to local maxima surrounded by pixels of decreasing intensity and few,
if any, other local maxima within a distance of two or three pixels. Thus, we
developed a peak-detection method sensitive to the density of local maxima. In
addition, as it only measures pixels intensities relatively to their neighbours, our
method can detect probes of high and low intensities, unlike traditional probe-
finders restricted to few bright probes [2].

We segment probes as domes, starting from local maxima and gradually in-
cluding neighbours if they form a dome around them. If a dome is large enough,
we mark it as a probe; otherwise, we reject it. Around each local maximum,
we consider three sets of neighbouring pixels, at increasing distances, as illus-
trated by different shades on gray in the left of Fig. 5. They form the level
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Fig. 5. Left: the three level sets around a pixel, in three shades of gray, and all the
downhill neighbours, indicated by the arrows. Middle: actual pixels values in the neigh-
bourhood of a probe, and the segmented dome in gray. Right: actual pixels values in a
zone of foreground noise; none of the local maxima is surrounded by a proper dome.

sets1 of the dome, and approximate the shape of the probes. Formally, let
pM be a local maximum. The first level set consists of the 8 closest pixels:
LS1 = {p, d∞(p, pM ) = 1}. In the second level set are the twelve closest pixels
that are not already in LS1 : LS2 = {p, p /∈ LS1 ∧ d1(p,LS1 ) = 1}. Each pixel in
these sets is assigned three neighbours, as indicated by the arrows in Fig. 5: we
refer to them as downhill neighbours. If a pixel has a higher intensity than all its
downhill neighbours, it is marked as being part of the dome.

By design, one complete dome corresponds to one probe. However, it happens
that two probes are very close (two pixels apart), or that a probe is bigger than
a dome (and contains two local maxima). In both cases, the dome construction
above leads to two domes having one side in common that does not meet the
downhill constraint, and which is therefore not included in any of the two domes.
Since these cases are at the borderline but still valid, we accept domes with up
to one of their four sides missing. Formally, a dome is marked as a segmented
probe if it contains at least 75% of the pixels in LS1 and 75% of LS2 . Domes
with more pixels missing are rejected as noise (see middle and right of Fig. 5).

5 Results and Discussion

We start this section by presenting quantitative results obtained with our novel
segmentation methods. Our data set contains 2,166 images, with nearly 14,000
nuclei and 317,000 probes overall. We compare our results with a typical
watershed-based nucleic segmentation method. We also present an application
of our methods, to compare the telomere intensities of two different individuals.

5.1 Accuracy of the Segmentation Methods

Nucleic Segmentation. We implemented our method on an iMac with a 1.8GHz
PowerPC G5 and 1Gb of RAM, and processed our full dataset. For comparison,
1 Here, the term level set refers to its original definition in topology, not to the seg-

mentation method with the same name.
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Table 2. Results of the nuclei segmentation

Method Number Correctly Over Under Missed Non
of nuclei segmented segmented segmented existing

Watershed 2,779 2,232 - 80.3% 211 - 7.6% 212 - 7.6% 60 - 2.2% 64 - 2.3%
Ours 13,917 13,823 - 99.3% 31 - 0.22% 50 - 0.36% 8 - 0.06% 5 - 0.03%

we also implemented the watershed-based segmentation method for cytometry de-
scribed in [19], as follows. The image is thresholded globally with the value found
by the isodata algorithm; a distance transform is applied to the resulting image,
followed by an h-dome extraction; the domes extracted are used as starting-points
for the watershed algorithm, applied to the gradient transform of the original im-
age. We implemented this method under the same conditions as ours, and tested
it on a sample of 800 images, containing over 2,000 nuclei. The results of these
two segmentation methods are listed in Table 2, and discussed below.

In terms of runtime, our method segments one nucleus in about one second
(with no particular programming optimisation), which is about three times faster
than the watershed-based one, and several times faster than manual segmenta-
tion. Our method has linear complexity, and no particular memory requirements
(a histogram and the segmentation results). Once the histogram is built, our EM
algorithm runs in constant time; the thresholding steps require one image scan.
Conversely, the watershed-based method needs to store extra intermediate im-
ages, and the h-dome extraction requires an unknown number of image scans.
Besides, this method takes several minutes to process images with no nuclei, and
systematically segments objects in them. Our method processes empty images
correctly and faster than images with nuclei.

The quantitative results, shown in Table 2, are significantly better with our
method, which is due to its two main features. First, it finds the nucleic borders
using a succession of threshold values that are adapted for each part of the image
containing nuclei, while the other method uses a single global threshold. As a
result, many more nuclei are missed, when darker that the global threshold, and
many non-existing nuclei are segmented, which are in fact bright background
regions. Secondly, our method uses a texture model to separate touching nu-
clei, and gets very low oversegmentation (when a nucleus is segmented in more
than one object) and undersegmentation (when more than one nucleus are seg-
mented as one object). Conversely, to find seeds, the watershed-based method
replaces the nuclei’s textures with a distance transform, which amounts to using
only the nuclei’s borders to separate them. This approach is bound to fail with
uncultured nuclei, having concavities, as illustrated by the higher over- and un-
dersegmentation rates. Similar quantitative results are reported in [20], for the
same watershed-based method and for a contour-based method. Both methods
correctly segment 80% of similar nuclei, and over- and under-segment a total of
15% of the dataset. Using successive watershed-based and contour-based meth-
ods, [13] reports a 99.4% segmentation accuracy, but their method requires the
prior rejection of all the non-isolated, non-elliptic nuclei – corresponding to 30%
of their data, but more than 50% of ours.
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Our results can still be improved by basic post-processing. Missed objects
cannot be recovered, but are very rare in the first place, while non-existing nuclei
are hardly an issue. Oversegmentation happens when θinner is too high, and can
be detected by the small size of the parts oversegmented. Undersegmentation is
due to either θglobal or θlocal being too low, and results in bigger than average
objects, which can be detected as such and processed with higher thresholds.

Probe Segmentation. The aim of segmenting probes is to measure the total fluo-
rescence inside a nucleus, so oversegmentation is not an issue. Undersegmentation
is prevented with our method, as a segmented probe has a minimum dome size.
Overall, 99.3% of the probes were correctly found with our method. About 0.3%
were missed, too wide to be detected as one dome. Most of them were dark, with
little effect on the total fluorescence measured inside the nucleus; very rare wide
and bright probes were ruled out as foreground noise (less than 0.1%). Finally,
about 0.4% of the segmented objects were background, not probes; they were
dark and did not affect the final measures.

5.2 Comparison of Individuals Ages Using Telomeres Intensities

As an application, we used our method to quantify the intensity of probes ap-
pearing in the nuclei for two individuals. This test was conducted to assess the
differences in telomeric intensities between individuals of different ages. In partic-
ular the two populations of nuclei were not mixed. After using our segmentation,
our program rejected the nuclei which were cropped at the edges of images. The
results are shown in Fig. 6. The first histogram shows that the same number of
probes per nucleus were segmented for the two individuals; the second histogram
shows that the probes in the fetal nuclei are brighter. These result show that
our method does not introduce bias in the number of probe segmented, and that
there is a promising distinction between the individuals.

Fig. 6. Quantitative measures performed using our method on two populations of nuclei

Our software has proven reliable and robust enough to produce these results.
Reducing the overlap between the two histograms is a subject for cytology re-
search. Here again computer vision may help, as detailed in the next section.

6 Conclusions and Future Work

In this article we have detailed our new segmentation methods, presented a quan-
titative comparison of our nucleic segmentation with the widely used watershed
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method, and shown an application of our software for medical research. The nu-
cleic segmentation method we developed is based on a new model of the image
histogram, achieves a 99.3% accuracy and, to the best of our knowledge, is more
robust and automatic than previously published work on this field. Also, we have
presented some ideas to improve this rate further. As for the telomere probes,
our method is robust against all sources of noise, and is also 99.3% accurate.

The segmentation techniques we developed can be used for various cytomet-
ric tasks. We have used it along with our telomeric segmentation method for a
project of improved diagnostic methods. The quantitative results we have ob-
tained show a promising distinction between the telomere intensities in individ-
uals of different age. To improve the difference and reach the stage where a fetal
nucleus can be detected within a population of maternal nuclei, we are partici-
pating in further work with cytologists. Not all uncultured nuclei will be usable
in the final stage, where their genetic content is investigated. Some are dam-
aged during the early processing of sample blood, and could be rejected before
measuring the telomere intensities. These unusable nuclei can be detected by an
expert cytometrist by their shapes. We are currently working with such experts
on an automatic shape analysis of the segmented nuclei: our early work includes
measuring the nuclei’s concavities and using low-order Fourier reconstructions to
define usability criteria. Rejecting these unusable nuclei before segmenting the
telomeres would make our final comparison of populations more conclusive. At
that stage, we will be in a stronger position to tell if this approach to non-invasive
diagnostic alternative is reliable enough for a future clinical application.

The author thanks Prof. Clocksin, Dr Bray and Dr McCollum for their help
and Prof. Hulten and Dr Ariosa for providing the images.
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Appendix

We use the notations of Section 2. The sum of histogram values of the illuminated
background between any two values I1 and I2 is:

∑I2
I=I1

IB(I) =
∫ I2+1

I1
dn(I).

However,dn(I) is only defined and positive between Ib and I0, and is not summable
near Ib. Let Iε = Ib + ε (I0 − Ib), where ε ∈ (0, 1):

∑I0−1
I=Iε

IB(I) =
∫ I0

Iε
dn(I).

Developed to first order terms:
∑I0−1

I=Iε
IB(I) = −2Aα2

∫ I0
Iε

ln
(

I−Ib

I0−Ib

)
dI

I0−Ib
. Since

IB(I0) = 0, the sum can be extended to I0, while the integral can be computed
with a change of variable:

∑I0
I=Iε

IB(I) = Aα2 ln2 ε. This gives the expression of

α as a function of the histogram values: α = 1
| ln ε|

√
1
A

∑I0
Iε

IB(I) .
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